1
|
Pan G, Au CK, Ham YH, Yu JZ, Cai Z, Chan W. Urinary Thioproline and Thioprolinyl Glycine as Specific Biomarkers of Formaldehyde Exposure in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16368-16375. [PMID: 39223712 DOI: 10.1021/acs.est.4c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Assessment of personal formaldehyde (FA) exposure is most commonly carried out using formate as a biomarker, as it is the major product from FA metabolism. However, formate could also have originated from the metabolism of other endogenous and exogenous substances or from dietary intake, which may give rise to overestimated results with regard to FA exposure. We have developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with an isotope-dilution method for rigorous quantitation of two major urinary FA conjugation products: thioproline (SPro) and thioprolinyl glycine (SPro-Gly), formed in the reaction between FA and endogenous cysteine or cysteinyl glycine, respectively, as marker molecules to assess personal FA exposure. Using this newly developed method, we measured the FA exposure levels in cigarette smokers, occupants of a chemistry research laboratory and typical domestic household, and visitors to a Chinese temple with a Pearson correlation coefficient greater than 0.94, showing a strong linear correlation between urinary adduct levels and the airborne FA level. It is believed that quantitation of urinary SPro and SPro-Gly may represent a noninvasive, interference-free method for assessing personal FA exposure.
Collapse
Affiliation(s)
- Guanrui Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Jian Zhen Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon , Hong Kong SAR, China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon , Hong Kong SAR, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon , Hong Kong SAR, China
| |
Collapse
|
2
|
Rajendran K, Krishnan UM. Biomarkers in Alzheimer's disease. Clin Chim Acta 2024; 562:119857. [PMID: 38986861 DOI: 10.1016/j.cca.2024.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is among the most common neurodegenerative disorders. AD is characterized by deposition of neurofibrillary tangles and amyloid plaques, leading to associated secondary pathologies, progressive neurodegeneration, and eventually death. Currently used diagnostics are largely image-based, lack accuracy and do not detect early disease, ie, prior to onset of symptoms, thus limiting treatment options and outcomes. Although biomarkers such as amyloid-β and tau protein in cerebrospinal fluid have gained much attention, these are generally limited to disease progression. Unfortunately, identification of biomarkers for early and accurate diagnosis remains a challenge. As such, body fluids such as sweat, serum, saliva, mucosa, tears, and urine are under investigation as alternative sources for biomarkers that can aid in early disease detection. This review focuses on biomarkers identified through proteomics in various biofluids and their potential for early and accurate diagnosis of AD.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities, & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
3
|
Crossley SW, Tenney L, Pham VN, Xie X, Zhao MW, Chang CJ. A Transfer Hydrogenation Approach to Activity-Based Sensing of Formate in Living Cells. J Am Chem Soc 2024; 146:8865-8876. [PMID: 38470125 PMCID: PMC11487638 DOI: 10.1021/jacs.3c09735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Formate is a major reactive carbon species in one-carbon metabolism, where it serves as an endogenous precursor for amino acid and nucleic acid biosynthesis and a cellular source of NAD(P)H. On the other hand, aberrant elevations in cellular formate are connected to progression of serious diseases, including cancer and Alzheimer's disease. Traditional methods for formate detection in biological environments often rely on sample destruction or extensive processing, resulting in a loss of spatiotemporal information. To help address these limitations, here we present the design, synthesis, and biological evaluation of a first-generation activity-based sensing system for live-cell formate imaging that relies on iridium-mediated transfer hydrogenation chemistry. Formate facilitates an aldehyde-to-alcohol conversion on various fluorophore scaffolds to enable fluorescence detection of this one-carbon unit, including through a two-color ratiometric response with internal calibration. The resulting two-component probe system can detect changes in formate levels in living cells with a high selectivity over potentially competing biological analytes. Moreover, this activity-based sensing system can visualize changes in endogenous formate fluxes through alterations of one-carbon pathways in cell-based models of human colon cancer, presaging the potential utility of this chemical approach to probe the continuum between one-carbon metabolism and signaling in cancer and other diseases.
