1
|
Czopek-Rowinska J, de Bruin ED, Manser P. Diagnostic accuracy of heart rate variability as a screening tool for mild neurocognitive disorder. Front Aging Neurosci 2024; 16:1498687. [PMID: 39741522 PMCID: PMC11685156 DOI: 10.3389/fnagi.2024.1498687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
Background Mild neurocognitive disorder (mNCD) is recognized as an early stage of dementia and is gaining attention as a significant healthcare problem due to current demographic changes and increasing numbers of patients. Timely detection of mNCD provides an opportunity for early interventions that can potentially slow down or prevent cognitive decline. Heart rate variability (HRV) may be a promising measure, as it has been shown to be sensitive to cognitive impairment. However, there is currently no evidence regarding the diagnostic accuracy of HRV measurements in the context of the mNCD population. This study aimed to evaluate the diagnostic accuracy of vagally-mediated HRV (vm-HRV) as a screening tool for mNCD and to investigate the relationship between vm-HRV with executive functioning and depression in older adults who have mNCD. Methods We retrospectively analyzed data from healthy older adults (HOA) and individuals with a clinical diagnosis of mNCD with a biomarker-supported characterization of the etiology of mNCD. Diagnostic accuracy was evaluated using receiver operating characteristic curve analysis based on the area under the curve. Sensitivity and specificity were calculated based on the optimal threshold provided by Youden's Index. Multiple linear regression analyses were conducted to investigate the relationship between vm-HRV and executive functioning and depression. Results This analysis included 42 HOA and 29 individuals with mNCD. The relative power of high frequency was found to be increased in individuals with mNCD. The greatest AUC calculated was 0.68 (with 95% CI: 0.56, 0.81) for the relative power of high frequency. AUCs for other vm-HRV parameters were between 0.53 and 0.61. No consistent correlations were found between vm-HRV and executive functioning or depression. Conclusion It appears that vm-HRV parameters alone are insufficient to reliably distinguish between HOA and older adults with mNCD. Additionally, the relationship between vm-HRV and executive functioning remains unclear and requires further investigation. Prospective studies that encompass a broad range of neurocognitive disorders, HRV measurements, neuroimaging, and multimodal approaches that consider a variety of functional domains affected in mNCD are warranted to further investigate the potential of vm-HRV as part of a multimodal screening tool for mNCD. These multimodal measures have the potential to improve the early detection of mNCD in the future.
Collapse
Affiliation(s)
- Julia Czopek-Rowinska
- Motor Control and Learning Group, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Eling D. de Bruin
- Motor Control and Learning Group, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Health, OST - Eastern Swiss University of Applied Sciences, St. Gallen, Switzerland
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Patrick Manser
- Motor Control and Learning Group, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Shi Z, Yun M, Nie B, Zhu E, Fu W, Shan B, Li S, Zhang X, Li X. Impact of cognitive impairment on heart failure prognosis: insights into central nervous system mechanism. EJNMMI Res 2024; 14:120. [PMID: 39609345 PMCID: PMC11604885 DOI: 10.1186/s13550-024-01183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Epidemiological studies have indicated that patients with heart failure (HF) who experience cognitive impairment (CI) have a poor prognosis. While poor self-management and compliance are suggested as contributing factors, they do not fully explain the underlying mechanisms of high risk of cardiac events in HF patients with CI. Given the interconnectedness of CI and the autonomic nervous system (ANS), both regulated by the central nervous system, this study investigated the relationship among cognitive function, metabolism in ANS-related brain regions, and major arrhythmic events (MAEs) in patients with HF with reduced ejection fraction (HFrEF). RESULTS We retrospectively enrolled 72 patients with HFrEF who underwent gated myocardial perfusion imaging, heart and brain 18F-FDG positron emission tomography/computed tomography imaging, and cognitive testing. Cognitive function was evaluated using the Mini-Mental State Examination. During the follow-up period, 13 patients (17.8%) experienced MAEs. Patients with MAEs exhibited decreased cognitive function across various domains, including orientation, registration, and language and praxis (all p < 0.05). Patients with CI displayed a prolonged heart rate-corrected QT (QTc) interval and hypometabolism in the left hippocampus and bilateral caudate nuclei (all p < 0.05). Significant correlations were observed between cognitive function, QTc interval, and metabolism in ANS-related brain regions (all p < 0.05). Cox regression model analysis showed that the predictive value of cognitive function is not independent of the QTc interval and there is a significant interaction. The mediation analyses suggested that a prolonged QTc interval resulting from ANS disorder increased risk of MAEs in HFrEF patients with CI. Patients with CI exhibited reduced central autonomic network (CAN) connectivity. CONCLUSION ANS dysfunction, exacerbated by reduced metabolism in ANS-related brain regions and CAN connectivity, contributed to an increased risk of MAEs in HFrEF patients with CI.
