1
|
Fang M, Lu L, Lou J, Ou J, Yu Q, Tao X, Zhu J, Lin Z. FGF21 Alleviates Hypoxic-Ischemic White Matter Injury in Neonatal Mice by Mediating Inflammation and Oxidative Stress Through PPAR-γ Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04549-y. [PMID: 39485628 DOI: 10.1007/s12035-024-04549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
White matter injury (WMI), the most common type of brain damage in infants born preterm, is characterized by failure in oligodendrocyte progenitor cell maturation and myelination, thereby contributing to long-term neurological impairments. Regrettably, effective therapies for promoting remyelination and improving function are currently lacking for this growing population affected by WMI. Recombinant human fibroblast growth factor (rhFGF) 21 modulated microglial activation and then ameliorated brain damage and improved neurological deficits in several central nervous system diseases. However, the effects of rhFGF21 treatment on WMI in preterm infants remain uncertain. In this study, we established an in vivo mouse model of cerebral hypoxia-ischemia (HI)-induced brain WMI and an in vitro model using oxygen-glucose deprivation (OGD)-treated HMC3 cells to investigate the neuroprotective effects of rhFGF21 against WMI and elucidated the potential mechanism. Our findings demonstrated that administration of rhFGF21 significantly ameliorated the retardation of oligodendrocyte differentiation, promoted myelination, and mitigated axonal deficits, synaptic loss, and GFAP scarring, thereby improving lifelong cognitive and neurobehavioral dysfunction associated with WMI. Moreover, rhFGF21 modulated microglial polarization, promoted a shift from the M1 to the M2 microglial phenotype, and suppressed microglial activation, thus ameliorating inflammatory response and oxidative stress. Additionally, rhFGF21 treatment significantly inhibited the HMGB1/NF-κB pathway linked to inflammation, and activated the NRF2 pathway associated with oxidative stress through the upregulation of PPAR-γ. Importantly, the beneficial effects of rhFGF21 on HI-induced WMI and microglial activation were dramatically inhibited by PPAR-γ antagonist and its siRNA. Our findings provide compelling evidence that rhFGF21 treatment mitigated the inflammatory response and oxidative stress through the modulation of microglial polarization via the PPAR-γ-mediated HMGB1/NF-κB pathway and the NRF2 pathway, respectively, contributes to neuroprotection and the amelioration of WMI in neonatal mice. Thus, rhFGF21 represents a promising therapeutic agent for the treatment of neonatal WMI.
Collapse
Affiliation(s)
- Mingchu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Lou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Ou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianqian Yu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zou Y, Huang T, Pang A, Zhou H, Geng X. Electroacupuncture regulates glucose metabolism by inhibiting SGLT1 levels, inhibiting microglial polarization, and alleviating Parkinson's disease. Exp Gerontol 2024; 196:112558. [PMID: 39197673 DOI: 10.1016/j.exger.2024.112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a common central neurodegenerative disease in middle-aged and elderly people. The progressive degeneration and death of dopaminergic neurons leads to insufficient dopamine (DA) neurotransmitters. Acupuncture and moxibustion can alleviate the aging of neurons. Therefore, studying the neuroprotective effects of electroacupuncture (EA) in PD mice is particularly important. METHODS Intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg) was used to establish a PD mouse model, and lipopolysaccharide (LPS) was used to induce microglia polarization. Western blotting, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), Nissl staining and immunohistochemistry were used to detect neuronal apoptosis and injury, α-syn expression and microglial accumulation in PD mice. In addition, the levels of inflammatory factors were determined using enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to detect the Ca2+ content. The fluorescein isothiocyanate (FITC) labeling method was used to assess glucose uptake. A reagent kit was used to detect glucose and lactate levels. RESULTS MPTP induced the selective loss of DA neurons in the SN of mice, altered Ca2+ homeostasis, and induced an inflammatory response. In addition, maintaining Ca2+ homeostasis depends on the activity of transient receptor potential channel 1 (TRPC1). EA therapy promotes TRPC1 expression, which has a negative regulatory effect on sodium-glucose cotransporter 1 (SGLT1). Under the action of EA, TRPC1 protein expression increased, Ca2+ concentrations increased, and the effect of SGLT1 was inhibited, thereby facilitating glucose metabolism, blocking the activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, restraining M1 polarization of microglia, and alleviating the PD process. CONCLUSION EA promotes TRPC1/Ca2+ pathway activation, inhibits SGLT1-mediated regulation of glucose metabolism and PI3K/AKT pathway activation, inhibits microglial M1 polarization, and alleviates PD.
