1
|
Cattaneo E, Scalzo D, Zobel M, Iennaco R, Maffezzini C, Besusso D, Maestri S. When repetita no-longer iuvant: somatic instability of the CAG triplet in Huntington's disease. Nucleic Acids Res 2024:gkae1204. [PMID: 39673793 DOI: 10.1093/nar/gkae1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Trinucleotide repeats in DNA exhibit a dual nature due to their inherent instability. While their rapid expansion can diversify gene expression during evolution, exceeding a certain threshold can lead to diseases such as Huntington's disease (HD), a neurodegenerative condition, triggered by >36 C-A-G repeats in exon 1 of the Huntingtin gene. Notably, the discovery of somatic instability (SI) of the tract allows these mutations, inherited from an affected parent, to further expand throughout the patient's lifetime, resulting in a mosaic brain with specific neurons exhibiting variable and often extreme CAG lengths, ultimately leading to their death. Genome-wide association studies have identified genetic variants-both cis and trans, including mismatch repair modifiers-that modulate SI, as shown in blood cells, and influence HD's age of onset. This review will explore the evidence for SI in HD and its role in disease pathogenesis, as well as the therapeutic implications of these findings. We conclude by emphasizing the urgent need for reliable methods to quantify SI for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Elena Cattaneo
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', street Francesco Sforza, 35, 20122, Milan, Italy
| | - Davide Scalzo
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', street Francesco Sforza, 35, 20122, Milan, Italy
| | - Martina Zobel
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', street Francesco Sforza, 35, 20122, Milan, Italy
| | - Raffaele Iennaco
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', street Francesco Sforza, 35, 20122, Milan, Italy
| | - Camilla Maffezzini
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', street Francesco Sforza, 35, 20122, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', street Francesco Sforza, 35, 20122, Milan, Italy
| | - Simone Maestri
- Department of Biosciences, University of Milan, street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Fondazione Istituto Nazionale Genetica Molecolare 'Romeo ed Enrica Invernizzi', street Francesco Sforza, 35, 20122, Milan, Italy
| |
Collapse
|
2
|
Nolan B, Reznicek TE, Cummings CT, Rowley MJ. The chromatin tapestry as a framework for neurodevelopment. Genome Res 2024; 34:1477-1486. [PMID: 39472026 PMCID: PMC11529992 DOI: 10.1101/gr.278408.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The neuronal nucleus houses a meticulously organized genome. Within this structure, genetic material is not simply compacted but arranged into a precise and functional 3D chromatin landscape essential for cellular regulation. This mini-review highlights the importance of this chromatin landscape in healthy neurodevelopment, as well as the diseases that occur with aberrant chromatin architecture. We discuss insights into the fundamental mechanistic relationship between histone modifications, DNA methylation, and genome organization. We then discuss findings that reveal how these epigenetic features change throughout normal neurodevelopment. Finally, we highlight single-gene neurodevelopmental disorders that illustrate the interdependence of epigenetic features, showing how disruptions in DNA methylation or genome architecture can ripple across the entire epigenome. As such, we emphasize the importance of measuring multiple chromatin architectural aspects, as the disruption of one mechanism can likely impact others in the intricate epigenetic network. This mini-review underscores the vast gaps in our understanding of chromatin structure in neurodevelopmental diseases and the substantial research needed to understand the interplay between chromatin features and neurodevelopment.
Collapse
Affiliation(s)
- Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA
| | - Timothy E Reznicek
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA
| | - Christopher T Cummings
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA;
| |
Collapse
|
3
|
Pressl C, Mätlik K, Kus L, Darnell P, Luo JD, Paul MR, Weiss AR, Liguore W, Carroll TS, Davis DA, McBride J, Heintz N. Selective vulnerability of layer 5a corticostriatal neurons in Huntington's disease. Neuron 2024; 112:924-941.e10. [PMID: 38237588 DOI: 10.1016/j.neuron.2023.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.
Collapse
Affiliation(s)
- Christina Pressl
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Kert Mätlik
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Laura Kus
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Paul Darnell
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Alison R Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - William Liguore
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - David A Davis
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jodi McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|