1
|
Pileckyte I, Soto-Faraco S. Sensory stimulation enhances visual working memory capacity. COMMUNICATIONS PSYCHOLOGY 2024; 2:109. [PMID: 39558084 PMCID: PMC11574275 DOI: 10.1038/s44271-024-00158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Visual working memory (vWM) plays a crucial role in visual information processing and higher cognitive functions; however, it has a very limited capacity. Recently, several studies have successfully modulated vWM capacity in humans using entrainment with transcranial alternate current stimulation (tACS) by targeting parietal theta in a frequency-specific manner. In the current study, we aim to expand upon these findings by utilizing sensory instead of electrical stimulation. Across six behavioral experiments (combined N = 209), we applied rhythmic visual and auditory sensory stimulation at 4 Hz and 7 Hz, aiming to modulate vWM capacity. Collectively, the results showed an overall robust improvement with sensory stimulation at either frequency, compared to baseline. However, contrary to our prediction, 7 Hz stimulation tended to slightly outperform 4 Hz stimulation. Importantly, the observed facilitatory effect was mainly driven by the low-capacity sub-group of participants. Follow-up experiments using the Attention Network Test (ANT) and pupillometry measures did not find evidence that this effect could be directly attributed to modulation of phasic or tonic arousal. We speculate that our results differed from those obtained with tACS due to targeting functionally different theta oscillations, or the modulation of participants' temporal expectations.
Collapse
Affiliation(s)
- Indre Pileckyte
- Departament d'Enginyeria, Center for Brain & Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Salvador Soto-Faraco
- Departament d'Enginyeria, Center for Brain & Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
2
|
Aksu S, Indahlastari A, O'Shea A, Marsiske M, Cohen R, Alexander GE, DeKosky ST, Hishaw GA, Dai Y, Wu SS, Woods AJ. Facilitation of working memory capacity by transcranial direct current stimulation: a secondary analysis from the augmenting cognitive training in older adults (ACT) study. GeroScience 2024; 46:4075-4110. [PMID: 38789832 PMCID: PMC11336148 DOI: 10.1007/s11357-024-01205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a public health concern with an ever-increasing magnitude worldwide. An array of neuroscience-based approaches like transcranial direct current stimulation (tDCS) and cognitive training have garnered attention in the last decades to ameliorate the effects of cognitive aging in older adults. This study evaluated the effects of 3 months of bilateral tDCS over the frontal cortices with multimodal cognitive training on working memory capacity. Two hundred ninety-two older adults without dementia were allocated to active or sham tDCS paired with cognitive training. These participants received repeated sessions of bilateral tDCS over the bilateral frontal cortices, combined with multimodal cognitive training. Working memory capacity was assessed with the digit span forward, backward, and sequencing tests. No baseline differences between active and sham groups were observed. Multiple linear regressions indicated more improvement of the longest digit span backward from baseline to post-intervention (p = 0.021) and a trend towards greater improvement (p = 0.056) of the longest digit span backward from baseline to 1 year in the active tDCS group. No significant between-group changes were observed for digit span forward or digit span sequencing. The present results provide evidence for the potential for tDCS paired with cognitive training to remediate age-related declines in working memory capacity. These findings are sourced from secondary outcomes in a large randomized clinical trial and thus deserve future targeted investigation in older adult populations.