Collapse
Affiliation(s)
- Yanghong Zou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming 650032, Yunnan, China
| | - Tao Huang
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming 650032, Yunnan, China
| | - Ailan Pang
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming 650032, Yunnan, China; Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Houjun Zhou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming 650032, Yunnan, China
| | - Xin Geng
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China; Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming 650032, Yunnan, China.
| |
Collapse
|
3
|
Qin Y, Wang L, Song J, Quan W, Xu J, Chen J. Plasma lipidome, circulating inflammatory proteins, and Parkinson's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1424056. [PMID: 39347014 PMCID: PMC11433008 DOI: 10.3389/fnagi.2024.1424056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Background Observational studies have suggested that plasma lipidome play a pivotal role in the occurrence of Parkinson's disease (PD). However, it remains unknown which lipids among plasma lipidome affect PD and how they exert their influence. Clarity is lacking regarding the causal relationship between plasma lipidome and PD, as well as whether circulating inflammatory proteins serve as mediators. Methods Single nucleotide polymorphisms (SNPs) significantly associated with 179 plasma lipidome were selected as instrumental variables to assess their causal impact on PD. PD data, serving as the outcome, were sourced from the International Parkinson's Disease Genomics Consortium, which boasts the largest sample size to date. The inverse variance weighted (IVW), Weighted median method, MR-Egger method, Simple mode method, Weighted mode method and MR-PRESSO were employed to evaluate the influence of the 179 plasma lipidome on PD. Heterogeneity, pleiotropy tests, and reverse causality analyses were conducted accordingly. Additionally, we analyzed the causal relationship between 91 circulating inflammatory proteins and PD, exploring whether these proteins serve as mediators in the pathway from plasma lipidome to PD. Results Among the 179 plasma lipidome, three were found to be associated with a reduced risk of PD: Phosphatidylcholine (14:0_18:2) (IVW, OR = 0.877; 95%CI, 0.787-0.978; p = 0.018), Phosphatidylcholine (16:0_16:1) levels (IVW, OR = 0.835; 95%CI, 0.717-0.973; p = 0.021), and Phosphatidylcholine (O-17:0_17:1) levels (IVW, OR = 0.854; 95%CI, 0.779-0.936; p = 0.001). Meanwhile, Sphingomyelin (d38:1) was linked to an increased risk of PD (IVW, OR = 1.095; 95%CI, 1.027-1.166; p = 0.005). Among the 91 circulating inflammatory proteins, three were associated with a lower PD risk: Fibroblast growth factor 21 levels (IVW, OR = 0.817; 95%CI, 0.674-0.990; p = 0.039), Transforming growth factor-alpha levels (IVW, OR = 0.825; 95%CI, 0.683-0.998; p = 0.048), and Tumor necrosis factor receptor superfamily member 9 levels (IVW, OR = 0.846; 95%CI, 0.744-0.963; p = 0.011). Two were associated with a higher risk of PD: Interleukin-17A levels (IVW, OR = 1.285; 95%CI, 1.051-1.571; p = 0.014) and TNF-beta levels (IVW, OR = 1.088; 95%CI, 1.010-1.171; p = 0.026). Additionally, a positive correlation was observed between Phosphatidylcholine (14:0_18:2) levels and Fibroblast growth factor 21 levels (IVW, OR = 1.125; 95%CI, 1.006-1.257; p = 0.038), suggesting that Fibroblast growth factor 21 levels may serve as a mediating factor in the pathway between Phosphatidylcholine (14.0_18.2) levels and PD. The mediation effect was estimated to be -0.024, accounting for approximately 18% of the total effect. Conclusion Both plasma lipidome and circulating inflammatory proteins demonstrate a causal relationship with PD. Additionally, circulating inflammatory proteins may serve as mediators in the pathway from plasma lipidome to PD. These findings may contribute to the prediction and diagnosis of PD and potentially pave the way for targeted therapies in the future.
