1
|
Tarumi T, Tomoto T, Sugawara J, Zhang R. Aerobic Exercise Training for the Aging Brain: Effective Dosing and Vascular Mechanism. Exerc Sport Sci Rev 2025; 53:31-40. [PMID: 39254652 DOI: 10.1249/jes.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This article presents evidence supporting the hypothesis that starting aerobic exercise in early adulthood and continuing it throughout life leads to significant neurocognitive benefits compared with starting exercise later in life. Regular aerobic exercise at moderate-to-vigorous intensity during midlife is associated with significant improvement in cardiorespiratory fitness, which may create a favorable brain microenvironment promoting neuroplasticity through enhanced vascular function.
Collapse
|
2
|
Delvenne JF, Malloy E. Functional implications of age-related atrophy of the corpus callosum. Neurosci Biobehav Rev 2024; 169:105982. [PMID: 39701505 DOI: 10.1016/j.neubiorev.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The corpus callosum plays a critical role in inter-hemispheric communication by coordinating the transfer of sensory, motor, cognitive, and emotional information between the two hemispheres. However, as part of the normal aging process, the corpus callosum undergoes significant structural changes, including reductions in both its size and microstructural integrity. These age-related alterations can profoundly impact the brain's ability to coordinate functions across hemispheres, leading to a decline in various aspects of sensory processing, motor coordination, cognitive functioning, and emotional regulation. This review aims to synthesize current research on age-related changes in the corpus callosum, examining the regional differences in atrophy, its underlying causes, and its functional implications. By exploring these aspects, we seek to emphasize the clinical significance of corpus callosum degeneration and its impact on the quality of life in older adults, as well as the potential for early detection and targeted interventions to preserve brain health during aging. Finally, the review calls for further research into the mechanisms underlying corpus callosum atrophy and its broader implications for aging.
Collapse
Affiliation(s)
| | - Ella Malloy
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Lien R, Furlano JA, Witt ST, Xian C, Nagamatsu LS. The effects of a six-month exercise intervention on white matter microstructure in older adults at risk for diabetes. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 7:100369. [PMID: 39345304 PMCID: PMC11437870 DOI: 10.1016/j.cccb.2024.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Older adults with prediabetes or obesity (i.e., those at risk for diabetes) exhibit impaired structural brain networks. Given findings that resistance training (RT) can combat brain impairments in many populations, this study aimed to test the effects of this type of exercise on white matter microstructure in older adults at risk for diabetes. Seventeen community-dwelling older adults (mean age 67.8 ± 5.7, 52.9 % female) with prediabetes or obesity were randomly allocated to thrice weekly RT or balance and tone training (BAT; control group) for six months. Diffusion weighted imaging via a 3T scanner was used to assess changes in white matter parameters -fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) - over time. Participants in the RT group showed no significant changes in FA but had increased MD and RD in various regions related to cognitive function including the cingulate gyrus. Participants in the control group had both increased and decreased FA depending on the specific white matter tracts; increased FA was seen in areas related to motor coordination such as the middle cerebellar peduncle. The control group also exhibited decreased MD and RD in areas responsible for motor function (e.g., left anterior limb of the internal capsule). We conclude that both resistance and balance exercises result in changes in white matter microstructure albeit in divergent tracts that may be linked to the specific exercises performed.
Collapse
Affiliation(s)
- Ryu Lien
- School of Kinesiology, Faculty of Health Sciences, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Joyla A Furlano
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Suzanne T Witt
- BrainsCAN, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Chengqian Xian
- Department of Statistical and Actuarial Sciences, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| | - Lindsay S Nagamatsu
- School of Kinesiology, Faculty of Health Sciences, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
4
|
James C, Müller D, Müller C, Van De Looij Y, Altenmüller E, Kliegel M, Van De Ville D, Marie D. Randomized controlled trials of non-pharmacological interventions for healthy seniors: Effects on cognitive decline, brain plasticity and activities of daily living-A 23-year scoping review. Heliyon 2024; 10:e26674. [PMID: 38707392 PMCID: PMC11066598 DOI: 10.1016/j.heliyon.2024.e26674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/28/2024] [Accepted: 02/16/2024] [Indexed: 05/07/2024] Open
Abstract
Little is known about the simultaneous effects of non-pharmacological interventions (NPI) on healthy older adults' behavior and brain plasticity, as measured by psychometric instruments and magnetic resonance imaging (MRI). The purpose of this scoping review was to compile an extensive list of randomized controlled trials published from January 1, 2000, to August 31, 2023, of NPI for mitigating and countervailing age-related physical and cognitive decline and associated cerebral degeneration in healthy elderly populations with a mean age of 55 and over. After inventorying the NPI that met our criteria, we divided them into six classes: single-domain cognitive, multi-domain cognitive, physical aerobic, physical non-aerobic, combined cognitive and physical aerobic, and combined cognitive and physical non-aerobic. The ultimate purpose of these NPI was to enhance individual autonomy and well-being by bolstering functional capacity that might transfer to activities of daily living. The insights from this study can be a starting point for new research and inform social, public health, and economic policies. The PRISMA extension for scoping reviews (PRISMA-ScR) checklist served as the framework for this scoping review, which includes 70 studies. Results indicate that medium- and long-term interventions combining non-aerobic physical exercise and multi-domain cognitive interventions best stimulate neuroplasticity and protect against age-related decline and that outcomes may transfer to activities of daily living.