Collapse
Affiliation(s)
- Steven W.M. Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Logan Tenney
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Vanha N. Pham
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Xiao Xie
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Michelle W. Zhao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, 94720, United States
| |
Collapse
|
4
|
Isaiah S, Loots DT, van Reenen M, Solomons R, van Elsland S, Tutu van Furth AM, van der Kuip M, Mason S. Urinary metabolic characterization of advanced tuberculous meningitis cases in a South African paediatric population. Front Mol Biosci 2024; 11:1253983. [PMID: 38560518 PMCID: PMC10978807 DOI: 10.3389/fmolb.2024.1253983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Tuberculous meningitis (TBM) is a severe form of tuberculosis with high neuro-morbidity and mortality, especially among the paediatric population (aged ≤12 years). Little is known of the associated metabolic changes. This study aimed to identify characteristic metabolic markers that differentiate severe cases of paediatric TBM from controls, through non-invasive urine collection. Urine samples selected for this study were from two paediatric groups. Group 1: controls (n = 44): children without meningitis, no neurological symptoms and from the same geographical region as group 2. Group 2: TBM cases (n = 13): collected from paediatric patients that were admitted to Tygerberg Hospital in South Africa on the suspicion of TBM, mostly severely ill; with a later confirmation of TBM. Untargeted 1H NMR-based metabolomics data of urine were generated, followed by statistical analyses via MetaboAnalyst (v5.0), and the identification of important metabolites. Twenty nine urinary metabolites were identified as characteristic of advanced TBM and categorized in terms of six dysregulated metabolic pathways: 1) upregulated tryptophan catabolism linked to an altered vitamin B metabolism; 2) perturbation of amino acid metabolism; 3) increased energy production-metabolic burst; 4) disrupted gut microbiota metabolism; 5) ketoacidosis; 6) increased nitrogen excretion. We also provide original biological insights into this biosignature of urinary metabolites that can be used to characterize paediatric TBM patients in a South African cohort.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sabine van Elsland
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - A. Marceline Tutu van Furth
- Vrije Universiteit, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Centers, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Martijn van der Kuip
- Vrije Universiteit, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Centers, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Martinelli F, Heinken A, Henning AK, Ulmer MA, Hensen T, González A, Arnold M, Asthana S, Budde K, Engelman CD, Estaki M, Grabe HJ, Heston MB, Johnson S, Kastenmüller G, Martino C, McDonald D, Rey FE, Kilimann I, Peters O, Wang X, Spruth EJ, Schneider A, Fliessbach K, Wiltfang J, Hansen N, Glanz W, Buerger K, Janowitz D, Laske C, Munk MH, Spottke A, Roy N, Nauck M, Teipel S, Knight R, Kaddurah-Daouk RF, Bendlin BB, Hertel J, Thiele I. Whole-body metabolic modelling reveals microbiome and genomic interactions on reduced urine formate levels in Alzheimer's disease. Sci Rep 2024; 14:6095. [PMID: 38480804 PMCID: PMC10937638 DOI: 10.1038/s41598-024-55960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilised whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalised whole-body metabolic models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.
Collapse
Affiliation(s)
- Filippo Martinelli
- School of Medicine, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Almut Heinken
- School of Medicine, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
- Inserm UMRS 1256 NGERE, University of Lorraine, Nancy, France
| | - Ann-Kristin Henning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Maria A Ulmer
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Tim Hensen
- School of Medicine, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Antonio González
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Kathrin Budde
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Corinne D Engelman
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mehrbod Estaki
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Hans-Jörgen Grabe
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - Margo B Heston
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Sterling Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ingo Kilimann
- German Center of Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Olive Peters
- German Center of Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiao Wang
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eike Jakob Spruth
- German Center of Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Anja Schneider
- German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Klaus Fliessbach
- German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Jens Wiltfang
- German Center of Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University of Goettingen, Goettingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University of Goettingen, Goettingen, Germany
| | - Wenzel Glanz
- German Center of Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Katharina Buerger
- German Center of Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Christoph Laske
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Section for Dementia Research, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Annika Spottke
- German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Nina Roy
- German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Stefan Teipel
- German Center of Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Engineering, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | | | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Johannes Hertel
- School of Medicine, University of Galway, Galway, Ireland.
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany.
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland.
- The Ryan Institute, University of Galway, Galway, Ireland.
- School of Microbiology, University of Galway, Galway, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
| |
Collapse
|
6
|
Huang L, Li Q, Lu Y, Pan F, Cui L, Wang Y, Miao Y, Chen T, Li Y, Wu J, Chen X, Jia J, Guo Q. Consensus on rapid screening for prodromal Alzheimer's disease in China. Gen Psychiatr 2024; 37:e101310. [PMID: 38313393 PMCID: PMC10836380 DOI: 10.1136/gpsych-2023-101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia, characterised by cerebral amyloid-β deposition, pathological tau and neurodegeneration. The prodromal stage of AD (pAD) refers to patients with mild cognitive impairment (MCI) and evidence of AD's pathology. At this stage, disease-modifying interventions should be used to prevent the progression to dementia. Given the inherent heterogeneity of MCI, more specific biomarkers are needed to elucidate the underlying AD's pathology. Although the uses of cerebrospinal fluid and positron emission tomography are widely accepted methods for detecting AD's pathology, their clinical applications are limited by their high costs and invasiveness, particularly in low-income areas in China. Therefore, to improve the early detection of Alzheimer's disease (AD) pathology through cost-effective screening methods, a panel of 45 neurologists, psychiatrists and gerontologists was invited to establish a formal consensus on the screening of pAD in China. The supportive evidence and grades of recommendations are based on a systematic literature review and focus group discussion. National meetings were held to allow participants to review, vote and provide their expert opinions to reach a consensus. A majority (two-thirds) decision was used for questions for which consensus could not be reached. Recommended screening methods are presented in this publication, including neuropsychological assessment, peripheral biomarkers and brain imaging. In addition, a general workflow for screening pAD in China is established, which will help clinicians identify individuals at high risk and determine therapeutic targets.