Collapse
Affiliation(s)
- Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Zhao J, Liu X, Yue J, Zhang S, Li L, Wei H. PF-05231023 reduces lipid deposition in apolipoprotein E-deficient mice by inhibiting the expression of lipid synthesis genes. Front Vet Sci 2024; 11:1429639. [PMID: 39144082 PMCID: PMC11322577 DOI: 10.3389/fvets.2024.1429639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone that is primarily expressed and secreted by the liver. The hormone is crucial for regulation of glucose homeostasis, lipid metabolism, and energy balance. Compared with natural FGF21, FGF21 analogs have become drug candidates for the treatment of cardiovascular and metabolic diseases owing to their long half-life and greater stability in vitro. Apolipoprotein E (Apoe)-knockout (Apoe -/-) mice exhibit progressive disruptions in lipid metabolism in vivo and develop further atherosclerosis pathological features owing to Apoe deletion. Therefore, this study used an Apoe -/- mouse model to investigate the effects of a long-acting FGF21 analog (PF-05231023) on lipid metabolism and related parameters. Eighteen Apoe -/- female mice were fed a Western diet equivalent for 12 weeks, and then randomly assigned to intraperitoneally receive either physiological saline (the control group) or 10 mg/kg PF-05231023 (the treatment group) three times a week for seven consecutive weeks. Body composition, glucose tolerance, blood and liver cholesterol, triglyceride levels, liver vacuolization levels, peri-ovarian white adipocyte hypertrophy, aortic atherosclerotic plaque formation, and the expression of genes related to lipid metabolism in adipose tissue were subsequently assessed before and after treatment. The aortic atherosclerotic plaque area was reduced in mice in the PF-05231023 treatment group compared with that in the saline group. Although the effect of PF-05231023 on the plasma biochemical indexes of mice was small, it significantly reduced lipid levels and lipid droplet accumulation in the liver, and reduced adipocyte hypertrophy in white adipose tissue. Transcriptome analysis of adipose tissue showed that PF-05231023 treatment downregulated the expression of lipid synthesis-related genes and inhibited the sterol regulatory element binding transcription factor 1 gene, thereby improving lipid deposition. PF-05231023 effectively improved the lipid metabolism of Apoe -/- mice, demonstrating an anti-atherosclerotic effect and providing a scientific basis and experimental foundation for the clinical treatment of cardiovascular diseases by using long-acting FGF21 analogs.
Collapse
Affiliation(s)
| | | | | | | | - Li Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong, China
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong, China
| |
Collapse
|
5
|
Wang HC, Yang W, Xu L, Han YH, Lin Y, Lu CT, Kim K, Zhao YZ, Yu XC. BV2 Membrane-Coated PEGylated-Liposomes Delivered hFGF21 to Cortical and Hippocampal Microglia for Alzheimer's Disease Therapy. Adv Healthc Mater 2024; 13:e2400125. [PMID: 38513154 DOI: 10.1002/adhm.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Microglia-mediated inflammation is involved in the pathogenesis of Alzheimer's disease (AD), whereas human fibroblast growth factor 21 (hFGF21) has demonstrated the ability to regulate microglia activation in Parkinson's disease, indicating a potential therapeutic role in AD. However, challenges such as aggregation, rapid inactivation, and the blood-brain barrier hinder its effectiveness in treating AD. This study develops targeted delivery of hFGF21 to activated microglia using BV2 cell membrane-coated PEGylated liposomes (hFGF21@BCM-LIP), preserving the bioactivity of hFGF21. In vitro, hFGF21@BCM-LIP specifically targets Aβ1-42-induced BV2 cells, with uptake hindered by anti-VCAM-1 antibody, indicating the importance of VCAM-1 and integrin α4/β1 interaction in targeted delivery to BV2 cells. In vivo, following subcutaneous injection near the lymph nodes of the neck, hFGF21@BCM-LIP diffuses into lymph nodes and distributes along the meningeal lymphatic vasculature and brain parenchyma in amyloid-beta (Aβ1-42)-induced mice. Furthermore, the administration of hFGF21@BCM-LIP to activated microglia improves cognitive deficits caused by Aβ1-42 and reduces levels of tau, p-Tau, and BACE1. It also decreases interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) release while increasing interleukin-10 (IL-10) release both in vivo and in vitro. These results indicate that hFGF21@BCM-LIP can be a promising treatment for AD, by effectively crossing the blood-brain barrier and targeting delivery to brain microglia via the neck-meningeal lymphatic vasculature-brain parenchyma pathways.
