1
|
Zhang S, Cui X, Yu S, Li X. Is transcranial alternating current stimulation effective for improving working memory? A three-level meta-analysis. Psychon Bull Rev 2024:10.3758/s13423-024-02595-0. [PMID: 39438426 DOI: 10.3758/s13423-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Working memory, an essential component of cognitive function, can be improved through specific methods. This meta-analysis evaluates the effectiveness of transcranial alternating current stimulation (tACS), an emerging technique for enhancing working memory, and explores its efficacy, influencing factors, and underlying mechanisms. A PRISMA systematic search was conducted. Hedges's g was used to quantify effect sizes. We constructed a three-level meta-analytic model to account for all effect sizes and performed subgroup analyses to assess moderating factors. Recognizing the distinct neural underpinnings of various working memory processes, we separately assessed the effects on n-back tasks and traditional working memory tasks. A total of 39 studies with 405 effect sizes were included (170 from n-back tasks and 235 from other tasks). The overall analysis indicated a net benefit of g = 0.060 of tACS on working memory. Separate analyses showed that tACS had a small positive effect on n-back tasks (g = 0.102), but almost no effect on traditional working memory tasks (g = 0.045). Further analyses revealed mainly: A moderately positive effect of theta tACS (without anti-phase stimulation) on n-back tasks (g = 0.207); and a small effect of offline stimulation on working memory maintenance (g = 0.127). Overall, tACS has minimal impact on working memory improvement, but it shows potential under certain conditions. Specifically, both online and offline theta tACS can improve n-back task performance, while only offline stimulation enhances working memory maintenance. More research is needed to understand the mechanisms behind these effects to make tACS an effective method.
Collapse
Affiliation(s)
- Siyuan Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Cui
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Yu
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Al Qasem W, Abubaker M, Pilátová K, Ježdík P, Kvašňák E. Improving working memory by electrical stimulation and cross-frequency coupling. Mol Brain 2024; 17:72. [PMID: 39354549 PMCID: PMC11446076 DOI: 10.1186/s13041-024-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.
| | - Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Kateřina Pilátová
- Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
3
|
Wischnewski M, Berger TA, Opitz A, Alekseichuk I. Causal functional maps of brain rhythms in working memory. Proc Natl Acad Sci U S A 2024; 121:e2318528121. [PMID: 38536752 PMCID: PMC10998564 DOI: 10.1073/pnas.2318528121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Experimental Psychology, University of Groningen, Groningen9712TS, The Netherlands
| | - Taylor A. Berger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
4
|
Ociepka M, Chinta SR, Basoń P, Chuderski A. No effects of the theta-frequency transcranial electrical stimulation for recall, attention control, and relation integration in working memory. Front Hum Neurosci 2024; 18:1354671. [PMID: 38439936 PMCID: PMC10910036 DOI: 10.3389/fnhum.2024.1354671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Recent studies have suggested that transcranial alternating current stimulation (tACS), and especially the theta-frequency tACS, can improve human performance on working memory tasks. However, evidence to date is mixed. Moreover, the two WM tasks applied most frequently, namely the n-back and change-detection tasks, might not constitute canonical measures of WM capacity. Method In a relatively large sample of young healthy participants (N = 62), we administered a more canonical WM task that required stimuli recall, as well as we applied two WM tasks tapping into other key WM functions: attention control (the antisaccade task) and relational integration (the graph mapping task). The participants performed these three tasks three times: during the left frontal 5.5-Hz and the left parietal 5.5-Hz tACS session as well as during the sham session, with a random order of sessions. Attentional vigilance and subjective experience were monitored. Results For each task administered, we observed significant gains in accuracy neither for the frontal tACS session nor for the parietal tACS session, as compared to the sham session. By contrast, the scores on each task positively inter-correlated across the three sessions. Discussion The results suggest that canonical measures of WM capacity are strongly stable in time and hardly affected by theta-frequency tACS. Either the tACS effects observed in the n-back and change detection tasks do not generalize onto other WM tasks, or the tACS method has limited effectiveness with regard to WM, and might require further methodological advancements.
Collapse
Affiliation(s)
- Michał Ociepka
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | | | - Paweł Basoń
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
5
|
Xiong HY, Cao YQ, Du SH, Yang QH, He SY, Wang XQ. Effects of High-Definition Transcranial Direct Current Stimulation Targeting the Anterior Cingulate Cortex on the Pain Thresholds: A Randomized Controlled Trial. PAIN MEDICINE 2023; 24:89-98. [PMID: 36066447 DOI: 10.1093/pm/pnac135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The majority of existing clinical studies used active transcranial direct current stimulation (tDCS) over superficial areas of the pain neuromatrix to regulate pain, with conflicting results. Few studies have investigated the effect of tDCS on pain thresholds by focusing on targets in deep parts of the pain neuromatrix. METHODS This study applied a single session of high-definition tDCS (HD-tDCS) targeting the anterior cingulate cortex (ACC) and used a parallel and sham-controlled design to compare the antinociceptive effects in healthy individuals by assessing changes in pain thresholds. Sixty-six female individuals (mean age, 20.5 ± 2.4 years) were randomly allocated into the anodal, cathodal, or sham HD-tDCS groups. The primary outcome of the study was pain thresholds (pressure pain threshold, heat pain threshold, and cold pain threshold), which were evaluated before and after stimulation through the use of quantitative sensory tests. RESULTS Only cathodal HD-tDCS targeting the ACC significantly increased heat pain threshold (P < 0.05) and pressure pain threshold (P < 0.01) in healthy individuals compared with sham stimulation. Neither anodal nor cathodal HD-tDCS showed significant analgesic effects on cold pain threshold. Furthermore, no statistically significant difference was found in pain thresholds between anodal and sham HD-tDCS (P > 0.38). Independent of HD-tDCS protocols, the positive and negative affective schedule scores were decreased immediately after stimulation compared with baseline. CONCLUSIONS The present study has found that cathodal HD-tDCS targeting the ACC provided a strong antinociceptive effect (increase in pain threshold), demonstrating a positive biological effect of HD-tDCS.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yin-Quan Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Si-Yi He
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
6
|
Lu H, Zhang Y, Huang P, Zhang Y, Cheng S, Zhu X. Transcranial Electrical Stimulation Offers the Possibility of Improving Teamwork Among Military Pilots: A Review. Front Neurosci 2022; 16:931265. [PMID: 35911997 PMCID: PMC9327643 DOI: 10.3389/fnins.2022.931265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Effective teamwork among military pilots is key to successful mission completion. The underlying neural mechanism of teamwork is thought to be inter-brain synchronization (IBS). IBS could also be explained as an incidental phenomenon of cooperative behavior, but the causality between IBS and cooperative behavior could be clarified by directly producing IBS through extra external stimuli applied to functional brain regions. As a non-invasive technology for altering brain function, transcranial electrical stimulation might have the potential to explore whether top-down enhancement of the synchronization of multiple brains can change cooperative behavioral performance among members of a team. This review focuses on the characteristic features of teamwork among military pilots and variations in neuroimaging obtained by hyper-scanning. Furthermore, we discuss the possibility that transcranial electrical stimulation could be used to improve teamwork among military pilots, try to provide a feasible design for doing so, and emphasize crucial aspects to be addressed by future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Xia Zhu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| |
Collapse
|