Collapse
Affiliation(s)
- Zhiyong Shi
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingkai Yun
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Binbin Nie
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Enjun Zhu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Fu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Baoci Shan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Nuclear Medicine, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Tumour Research Institute, Beijing, China
| |
Collapse
|
3
|
Zhang Z, Lv Y, Wang Q, Wang Y, Zhang M, Cao Y. Different implications of daytime and nighttime heart rate variability on total burden of cerebral small vascular disease in patients with nondisabling ischemic cerebrovascular events. Front Cardiovasc Med 2024; 11:1434041. [PMID: 39498356 PMCID: PMC11532077 DOI: 10.3389/fcvm.2024.1434041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Objective This study aimed to explore the relationship between total burden of cerebral small vessel disease (CSVD) and daytime and nighttime heart rate variability (HRV) parameters. Method Consecutive patients with nondisabling ischemic cerebrovascular events were recruited from the cerebrovascular disease clinic of Changzhou Second People's Hospital between January 2022 and June 2023. A total of 144 enrolled participants were divided into a mild CSVD group (74 patients) and a moderate-to-severe CSVD group (70 patients) based on total burden of CSVD. Various HRV parameters measured during 24-h, 4-h daytime, and 4-h nighttime periods (including natural log-transformed [ln] root mean square of successive RR interval differences [RMSSD], ln absolute power of the high-frequency band [0.15-0.4 Hz] [HF], ln absolute power of the low-frequency band [0.04-0.15 Hz][LF], and LF-to-HF ratio [LF/HF]) were then assessed in the 2 groups. Spearman correlation analysis was used to assess the correlation between total burden of CSVD and HRV parameters. HRV parameters with P-value < 0.05 in correlation analysis were included in the multivariable logistic regression analysis, and restricted cubic spline analysis was performed to assess dose-response relationships. Results Daytime 4-h lnRMSSD (r = -0.221; P = 0.008) and 4-h lnHF (r = -0.232; P = 0.005) were negatively correlated with total burden of CSVD, and daytime 4-h lnLF/HF (r = 0.187; P = 0.025) was positively correlated with total burden of CSVD. There was no correlation between nighttime HRV parameters and total burden of CSVD. After adjustments were made for potential confounders, daytime 4-h lnRMSSD (OR = 0.34; 95% CI: 0.16-0.76), 4-h lnHF (OR = 0.57; 95% CI: 0.39-0.84), and 4-h lnLF/HF (OR = 2.12; 95% CI: 1.18-3.82) were independent predictors of total burden of CSVD (all P < 0.05). S-shaped linear associations with moderate-to-severe total burden of CSVD were seen for daytime 4h-lnRMSSD (P for nonlinearity = 0.543), 4-h lnHF (P for nonlinearity = 0.31), and 4-h lnLF/HF (P for nonlinearity = 0.502). Conclusion Daytime parasympathetic HRV parameters are independent influencing factors of total burden of CSVD and may serve as potential therapeutic observation indicators for CSVD.
Collapse
Affiliation(s)
- Zhixiang Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center of Nanjing Medical University, Changzhou, China
| | - Yijun Lv
- Department of Neurology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center of Nanjing Medical University, Changzhou, China
| | - Qian Wang
- Department of Neurology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center of Nanjing Medical University, Changzhou, China
| | - Yan Wang
- Department of Neurology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center of Nanjing Medical University, Changzhou, China
| | - Min Zhang
- Department of Neurology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center of Nanjing Medical University, Changzhou, China
| | - Yongjun Cao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Palmer JA, Kaufman CS, Whitaker-Hilbig AA, Billinger SA. APOE4 carriers display loss of anticipatory cerebral vascular regulation over AD progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315344. [PMID: 39417136 PMCID: PMC11482999 DOI: 10.1101/2024.10.11.24315344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Maintenance of cerebral blood flow during orthostasis is impaired with aging and associated with cognitive decline, but the effect of Apolipoprotein 4-allele (APOE4) is unknown. METHODS Older adults (n=108) (APOE4 carriers, n=47; noncarriers, n=61) diagnosed as cognitively-normal (NC), MCI, or AD participated. Middle cerebral artery blood velocity (MCAv), assessed using Transcranial Doppler ultrasound, and beat-to-beat mean arterial blood pressure (MAP) were continuously recorded during a sit-to-stand transition. Anticipatory and orthostatic-induced MCAv and MAP responses were compared between genotypes and across disease progression. RESULTS Cognitively-normal APOE4 carriers showed greater anticipatory MCAv increase, greater MCAv decrease with orthostasis, and shorter latency of peripheral MAP responses to orthostasis compared to noncarriers. MCAv and MAP responses were delayed and attenuated across the APOE4 disease progression, with no differences between genotypes in MCI and AD. DISCUSSION APOE4 carriers and noncarriers present with distinct phenotypes of cerebral vascular dysfunction during hemodynamic orthostatic challenge. Unique cerebral and peripheral vascular compensation observed in APOE4 carriers may be lost as AD progresses.