Collapse
Affiliation(s)
- Serkan Aksu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Lv Y, Wu S, Nitsche MA, Yue T, Zschorlich VR, Qi F. A meta-analysis of the effects of transcranial direct current stimulation combined with cognitive training on working memory in healthy older adults. Front Aging Neurosci 2024; 16:1454755. [PMID: 39376507 PMCID: PMC11456488 DOI: 10.3389/fnagi.2024.1454755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
Background Working memory (WM) loss, which can lead to a loss of independence, and declines in the quality of life of older adults, is becoming an increasingly prominent issue affecting the ageing population. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, is emerging as a potential alternative to pharmacological treatments that shows promise for enhancing WM capacity and May enhance the effects of cognitive training (CT) interventions. Objective The purpose of this meta-analysis was to explore how different tDCS protocols in combination with CT enhanced WM in healthy older adults. Methods Randomized controlled trials (RCTs) exploring the effects of tDCS combined with CT on WM in healthy older adults were retrieved from the Web of Science, PubMed, Embase, Scopus and the Cochrane Library databases. The search time period ranged from database inception to January 15, 2024. Methodological quality of the trials was assessed using the risk-of-bias criteria for RCTs from the Cochrane Collaboration Network, and RevMan 5.3 (Cochrane, London, United Kingdom) was used for the meta-analysis of the final literature outcomes. Results Six RCTs with a total of 323 participants were ultimately included. The results of the meta-analysis show that tDCS combined with CT statistically significantly improves WM performance compared to the control sham stimulation group in healthy older adults [standard mean difference (SMD) = 0.35, 95% CI: 0.11-0.59, I 2 = 0%, Z = 2.86, p = 0.004]. The first subgroup analysis indicated that, when the stimulus intensity was 2 mA, a statistically significant improvement in WM performance in healthy older adults was achieved (SMD = 0.39, 95% CI: 0.08-0.70, I 2 = 6%, Z = 2.46, p = 0.01). The second subgroup analysis showed that long-term intervention (≥ 10 sessions) with tDCS combined with CT statistically significantly improved WM compared to the control group in healthy older adults (SMD = 0.72, 95% CI: 0.22-1.21, I 2 = 0%, Z = 2.85, p = 0.004). Conclusion tDCS combined with CT statistically significantly improves WM in healthy older adults. For the stimulus parameters, long-term interventions (≥ 10 sessions) with a stimulation intensity of 2 mA are the most effective.
Collapse
Affiliation(s)
- Yanxin Lv
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| | - Shuo Wu
- Faculty of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Tian Yue
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| | - Volker R. Zschorlich
- Faculty of Philosophy, Institute of Sports Science, University of Rostock, Rostock, Germany
- Faculty of Interdisciplinary Research, Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
- Department of Sport Science, University of Oldenburg, Oldenburg, Germany
| | - Fengxue Qi
- Sports, Exercise, and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, Beijing, China
| |
Collapse
|
4
|
Yow W, Sou KL, Wong AC. A Novel Dual-Language Touch-Screen Intervention to Slow Down Cognitive Decline in Older Adults: A Randomized Controlled Trial. Innov Aging 2024; 8:igae052. [PMID: 38974776 PMCID: PMC11227001 DOI: 10.1093/geroni/igae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 07/09/2024] Open
Abstract
Background and Objectives Bilingualism has been suggested to protect older adults from cognitive aging and delay the onset of dementia. However, no studies have systematically explored bilingual usage as a tool to mitigate age-related cognitive decline. We developed the Dual-Language Intervention in Semantic memory-Computerized (DISC), a novel cognitive training program with three training tasks (object categorization, verbal fluency, and utility of things) designed specifically for older adults that featured two modes: single-language (SL) exposure mode and dual-language (DL) exposure mode. Research Design and Methods The final sample included 50 cognitively healthy (CH; 33 female, M age = 72.93 years, range = 53.08-87.43 years) and 48 cognitively impaired (CI; 35 female, M age = 80.93 years, range = 62.31-96.67 years) older adults, randomly assigned them into one of three groups: SL group, DL group, and control group (no training). Participants in SL and DL groups used DISC in either SL mode (i.e., training instructions were spoken in only one language throughout the entire training) or DL mode (i.e., training instructions alternated between two languages), respectively, for 24 sessions. Participants in the control group were asked to continue with their normal daily activities (e.g., playing bingo and reading newspapers). Results For CH older adults, we found significant improvements in the Rey Auditory Verbal Learning Test (RAVLT) Trial 5 score and the Clock Drawing Test score in the DL group but not in the SL and control groups posttraining compared with pretraining. For CI older adults, there was a delayed improvement in the RAVLT Trial 1, six months later. Discussion and Implications Our findings provided novel evidence that implementing DL cognitive training benefits CH older adult's late verbal learning and visuospatial construction skills, and a delayed improvement in CI older adults' early verbal learning abilities.