Collapse
Affiliation(s)
- Heng-Cai Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Wei Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Ling Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yong-Hui Han
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang Province, 325101, China
| | - Yi Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Kwonseop Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang Province, 315302, China
| | - Xi-Chong Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| |
Collapse
|
6
|
Xie J, Yan J, Ji K, Guo Y, Xu S, Shen D, Li C, Gao H, Zhao L. Fibroblast growth factor 21 enhances learning and memory performance in mice by regulating hippocampal L-lactate homeostasis. Int J Biol Macromol 2024; 271:132667. [PMID: 38801850 DOI: 10.1016/j.ijbiomac.2024.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is one endogenous metabolic molecule that functions as a regulator in glucose and lipid homeostasis. However, the effect of FGF21 on L-lactate homeostasis and its mechanism remains unclear until now. Forty-five Six-week-old male C57BL/6 mice were divided into three groups: control, L-lactate, and FGF21 (1.5 mg/kg) groups. At the end of the treatment, nuclear magnetic resonance-based metabolomics, and key proteins related to L-lactate homeostasis were determined respectively to evaluate the efficacy of FGF21 and its mechanisms. The results showed that, compared to the vehicle group, the L-lactate-treated mice displayed learning and memory performance impairments, as well as reduced hippocampal ATP and NADH levels, but increased oxidative stress, mitochondrial dysfunction, and apoptosis, which suggesting inhibited L-lactate-pyruvate conversion in the brain. Conversely, FGF21 treatment ameliorated the L-lactate accumulation state, accompanied by restoration of the learning and memory defects, indicating enhanced L-lactate uptake and utilization in hippocampal neurons. We demonstrated that maintaining constant L-lactate-pyruvate flux is essential for preserving neuronal bioenergetic and redox levels. FGF21 contributed to preparing the brain for situations of high availability of L-lactate, thus preventing neuronal vulnerability in metabolic reprogramming.
Collapse
Affiliation(s)
- Jiaojiao Xie
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiapin Yan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Keru Ji
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuejun Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Sibei Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Danjie Shen
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325035, Zhejiang, China.
| | - Liangcai Zhao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
7
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
8
|
Yang C, Wang W, Deng P, Wang X, Zhu L, Zhao L, Li C, Gao H. Fibroblast growth factor 21 ameliorates behavior deficits in Parkinson's disease mouse model via modulating gut microbiota and metabolic homeostasis. CNS Neurosci Ther 2023; 29:3815-3828. [PMID: 37334756 PMCID: PMC10651963 DOI: 10.1111/cns.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
AIMS The effects of FGF21 on Parkinson's disease (PD) and its relationship with gut microbiota have not been elucidated. This study aimed to investigate whether FGF21 would attenuate behavioral impairment through microbiota-gut-brain metabolic axis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mice model. METHODS Male C57BL/6 mice were rendomized into 3 groups: vehicle (CON); MPTP 30 mg/kg/day i.p. injection (MPTP); FGF21 1.5 mg/kg/d i.p. injection plus MPTP 30 mg/kg/day i.p. injection (FGF21 + MPTP). The behavioral features, metabolimics profiling, and 16 s rRNA sequencing were performed after FGF21 treatment for 7 days. RESULTS MPTP-induced PD mice showed motor and cognitive deficits accompanied by gut microbiota dysbiosis and brain-region-specific metabolic abnormalities. FGF21 treatment dramatically attenuated motor and cognitive dysfunction in PD mice. FGF21 produced a region-specific alteration in the metabolic profile in the brain in ways indicative of greater ability in neurotransmitter metabolism and choline production. In addition, FGF21 also re-structured the gut microbiota profile and increased the relative abundance of Clostridiales, Ruminococcaceae, and Lachnospiraceae, thereby rescuing the PD-induced metabolic disorders in the colon. CONCLUSION These findings indicate that FGF21 could affect behavior and brain metabolic homeostasis in ways that promote a favorable colonic microbiota composition and through effects on the microbiota-gut-brain metabolic axis.