Collapse
Affiliation(s)
- Jacqueline A. Palmer
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota Medical School, , Minneapolis, MN, United States of America
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States of America
| | - Carolyn S. Kaufman
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States of America
- Department of Internal Medicine, Stanford Health Care, Stanford University, Palo Alto, CA, United States of America
| | - Alicen A. Whitaker-Hilbig
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 123 Milwaukee Way, Milwaukee, WI, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Sandra A. Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States of America
| |
Collapse
|
5
|
Al-Ezzi A, Arechavala RJ, Butler R, Nolty A, Kang JJ, Shimojo S, Wu DA, Fonteh AN, Kleinman MT, Kloner RA, Arakaki X. Disrupted brain functional connectivity as early signature in cognitively healthy individuals with pathological CSF amyloid/tau. Commun Biol 2024; 7:1037. [PMID: 39179782 PMCID: PMC11344156 DOI: 10.1038/s42003-024-06673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Alterations in functional connectivity (FC) have been observed in individuals with Alzheimer's disease (AD) with elevated amyloid (Aβ) and tau. However, it is not yet known whether directed FC is already influenced by Aβ and tau load in cognitively healthy (CH) individuals. A 21-channel electroencephalogram (EEG) was used from 46 CHs classified based on cerebrospinal fluid (CSF) Aβ tau ratio: pathological (CH-PAT) or normal (CH-NAT). Directed FC was estimated with Partial Directed Coherence in frontal, temporal, parietal, central, and occipital regions. We also examined the correlations between directed FC and various functional metrics, including neuropsychology, cognitive reserve, MRI volumetrics, and heart rate variability between both groups. Compared to CH-NATs, the CH-PATs showed decreased FC from the temporal regions, indicating a loss of relative functional importance of the temporal regions. In addition, frontal regions showed enhanced FC in the CH-PATs compared to CH-NATs, suggesting neural compensation for the damage caused by the pathology. Moreover, CH-PATs showed greater FC in the frontal and occipital regions than CH-NATs. Our findings provide a useful and non-invasive method for EEG-based analysis to identify alterations in brain connectivity in CHs with a pathological versus normal CSF Aβ/tau.
Collapse
Affiliation(s)
- Abdulhakim Al-Ezzi
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Ryan Butler
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Anne Nolty
- Fuller Theological Seminary, Pasadena, CA, USA
| | | | - Shinsuke Shimojo
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Daw-An Wu
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Robert A Kloner
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Cardiovascular Research, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.
| |
Collapse
|
6
|
Attreed A, Morand LR, Pond DC, Sturmberg JP. The Clinical Role of Heart Rate Variability Assessment in Cognitively Impaired Patients and Its Applicability in Community Care Settings: A Systematic Review of the Literature. Cureus 2024; 16:e61703. [PMID: 38975380 PMCID: PMC11226213 DOI: 10.7759/cureus.61703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Heart rate variability (HRV) correlates well with a person's overall physiological function. Clinically, HRV is successfully used in acute care to identify impending infections, but little is known about its potential in the management of chronic diseases like cognitive decline/dementia. The aim of this study was to identify the best available knowledge about HRV in cognitively impaired populations that might be applied to improve clinical practice in community settings. We conducted a systematic literature search in PubMed, Embase, and Cochrane databases published from January 2009 to August 2022. Eligible studies were selected using Covidence and each study underwent qualitative assessment using the Mixed Method Appraisal Tool. At each stage of selection, each study was reviewed independently by two members of the team, and any disputes were discussed along the way. The literature identified that the brain regions controlling HRV are also those affected by dementias of Alzheimer's type (AD) and Lewy body types (DLB). HRV was impaired in both types, with DLB showing greater impairment in all HRV parameters compared to AD. No studies explored the temporal changes of HRV or its use in the clinical management of people with cognitive impairment (CI). The current lack of standardization of HRV recording and analysis limits its use in clinical practice. HRV may emerge as a potentially useful tool to identify people with early/preclinical memory impairment and help to differentiate AD from DLB. Longitudinal HRV measurement is emerging as a useful way to monitor disease progression and treatment response, and continuous HRV measurement may prove useful in the early identification of sepsis and its complications in patients no longer able to communicate their illness experiences.