Collapse
Affiliation(s)
- Wei Quin Yow
- Humanities, Arts, and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore
| | - Ka Lon Sou
- Humanities, Arts, and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore
| | - Alina Clarise Wong
- Humanities, Arts, and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore
| |
Collapse
|
5
|
von Bastian CC, Hyde ERA, Jiang S. Tackling cognitive decline in late adulthood: Cognitive interventions. Curr Opin Psychol 2024; 56:101780. [PMID: 38176281 DOI: 10.1016/j.copsyc.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Affordable and easy-to-administer interventions such as cognitive training, cognitively stimulating everyday leisure activities, and non-invasive brain stimulation techniques, are promising avenues to counteract age-related cognitive decline and support people in maintaining cognitive health into late adulthood. However, the same pattern of findings emerges across all three fields of cognitive intervention research: whereas improvements within the intervention context are large and often reliable, generalisation to other cognitive abilities and contexts are severely limited. These findings suggest that while cognitive interventions can enhance the efficiency with which people use their existing cognitive capacity, these interventions are unlikely to expand existing capacity limits. Therefore, future research investigating generalisation of enhanced efficiency constitutes a promising avenue for developing reliably effective cognitive interventions.
Collapse
Affiliation(s)
- Claudia C von Bastian
- Department of Psychology and Neuroscience Institute, University of Sheffield, United Kingdom.
| | - Eleanor R A Hyde
- Department of Psychology and Neuroscience Institute, University of Sheffield, United Kingdom
| | - Shuangke Jiang
- Department of Psychology and Neuroscience Institute, University of Sheffield, United Kingdom
| |
Collapse
|
6
|
Mendes AJ, Lema A, Soares JM, Sampaio A, Leite J, Carvalho S. Functional neuroimaging and behavioral correlates of multisite tDCS as an add-on to language training in a person with post-stroke non-fluent aphasia: a year-long case study. Neurocase 2024; 30:8-17. [PMID: 38700140 DOI: 10.1080/13554794.2024.2349327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Mary, who experienced non-fluent aphasia as a result of an ischemic stroke, received 10 years of personalized language training (LT), resulting in transient enhancements in speech and comprehension. To enhance these effects, multisite transcranial Direct Current Stimulation (tDCS) was added to her LT regimen for 15 sessions. Assessment using the Reliable Change Index showed that this combination improved her left inferior frontal connectivity and speech production for two months and significantly improved comprehension after one month. The results indicate that using multisite transcranial direct current stimulation (tDCS) can improve the effectiveness of language therapy (LT) for individuals with non-fluent aphasia.
Collapse
Affiliation(s)
- Augusto J Mendes
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Braga, Portugal
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Alberto Lema
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Adriana Sampaio
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Jorge Leite
- CINTESIS@RISE, CINTESIS.UPT, Portucalense University, Porto, Portugal
| | - Sandra Carvalho
- Translational Neuropsychology Lab, Department of Education and Psychology, William James Center for Research (WJCR), University of Aveiro, Aveiro, Portugal
- Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Teixeira-Santos AC, Gomes L, Pereira DR, Ribeiro F, Silva-Fernandes A, Federspiel C, Steinmetz JP, Leist AK. The MEDITAGING study: protocol of a two-armed randomized controlled study to compare the effects of the mindfulness-based stress reduction program against a health promotion program in older migrants in Luxembourg. BMC Public Health 2023; 23:2470. [PMID: 38082350 PMCID: PMC10714656 DOI: 10.1186/s12889-023-17387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Migration is a phenomenon worldwide, with older migrants, particularly those with fewer socioeconomic resources, having an increased risk of developing adverse cognitive and health outcomes and social isolation. Therefore, it is of utmost importance to validate interventions that promote healthy aging in this population. Previous studies have shown a positive impact of mindfulness based-stress reduction (MBSR) on outcomes such as cognition and sleep. However, only a few studies verified its potential in older adults, especially with vulnerable populations such as migrants. This article presents the protocol of the MEDITAGING study, which is the first to investigate the MBSR effects in migrants aged ≥55 in comparison to a health promotion program. METHODS MEDITAGING is a two-arm randomized, double-blinded, controlled study, which will include older Portuguese-speaking migrants (n = 90). Participants are randomized to the MBSR or a health promotion program. Both interventions are conducted in groups over a total of 8 weeks, incorporating weekly meetings, an additional 4-hour class, and extra at-home tasks. The health promotion program has the same structure as the MBSR but comprises different activities related to dementia prevention, healthy habits, cognitive stimulation, sleeping, nutrition, watercolor painting, and physical activity. The assessment of executive functioning, physiological stress measures, self-reported questionnaires, and qualitative interviews are conducted at baseline, after 8 weeks (post-intervention), and at a follow-up session (from one to 3 months thereafter). Analyzes will be conducted using a modified intention-to-treat approach (all participants with at least 3 days of participation in the group-sessions and one post-intervention observation). DISCUSSION This study will test effects of a mindfulness-based intervention against an active control condition in older adult migrants, which few studies have addressed. TRIAL REGISTRATION ClinicalTrials.gov NCT05615337 (date of registration: 27 September 2022; date of record verification: 14 November 2022).