Collapse
Affiliation(s)
- Changwei Yang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
- School of Public healthFujian Medical UniversityFuzhouChina
| | - Wuqiong Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Pengxi Deng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Xinyi Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Lin Zhu
- School of Public healthFujian Medical UniversityFuzhouChina
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
9
|
Meng HW, Shen ZB, Meng XS, Leng-Wei, Yin ZQ, Wang XR, Zou TF, Liu ZG, Wang TX, Zhang S, Chen YL, Yang XX, Li QS, Duan YJ. Novel flavonoid 1,3,4-oxadiazole derivatives ameliorate MPTP-induced Parkinson's disease via Nrf2/NF-κB signaling pathway. Bioorg Chem 2023; 138:106654. [PMID: 37300959 DOI: 10.1016/j.bioorg.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Neuroinflammation and oxidative stress are important factors driving the progression of PD. It has been reported that 1,3,4-oxadiazole and flavone derivatives have numerous biological functions, especially in the aspect of anti-inflammatory and antioxidant. Based on the strategy of pharmacodynamic combination, we introduced 1,3,4-oxadiazole moiety into the flavonoid backbone, designed and synthesized a series of novel flavonoid 1,3,4-oxadiazole derivatives. Further, we evaluated their toxicity, anti-inflammatory and antioxidant activities using BV2 microglia. Following a comprehensive analysis, compound F12 showed the best pharmacological activity. In vivo, we induced the classical PD animal model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into C57/BL6J mice. Our results showed that compound F12 ameliorated MPTP-induced dysfunction in mice. Further, compound F12 reduced oxidative stress by promoting the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inflammatory response by inhibiting the nuclear translocation of nuclear factor-κB (NF-κB) in vivo and in vitro. Meanwhile, compound F12 inhibited the mitochondrial apoptotic pathway to rescue microglia inflammation-mediated loss of dopaminergic neurons. In conclusion, compound F12 reduced oxidative stress and inflammation and could be as a potential agent for PD treatment.
Collapse
Affiliation(s)
- Hua-Wen Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhen-Bao Shen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xian-She Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Leng-Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ze-Qun Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue-Rui Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ting-Feng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhi-Gang Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tian-Xiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qing-Shan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Ya-Jun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
10
|
Kuo YY, Tsai HY, Kuo YM, Tzeng SF, Chen PS, Hsu PH, Lin YT, Chen PC. Glibenclamide promotes FGF21 secretion in interscapular BAT and attenuates depression-like behaviors in male mice with HFD-induced obesity. Life Sci 2023; 328:121900. [PMID: 37391066 DOI: 10.1016/j.lfs.2023.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
AIMS Epidemiological evidence suggests that comorbidity of obesity and depression is extremely common and continues to grow in prevalence. However, the mechanisms connecting these two conditions are unknown. In this study, we explored how treatment with KATP channel blocker glibenclamide (GB) or the well-known metabolic regulator FGF21 impact male mice with high-fat diet (HFD)-induced obesity and depressive-like behaviors. MATERIALS AND METHODS Mice were fed with HFD for 12 weeks and then treated with recombinant FGF21 protein by infusion for 2 weeks, followed by intraperitoneal injection of 3 mg/kg recombinant FGF21 once per day for 4 days. Measurements were made of catecholamine levels, energy expenditure, biochemical endpoints and behavior tests, including sucrose preference and forced swim tests were. Alternatively, animals were infused with GB into brown adipose tissue (BAT). The WT-1 brown adipocyte cell line was used for molecular studies. KEY FINDINGS Compared to HFD controls, HFD + FGF21 mice exhibited less severe metabolic disorder symptoms, improved depressive-like behaviors, and more extensive mesolimbic dopamine projections. FGF21 treatment also rescued HFD-induced dysregulation of FGF21 receptors (FGFR1 and co-receptor β-klotho) in the ventral tegmental area (VTA), and it altered dopaminergic neuron activity and morphology in HFD-fed mice. Importantly, we also found that FGF21 mRNA level and FGF21 release were increased in BAT after administration of GB, and GB treatment to BAT reversed HFD-induced dysregulation of FGF21 receptors in the VTA. SIGNIFICANCE GB administration to BAT stimulates FGF21 production in BAT, corrects HFD-induced dysregulation of FGF21 receptor dimers in VTA dopaminergic neurons, and attenuates depression-like symptoms.