Collapse
Affiliation(s)
- C.E. James
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
| | - D.M. Müller
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - C.A.H. Müller
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - Y. Van De Looij
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 6 Rue Willy Donzé, 1205 Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Animal Imaging and Technology Section, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH F1 - Station 6, 1015, Lausanne, Switzerland
| | - E. Altenmüller
- Hannover University of Music, Drama and Media, Institute for Music Physiology and Musicians' Medicine, Neues Haus 1, 30175, Hannover, Germany
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - M. Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Chemin de Pinchat 22, 1207, Carouge, Switzerland
| | - D. Van De Ville
- Ecole polytechnique fédérale de Lausanne (EPFL), Neuro-X Institute, Campus Biotech, 1211 Geneva, Switzerland
- University of Geneva, Department of Radiology and Medical Informatics, Faculty of Medecine, Campus Biotech, 1211 Geneva, Switzerland
| | - D. Marie
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Cognitive and Affective Neuroimaging Section, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
5
|
Dao E, Barha CK, Zou J, Wei N, Liu-Ambrose T. Prevention of Vascular Contributions to Cognitive Impairment and Dementia: The Role of Physical Activity and Exercise. Stroke 2024; 55:812-821. [PMID: 38410973 DOI: 10.1161/strokeaha.123.044173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Vascular contributions to cognitive impairment and dementia, specifically cerebral small vessel disease (CSVD), are the second most common cause of dementia. Currently, there are no specific pharmacological treatments for CSVD, and the use of conventional antidementia drugs is not recommended. Exercise has the potential to prevent and mitigate CSVD-related brain damage and improve cognitive function. Mechanistic pathways underlying the neurocognitive benefits of exercise include the control of vascular risk factors, improving endothelial function, and upregulating exerkines. Notably, the therapeutic efficacy of exercise may vary by exercise type (ie, aerobic versus resistance training) and biological sex; thus, studies designed specifically to examine these moderating factors within a CSVD context are needed. Furthermore, future research should prioritize resistance training interventions, given their tremendous therapeutic potential. Addressing these knowledge gaps will help us refine exercise recommendations to maximize their therapeutic impact in the prevention and mitigation of CSVD.
Collapse
Affiliation(s)
- Elizabeth Dao
- Department of Radiology (E.D.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
| | - Cindy K Barha
- Faculty of Kinesiology (C.K.B.), University of Calgary, AB, Canada
- Hotchkiss Brain Institute (C.K.B.), University of Calgary, AB, Canada
| | - Jammy Zou
- Department of Physical Therapy (J.Z., N.W., T.L.-A.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, BC, Canada (J.Z., N.W., T.L.-A.)
| | - Nathan Wei
- Department of Physical Therapy (J.Z., N.W., T.L.-A.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, BC, Canada (J.Z., N.W., T.L.-A.)
| | - Teresa Liu-Ambrose
- Department of Physical Therapy (J.Z., N.W., T.L.-A.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, BC, Canada (J.Z., N.W., T.L.-A.)
| |
Collapse
|
6
|
Graciani AL, Gutierre MU, Coppi AA, Arida RM, Gutierre RC. MYELIN, AGING, AND PHYSICAL EXERCISE. Neurobiol Aging 2023; 127:70-81. [PMID: 37116408 DOI: 10.1016/j.neurobiolaging.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Myelin sheath is a structure in neurons fabricated by oligodendrocytes and Schwann cells responsible for increasing the efficiency of neural synapsis, impulse transmission, and providing metabolic support to the axon. They present morpho-functional changes during health aging as deformities of the sheath and its fragmentation, causing an increased load on microglial phagocytosis, with Alzheimer's disease aggravating. Physical exercise has been studied as a possible protective agent for the nervous system, offering benefits to neuroplasticity. In this regard, studies in animal models for Alzheimer's and depression reported the efficiency of physical exercise in protecting against myelin degeneration. A reduction of myelin damage during aging has also been observed in healthy humans. Physical activity promotes oligodendrocyte proliferation and myelin preservation during old age, although some controversies remain. In this review, we will address how effective physical exercise can be as a protective agent of the myelin sheath against the effects of aging in physiological and pathological conditions.