Collapse
Affiliation(s)
- Ana C Teixeira-Santos
- Department of Social Sciences, Institute for Research on Socio-Economic Inequality, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Leandro Gomes
- Interdisciplinary Postgraduate Program in Human Sciences, State University of Amazonas PPGICH/UEA, Manaus, Brazil
- NAURBE Group - Cities, Popular Cultures and Heritage, Federal University of Amazonas - Postgraduate Program in Social Anthropology, Manaus, Brazil
| | - Diana R Pereira
- Human Cognition Laboratory - CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Fabiana Ribeiro
- Department of Social Sciences, Institute for Research on Socio-Economic Inequality, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anabela Silva-Fernandes
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | | | | | - Anja K Leist
- Department of Social Sciences, Institute for Research on Socio-Economic Inequality, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
8
|
Ke Y, Liu S, Chen L, Wang X, Ming D. Lasting enhancements in neural efficiency by multi-session transcranial direct current stimulation during working memory training. NPJ SCIENCE OF LEARNING 2023; 8:48. [PMID: 37919371 PMCID: PMC10622507 DOI: 10.1038/s41539-023-00200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
The neural basis for long-term behavioral improvements resulting from multi-session transcranial direct current stimulation (tDCS) combined with working memory training (WMT) remains unclear. In this study, we used task-related electroencephalography (EEG) measures to investigate the lasting neurophysiological effects of anodal high-definition (HD)-tDCS applied over the left dorsolateral prefrontal cortex (dlPFC) during a challenging WMT. Thirty-four healthy young adults were randomized to sham or active tDCS groups and underwent ten 30-minute training sessions over ten consecutive days, preceded by a pre-test and followed by post-tests performed one day and three weeks after the last session, respectively, by performing high-load WM tasks along with EEG recording. Multi-session HD-tDCS significantly enhanced the behavioral benefits of WMT. Compared to the sham group, the active group showed facilitated increases in theta, alpha, beta, and gamma task-related oscillations at the end of training and significantly increased P300 response 3 weeks post-training. Our findings suggest that applying anodal tDCS over the left dlPFC during multi-session WMT can enhance the behavioral benefits of WMT and facilitate sustained improvements in WM-related neural efficiency.
Collapse
Affiliation(s)
- Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China.
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China.
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China.
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China.
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China
| | - Xiashuang Wang
- The Second Academy of China Aerospace Science and Industry Corporation, Beijing, PR China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China.
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China.
| |
Collapse
|
9
|
Vandendoorent B, Nackaerts E, Zoetewei D, Hulzinga F, Gilat M, Orban de Xivry JJ, Nieuwboer A. Effect of transcranial direct current stimulation on learning in older adults with and without Parkinson's disease: A systematic review with meta-analysis. Brain Cogn 2023; 171:106073. [PMID: 37611344 DOI: 10.1016/j.bandc.2023.106073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Older adults with and without Parkinson's disease show impaired retention after training of motor or cognitive skills. This systematic review with meta-analysis aims to investigate whether adding transcranial direct current stimulation (tDCS) to motor or cognitive training versus placebo boosts motor sequence and working memory training. The effects of interest were estimated between three time points, i.e. pre-training, post-training and follow-up. This review was conducted according to the PRISMA guidelines (PROSPERO: CRD42022348885). Electronic databases were searched from conception to March 2023. Following initial screening, 24 studies were eligible for inclusion in the qualitative synthesis and 20 could be included in the meta-analysis, of which 5 studies concerned motor sequence learning (total n = 186) and 15 working memory training (total n = 650). Results were pooled using an inverse variance random effects meta-analysis. The findings showed no statistically significant additional effects of tDCS over placebo on motor sequence learning outcomes. However, there was a strong trend showing that tDCS boosted working memory training, although methodological limitations and some heterogeneity were also apparent. In conclusion, the present findings do not support wide implementation of tDCS as an add-on to motor sequence training at the moment, but the promising results on cognitive training warrant further investigations.