Collapse
Affiliation(s)
- Yi-Ying Kuo
- Department of Physiology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institue of Basic Medical Sciences, College of Medicine, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Yeh Tsai
- Department of Physiology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Po-See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, Taiwan
| | - Po-Hung Hsu
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ya-Tin Lin
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institue of Basic Medical Sciences, College of Medicine, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Chu C, Li T, Yu L, Li Y, Li M, Guo M, Zhao J, Zhai Q, Tian F, Chen W. A Low-Protein, High-Carbohydrate Diet Exerts a Neuroprotective Effect on Mice with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson's Disease by Regulating the Microbiota-Metabolite-Brain Axis and Fibroblast Growth Factor 21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267589 DOI: 10.1021/acs.jafc.2c07606] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Parkinson's disease (PD) is closely linked to lifestyle factors, particularly dietary patterns, which have attracted interest as potential disease-modifying factors. Eating a low-protein, high-carbohydrate (LPHC) diet is a promising dietary intervention against brain aging; however, its protective effect on PD remains elusive. Here, we found that an LPHC diet ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced motor deficits, decreased dopaminergic neuronal death, and increased the levels of striatal dopamine, serotonin, and their metabolites in PD mice. Levels of fibroblast growth factor 21 (FGF-21), a member of the fibroblast growth factor family, were elevated in PD mice following LPHC treatment. Furthermore, the administration of FGF-21 exerted a protective effect on MPTP-induced PC12 cells, similar to the effect of an LPHC diet in MPTP-induced mice. Sequencing of the 16S rDNA from fecal microbiota revealed that an LPHC diet normalized the gut bacterial composition imbalance in PD mice, as evidenced by the increased abundance of the genera Bifidobacterium, Ileibacterium, Turicibacter, and Blautia and decreased abundance of Bilophila, Alistipes, and Bacteroides. PICRUSt-predicted fecal microbiome function revealed that an LPHC diet suppressed lipopolysaccharide biosynthesis and the citrate cycle (TCA cycle), biosynthesis of ubiquinone and other terpenoid-quinones, and oxidative phosphorylation pathways caused by MPTP, and enhanced the biosynthesis of amino acids, carbohydrate metabolism, and biosynthesis of other secondary metabolites. A nonmetabolomic analysis of the serum and feces showed that an LPHC diet significantly increased the levels of aromatic amino acids (AAAs), including tryptophan, tyrosine, and phenylalanine. In addition, an LPHC diet elevated the serum concentrations of bile acids (BAs), particularly tauroursodeoxycholic acid (TUDCA) and taurine. Collectively, our current findings point to the potential mechanism of administering an LPHC diet in attenuating movement impairments in MPTP-induced PD mice, with AAAs, microbial metabolites (TUDCA and taurine), and FGF-21 as key mediators along the gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Chuanqi Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tiantian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiwen Li
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia 30602, United States
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
13
|
Song X, Cao W, Wang Z, Li F, Xiao J, Zeng Q, Wang Y, Li S, Ye C, Wang Y, Zheng K. Nicotinamide n-Oxide Attenuates HSV-1-Induced Microglial Inflammation through Sirtuin-1/NF-κB Signaling. Int J Mol Sci 2022; 23:ijms232416085. [PMID: 36555725 PMCID: PMC9784159 DOI: 10.3390/ijms232416085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
HSV-1 is a typical neurotropic virus that infects the brain and causes keratitis, cold sores, and occasionally, acute herpes simplex encephalitis (HSE). The large amount of proinflammatory cytokines induced by HSV-1 infection is an important cause of neurotoxicity in the central nervous system (CNS). Microglia, as resident macrophages in CNS, are the first line of defense against neurotropic virus infection. Inhibiting the excessive production of inflammatory cytokines in overactivated microglia is a crucial strategy for the treatment of HSE. In the present study, we investigated the effect of nicotinamide n-oxide (NAMO), a metabolite mainly produced by gut microbe, on HSV-1-induced microglial inflammation and HSE. We found that NAMO significantly inhibits the production of cytokines induced by HSV-1 infection of microglia, such as IL-1β, IL-6, and TNF-α. In addition, NAMO promotes the transition of microglia from the pro-inflammatory M1 type to the anti-inflammatory M2 type. More detailed studies revealed that NAMO enhances the expression of Sirtuin-1 and its deacetylase enzymatic activity, which in turn deacetylates the p65 subunit to inhibit NF-κB signaling, resulting in reduced inflammatory response and ameliorated HSE pathology. Therefore, Sirtuin-1/NF-κB axis may be promising therapeutic targets against HSV-1 infection-related diseases including HSE.