Collapse
|
7
|
Tarumi T, Fukuie M, Yamabe T, Kimura R, Zhu DC, Ohyama-Byun K, Maeda S, Sugawara J. Microstructural organization of the corpus callosum in young endurance athletes: A global tractography study. Front Neurosci 2022; 16:1042426. [PMID: 36523431 PMCID: PMC9745143 DOI: 10.3389/fnins.2022.1042426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2023] Open
Abstract
Introduction Aerobic exercise training has been shown to improve microstructural organization of the corpus callosum (CC); however, evidence of this topographic effect is limited. Purpose To compare the CC microstructural organization between endurance athletes and sedentary adults using a white-matter fiber tractography approach. Materials and methods Diffusion tensor imaging (DTI) and T1-weighted structural data were collected from 15 male young endurance athletes and 16 age- and sex-matched sedentary adults. DTI data were analyzed with a global probabilistic tractography method based on neighborhood anatomical information. Fractional anisotropy (FA) and mean, radial (RD), and axial diffusivities were measured in the eight CC tracts: rostrum, genu, splenium, and body's prefrontal, premotor, central, parietal, and temporal tracts. Cortical thickness of the CC tract endpoints and the CC tract length and volume were also measured. Physical activity level was assessed by metabolic equivalents (METs). Results The athlete group had an average VO2max of 69.5 ± 3.1 ml/kg/min, which is above 90%ile according to the American College of Sports Medicine guideline. Compared with the sedentary group, the athlete group had higher FA in the CC body's premotor and parietal tracts and the CC splenium. These tracts showed lower RD in the athlete compared with sedentary group. The voxelwise analysis confirmed that the athlete group had higher FA in the CC and other white matter regions than the sedentary group, including the corona radiata, internal capsule, and superior longitudinal fasciculus. Cortical thickness of the CC tract endpoints and the CC tract lengths and volumes were similar between the two groups. Physical activity levels were positively correlated with FA in the CC body's parietal (r = 0.486, p = 0.006) and temporal (r = 0.425, p = 0.017) tracts and the CC splenium (r = 0.408, p = 0.023). Conclusion Young endurance athletes have higher microstructural organization of the CC tracts connected the sensorimotor and visual cortices than the age- and sex-matched sedentary adults.
Collapse
Affiliation(s)
- Takashi Tarumi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, United States
| | - Marina Fukuie
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takayuki Yamabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryota Kimura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - David C. Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI, United States
| | - Keigo Ohyama-Byun
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiji Maeda
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jun Sugawara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Hortobágyi T, Vetrovsky T, Balbim GM, Sorte Silva NCB, Manca A, Deriu F, Kolmos M, Kruuse C, Liu-Ambrose T, Radák Z, Váczi M, Johansson H, Dos Santos PCR, Franzén E, Granacher U. The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Res Rev 2022; 80:101698. [PMID: 35853549 DOI: 10.1016/j.arr.2022.101698] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine the effects of low- vs. high-intensity aerobic and resistance training on motor and cognitive function, brain activation, brain structure, and neurochemical markers of neuroplasticity and the association thereof in healthy young and older adults and in patients with multiple sclerosis, Parkinson's disease, and stroke. DESIGN Systematic review and robust variance estimation meta-analysis with meta-regression. DATA SOURCES Systematic search of MEDLINE, Web of Science, and CINAHL databases. RESULTS Fifty studies with 60 intervention arms and 2283 in-analyses participants were included. Due to the low number of studies, the three patient groups were combined and analyzed as a single group. Overall, low- (g=0.19, p = 0.024) and high-intensity exercise (g=0.40, p = 0.001) improved neuroplasticity. Exercise intensity scaled with neuroplasticity only in healthy young adults but not in healthy older adults or patient groups. Exercise-induced improvements in neuroplasticity were associated with changes in motor but not cognitive outcomes. CONCLUSION Exercise intensity is an important variable to dose and individualize the exercise stimulus for healthy young individuals but not necessarily for healthy older adults and neurological patients. This conclusion warrants caution because studies are needed that directly compare the effects of low- vs. high-intensity exercise on neuroplasticity to determine if such changes are mechanistically and incrementally linked to improved cognition and motor function.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary; Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Hungary; Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany; Hungarian University of Sports Science, Department of Kinesiology, Budapest, Hungary.
| | - Tomas Vetrovsky
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Guilherme Moraes Balbim
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Nárlon Cássio Boa Sorte Silva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy
| | - Mia Kolmos
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Zsolt Radák
- Research Center of Molecular Exercise Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Márk Váczi
- Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Hungary
| | - Hanna Johansson
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | | | - Erika Franzén
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|