Collapse
Affiliation(s)
- Britt Vandendoorent
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | - Evelien Nackaerts
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Demi Zoetewei
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Femke Hulzinga
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Moran Gilat
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Carvalho S, Lin FH. Editorial: Methods and protocols in brain stimulation. Front Hum Neurosci 2023; 17:1208260. [PMID: 37234602 PMCID: PMC10206297 DOI: 10.3389/fnhum.2023.1208260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Affiliation(s)
- Sandra Carvalho
- Translational Neuropsychology Lab, Department of Education and Psychology, William James Center for Research (WJCR), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Fa-Hsuan Lin
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Hausman HK, Alexander GE, Cohen R, Marsiske M, DeKosky ST, Hishaw GA, O'Shea A, Kraft JN, Dai Y, Wu S, Woods AJ. Primary outcome from the augmenting cognitive training in older adults study (ACT): A tDCS and cognitive training randomized clinical trial. Brain Stimul 2023; 16:904-917. [PMID: 37245842 PMCID: PMC10436327 DOI: 10.1016/j.brs.2023.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND There is a need for effective interventions to stave off cognitive decline in older adults. Cognitive training has variably produced gains in untrained tasks and daily functioning. Combining cognitive training with transcranial direct current stimulation (tDCS) may augment cognitive training effects; however, this approach has yet to be tested on a large-scale. OBJECTIVE This paper will present the primary findings of the Augmenting Cognitive Training in Older Adults (ACT) clinical trial. We hypothesize that receiving active stimulation with cognitive training will result in greater improvements on an untrained fluid cognition composite compared to sham following intervention. METHODS 379 older adults were randomized, and 334 were included in intent-to-treat analyses for a 12-week multidomain cognitive training and tDCS intervention. Active or sham tDCS was administered at F3/F4 during cognitive training daily for two weeks then weekly for 10 weeks. To assess the tDCS effect, we fitted regression models for changes in NIH Toolbox Fluid Cognition Composite scores immediately following intervention and one year from baseline controlling for covariates and baseline scores. RESULTS Across the entire sample, there were improvements in NIH Toolbox Fluid Cognition Composite scores immediately post-intervention and one year following baseline; however, there were no significant tDCS group effects at either timepoint. CONCLUSIONS The ACT study models rigorous, safe administration of a combined tDCS and cognitive training intervention in a large sample of older adults. Despite potential evidence of near-transfer effects, we failed to demonstrate an additive benefit of active stimulation. Future analyses will continue to assess the intervention's efficacy by examining additional measures of cognition, functioning, mood, and neural markers.
Collapse
Affiliation(s)
- Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA; Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Guo Z, Qiu R, Qiu H, Lu H, Zhu X. Long-term effects of repeated multitarget high-definition transcranial direct current stimulation combined with cognitive training on response inhibition gains. Front Neurosci 2023; 17:1107116. [PMID: 36968503 PMCID: PMC10033537 DOI: 10.3389/fnins.2023.1107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundFew studies have investigated the effects of repeated sessions of transcranial direct current stimulation (tDCS) combined with concurrent cognitive training on improving response inhibition, and the findings have been heterogeneous in the limited research. This study investigated the long-lasting and transfer effects of 10 consecutive sessions of multitarget anodal HD-tDCS combined with concurrent cognitive training on improving response inhibition compared with multitarget stimulation or training alone.MethodsNinety-four healthy university students aged 18–25 were randomly assigned to undergo different interventions, including real stimulation combined with stop-signal task (SST) training, real stimulation, sham stimulation combined with SST training, and sham stimulation. Each intervention lasted 20 min daily for 10 consecutive days, and the stimulation protocol targeted right inferior frontal gyrus (rIFG) and pre-supplementary motor area (pre-SMA) simultaneously with a total current intensity of 2.5 mA. Performance on SST and possible transfer effects to Stroop task, attention network test, and N-back task were measured before and 1 day and 1 month after completing the intervention course.ResultsThe main findings showed that the combined protocol and the stimulation alone significantly reduced stop-signal reaction time (SSRT) in the post-intervention and follow-up tests compared to the pre-intervention test. However, training alone only decreased SSRT in the post-test. The sham control exhibited no changes. Subgroup analysis revealed that the combined protocol and the stimulation alone induced a decrease in the SSRT of the low-performance subgroup at the post-test and follow-up test compared with the pre-test. However, only the combined protocol, but not the stimulation alone, improved the SSRT of the high-performance subgroup. The transfer effects were absent.ConclusionThis study provides supportive evidence for the synergistic effect of the combined protocol, indicating its superiority over the single intervention method. In addition, the long-term after-effects can persist for up to at least 1 month. Our findings also provide insights into the clinical application and strategy for treating response inhibition deficits.