Collapse
Affiliation(s)
- Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wenyan Cao
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zexu Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Feng Li
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ji Xiao
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiongzhen Zeng
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuan Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Shan Li
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Cuifang Ye
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Correspondence: ; Tel.: +86-755-26917542
| |
Collapse
|
14
|
SUI Y, CHEN J. Hepatic FGF21: Its Emerging Role in Inter-Organ Crosstalk and Cancers. Int J Biol Sci 2022; 18:5928-5942. [PMID: 36263162 PMCID: PMC9576513 DOI: 10.7150/ijbs.76924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor (FGF) 21 is one of the FGF members with special endocrine properties. In the last twenty years, it has attracted intense research and development for its physiological functions that respond to dietary manipulation, pharmacological benefits of improving the macronutrient metabolism, and clinical values as a biomarker of various human diseases. Generally, FGF21 can be produced by major metabolic organs, but only the subgroup from the liver shows canonical endocrine properties, which emphasizes the special value of delineating the unique secretory and functional characteristics of hepatic FGF21. There has been a growth in literature to address the extra-hepatic activities of FGF21, and many striking findings have therefore been published. Yet, they are fragmented and scattered, and controversies are raised from divergent findings. For this reason, there is a need for a systematic and critical evaluation of current research in this aspect. In this review, we focus on the current knowledge about the molecular biology of endocrine FGF21, especially present details on the regulation of circulating levels of FGF21. We also emphasize its emerging roles in inter-organ crosstalk and cancer development.
Collapse
Affiliation(s)
- Yue SUI
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jianping CHEN
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
15
|
Lei Z, Chen L, Hu Q, Yang Y, Tong F, Li K, Lin T, Nie Y, Rong H, Yu S, Song Q, Guo J. Ginsenoside Rb1 improves intestinal aging via regulating the expression of sirtuins in the intestinal epithelium and modulating the gut microbiota of mice. Front Pharmacol 2022; 13:991597. [PMID: 36238549 PMCID: PMC9552198 DOI: 10.3389/fphar.2022.991597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal aging seriously affects the absorption of nutrients of the aged people. Ginsenoside Rb1 (GRb1) which has multiple functions on treating gastrointestinal disorders is one of the important ingredients from Ginseng, the famous herb in tradition Chinese medicine. However, it is still unclear if GRb1 could improve intestinal aging. To investigate the function and mechanism of GRb1 on improving intestinal aging, GRb1 was administrated to 104-week-old C57BL/6 mice for 6 weeks. The jejunum, colon and feces were collected for morphology, histology, gene expression and gut microbiota tests using H&E staining, X-gal staining, qPCR, Western blot, immunofluorescence staining, and 16S rDNA sequencing technologies. The numbers of cells reduced and the accumulation of senescent cells increased in the intestinal crypts of old mice, and administration of GRb1 could reverse them. The protein levels of CLDN 2, 3, 7, and 15 were all decreased in the jejunum of old mice, and administration of GRb1 could significantly increase them. The expression levels of Tert, Lgr5, mKi67, and c-Myc were all significantly reduced in the small intestines of old mice, and GRb1 significantly increased them at transcriptional or posttranscriptional levels. The protein levels of SIRT1, SIRT3, and SIRT6 were all reduced in the jejunum of old mice, and GRb1 could increase the protein levels of them. The 16S rDNA sequencing results demonstrated the dysbiosis of the gut microbiota of old mice, and GRb1 changed the composition and functions of the gut microbiota in the old mice. In conclusion, GRb1 could improve the intestinal aging via regulating the expression of Sirtuins family and modulating the gut microbiota in the aged mice.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Keying Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| |
Collapse
|
16
|
Yan J, Tang X, Zhou ZQ, Zhang J, Zhao Y, Li S, Luo A. Sirtuins functions in central nervous system cells under neurological disorders. Front Physiol 2022; 13:886087. [PMID: 36111151 PMCID: PMC9468898 DOI: 10.3389/fphys.2022.886087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
The sirtuins (SIRTs), a class of NAD+ -dependent deacylases, contain seven SIRT family members in mammals, from SIRT1 to SIRT7. Extensive studies have revealed that SIRT proteins regulate virous cell functions. Central nervous system (CNS) decline resulted in progressive cognitive impairment, social and physical abilities dysfunction. Therefore, it is of vital importance to have a better understanding of potential target to promote homeostasis of CNS. SIRTs have merged as the underlying regulating factors of the process of neurological disorders. In this review, we profile multiple functions of SIRT proteins in different cells during brain function and under CNS injury.
Collapse
Affiliation(s)
- Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaole Tang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-qiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shiyong Li, ; Ailin Luo,
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shiyong Li, ; Ailin Luo,
| |
Collapse
|