Collapse
Affiliation(s)
- Lin Huang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Li
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yatian Li
- Shanghai BestCovered, Shanghai, China
| | | | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianping Jia
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Fatima H, Rangwala HS, Riaz F, Rangwala BS, Siddiq MA. Breakthroughs in Alzheimer's Research: A Path to a More Promising Future? Ann Neurosci 2024; 31:63-70. [PMID: 38584978 PMCID: PMC10996869 DOI: 10.1177/09727531231187235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/21/2023] [Indexed: 04/09/2024] Open
Abstract
Background Alzheimer's disease (AD) is a widespread neurodegenerative disorder with a significant global impact, affecting approximately 50 million individuals, and projections estimate that up to 152 million people will be affected by 2050. AD is characterized by beta-amyloid plaques and tau tangles in the brain, leading to cognitive decline. Summary Recent research on AD has made significant strides, including the development of an "amyloid clock" biomarker that tracks AD progression through positron emission tomography (PET) scans. Surf4 and other genes have been discovered to play a role in regulating beta-amyloid toxicity, while inhibiting the enzyme hexokinase-2 has shown positive results in preclinical studies. New brain mapping techniques have identified early brain-based causes of cognitive changes in AD, and biomarkers such as neuronal pentraxin protein Nptx2 and astrocytic 7-subunit of the nicotinic acetylcholine receptors (7nAChRs) show potential for early detection. Other approaches, such as replenishing the enzyme Tip60, selectively degrading the modified protein p-p38 with PRZ-18002, and targeting the protein voltage-dependent anion channel-1 (VDAC1), have shown promise in enhancing cognitive function and preventing pathophysiological alterations linked to AD. Baseline blood samples and other biomarkers such as urine formic acid, p-tau 198, microRNAs, and glial fibrillary acidic protein (GFAP) have also been discovered for early detection and intervention of AD. Additionally, recent FDA approvals for medications such as aducanumab and lecanemab provide options for reducing AD symptoms and improving function, while clinical trials for dementia vaccines show promise for the nasal and beta-amyloid 40 vaccines as well as vaccinations targeting tau. Key Messages These advancements in AD research, including biomarker discovery and the development of disease-modifying treatments, are crucial steps towards improving the lives of those affected by AD and finding a cure for this debilitating disease.
Collapse
Affiliation(s)
- Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | | - Faiza Riaz
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | | | |
Collapse
|
8
|
Hällqvist J, Pinto RC, Heywood WE, Cordey J, Foulkes AJM, Slattery CF, Leckey CA, Murphy EC, Zetterberg H, Schott JM, Mills K, Paterson RW. A Multiplexed Urinary Biomarker Panel Has Potential for Alzheimer's Disease Diagnosis Using Targeted Proteomics and Machine Learning. Int J Mol Sci 2023; 24:13758. [PMID: 37762058 PMCID: PMC10531486 DOI: 10.3390/ijms241813758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
As disease-modifying therapies are now available for Alzheimer's disease (AD), accessible, accurate and affordable biomarkers to support diagnosis are urgently needed. We sought to develop a mass spectrometry-based urine test as a high-throughput screening tool for diagnosing AD. We collected urine from a discovery cohort (n = 11) of well-characterised individuals with AD (n = 6) and their asymptomatic, CSF biomarker-negative study partners (n = 5) and used untargeted proteomics for biomarker discovery. Protein biomarkers identified were taken forward to develop a high-throughput, multiplexed and targeted proteomic assay which was tested on an independent cohort (n = 21). The panel of proteins identified are known to be involved in AD pathogenesis. In comparing AD and controls, a panel of proteins including MIEN1, TNFB, VCAM1, REG1B and ABCA7 had a classification accuracy of 86%. These proteins have been previously implicated in AD pathogenesis. This suggests that urine-targeted mass spectrometry has potential utility as a diagnostic screening tool in AD.
Collapse
Affiliation(s)
- Jenny Hällqvist
- Translational Mass Spectrometry Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.H.); (K.M.)
| | - Rui C. Pinto
- Faculty of Medicine, School of Public Health, Imperial College London, London SW7 2BX, UK
| | - Wendy E. Heywood
- Translational Mass Spectrometry Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.H.); (K.M.)
| | - Jonjo Cordey
- Translational Mass Spectrometry Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.H.); (K.M.)
| | | | | | - Claire A. Leckey
- Translational Mass Spectrometry Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.H.); (K.M.)
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Eimear C. Murphy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- UK Dementia Research Institute, UCL, London WC1E 6BT, UK
| | - Jonathan M. Schott
- National Hospital for Neurology and Neurosurgery, Queen Square London, London WC1N 3BG, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.H.); (K.M.)
| | - Ross W. Paterson
- National Hospital for Neurology and Neurosurgery, Queen Square London, London WC1N 3BG, UK
- Darent Valley Hospital, Dartford DA2 8DA, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| |
Collapse
|