Collapse
|
13
|
Aksu S, Hasırcı Bayır BR, Sayman C, Soyata AZ, Boz G, Karamürsel S. Working memory ımprovement after transcranial direct current stimulation paired with working memory training ın diabetic peripheral neuropathy. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-14. [PMID: 36630270 DOI: 10.1080/23279095.2022.2164717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Association of cognitive deficits and diabetic peripheral neuropathy (DPN) is frequent. Working memory (WM) deficits result in impairment of daily activities, diminished functionality, and treatment compliance. Mounting evidence suggests that transcranial Direct Current Stimulation (tDCS) with concurrent working memory training (WMT) ameliorates cognitive deficits. Emboldening results of tDCS were shown in DPN. The study aimed to evaluate the efficacy of anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC) coupled with cathodal right DLPFC with concurrent WMT in DPN for the first time. The present randomized triple-blind parallel-group sham-controlled study evaluated the efficacy of 5 sessions of tDCS over the DLPFC concurrent with WMT in 28 individuals with painful DPN on cognitive (primary) and pain-related, psychiatric outcome measures before, immediately after, and 1-month after treatment protocol. tDCS enhanced the efficacy of WMT on working memory and yielded lower anxiety levels than sham tDCS but efficacy was not superior to sham on other cognitive domains, pain severity, quality of life, and depression. tDCS with concurrent WMT enhanced WM and ameliorated anxiety in DPN without affecting other cognitive and pain-related outcomes. Further research scrutinizing the short/long-term efficacy with larger samples is accredited.
Collapse
Affiliation(s)
- Serkan Aksu
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Türkiye
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Buse Rahime Hasırcı Bayır
- Department of Neurology, Health Sciences University, Haydarpaşa Numune Education and Research Hospital, Istanbul, Türkiye
| | - Ceyhun Sayman
- Translational Neurodevelopmental Neuroscience Phd Programme, Institute of Health Science, Istanbul University, Istanbul, Türkiye
| | - Ahmet Zihni Soyata
- Psychiatry Outpatient Clinic, Başakşehir State Hospital, İstanbul, Turkey
| | - Gökalp Boz
- Department of Psychology, Istanbul University, Istanbul, Türkiye
| | - Sacit Karamürsel
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| |
Collapse
|
14
|
Martin DM, Berryhill ME, Dielenberg V. Can brain stimulation enhance cognition in clinical populations? A critical review. Restor Neurol Neurosci 2022:RNN211230. [PMID: 36404559 DOI: 10.3233/rnn-211230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many psychiatric and neurological conditions are associated with cognitive impairment for which there are very limited treatment options. Brain stimulation methodologies show promise as novel therapeutics and have cognitive effects. Electroconvulsive therapy (ECT), known more for its related transient adverse cognitive effects, can produce significant cognitive improvement in the weeks following acute treatment. Transcranial magnetic stimulation (TMS) is increasingly used as a treatment for major depression and has acute cognitive effects. Emerging research from controlled studies suggests that repeated TMS treatments may additionally have cognitive benefit. ECT and TMS treatment cause neurotrophic changes, although whether these are associated with cognitive effects remains unclear. Transcranial electrical stimulation methods including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are in development as novel treatments for multiple psychiatric conditions. These treatments may also produce cognitive enhancement particularly when stimulation occurs concurrently with a cognitive task. This review summarizes the current clinical evidence for these brain stimulation treatments as therapeutics for enhancing cognition. Acute, or short-lasting, effects as well as longer-term effects from repeated treatments are reviewed, together with potential putative neural mechanisms. Areas of future research are highlighted to assist with optimization of these approaches for enhancing cognition.
Collapse
Affiliation(s)
- Donel M. Martin
- Sydney Neurostimulation Centre, Discipline of Psychiatry and Mental Health UNSW, Black Dog Institute, Sydney, New South Wales, Australia
| | - Marian E. Berryhill
- Memory and Brain Lab, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, Reno, NV, USA
| | - Victoria Dielenberg
- Sydney Neurostimulation Centre, Discipline of Psychiatry and Mental Health UNSW, Black Dog Institute, Sydney, New South Wales, Australia
| |
Collapse
|