Collapse
Affiliation(s)
- Amanda Attreed
- General Medicine, Central Coast Local Health District, Gosford, AUS
| | - Louisa R Morand
- General Medicine, Royal Brisbane and Women's Hospital, Brisbane, AUS
| | - Dimity C Pond
- General Practice, Wicking Dementia Research and Training Centre, Hobart, AUS
| | | |
Collapse
|
7
|
Nicolini P, Lucchi T, Vicenzi M. Heart rate variability as a predictor of cognitive decline: A possible role for the Central Autonomic Network. Biomed J 2024; 47:100700. [PMID: 38253181 PMCID: PMC10955642 DOI: 10.1016/j.bj.2024.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Affiliation(s)
- Paola Nicolini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Geriatric Unit, Internal Medicine Department, Milan, Italy.
| | - Tiziano Lucchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Geriatric Unit, Internal Medicine Department, Milan, Italy
| | - Marco Vicenzi
- Dyspnea Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Cardio-Thoracic-Vascular Diseases, Milan, Italy
| |
Collapse
|
8
|
Chou YT, Sun ZJ, Shao SC, Yang YC, Lu FH, Chang CJ, Liao TC, Li CY, Hsiu-Hsi Chen T, Wu JS, Chia-Cheng Lai E. Response to "letter to editor" from Nicolini et al. Regarding "Autonomic modulation and the risk of dementia in a middle-aged cohort: A 17-year follow-up study". Biomed J 2024; 47:100704. [PMID: 38417676 PMCID: PMC10955639 DOI: 10.1016/j.bj.2024.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Affiliation(s)
- Yu-Tsung Chou
- Department of Health Management Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zih-Jie Sun
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Family Medicine, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan
| | - Shih-Chieh Shao
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Yi-Ching Yang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Feng-Hwa Lu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Tzu-Chi Liao
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Tony Hsiu-Hsi Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jin-Shang Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Family Medicine, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan; Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Edward Chia-Cheng Lai
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Cammisuli DM, Isella V, Verde F, Silani V, Ticozzi N, Pomati S, Bellocchio V, Granese V, Vignati B, Marchesi G, Prete LA, Pavanello G, Castelnuovo G. Behavioral Disorders of Spatial Cognition in Patients with Mild Cognitive Impairment due to Alzheimer's Disease: Preliminary Findings from the BDSC-MCI Project. J Clin Med 2024; 13:1178. [PMID: 38398490 PMCID: PMC10889220 DOI: 10.3390/jcm13041178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Spatial cognition (SC) is one of the earliest cognitive domains to be impaired in the course of Alzheimer's disease (AD), resulting in spatial disorientation and becoming lost even in familiar surroundings as later dementia symptoms. To date, few studies have identified initial alterations of spatial navigation (SN) in the premorbid AD phase by real-world paradigms, and none have adopted an innovative technological apparatus to better detect gait alterations as well as physiological aspects correlated to spatial disorientation (SD). The present study aimed at exploring initial SN defects in patients with prodromal AD via a naturalistic task by using a sensory garment. (2) Methods: 20 community-dwelling patients with Mild Cognitive Impairment (MCI) due to AD and 20 age/education controls were assessed on their sequential egocentric and allocentric navigation abilities by using a modified version of the Detour Navigation Test (DNT-mv). (3) Results: When compared to controls, patients with MCI due to AD exhibited higher wrong turns (WT) and moments of hesitation (MsH) in the DNT-mv, reflecting difficulties both in sequential egocentric and allocentric navigation, depending on hippocampal deterioration. Moreover, they reported more complaints about their SN competencies and lower long-term visuospatial memory abilities than controls. Remarkably, WTs and MsH manifested in the allocentric naturalistic task of the DNT-mv were associated with autonomic nervous system alteration pertaining to cardiac functioning in the whole sample. (4) Conclusions: Naturalistic navigation tests of hippocampal function using a continuous non-invasive monitoring device can provide early markers of spatial disorientation in patients with MCI due to AD. Future studies should develop cognitive remediation techniques able to enhance SC residual abilities in patients at high risk of conversion into dementia and ecological paradigms to be replicated on a large scale.
Collapse
Affiliation(s)
| | - Valeria Isella
- Department of Neurology, School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy;
- Milan Center for Neurosciences, 20133 Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy; (F.V.); (V.S.); (N.T.)
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy; (F.V.); (V.S.); (N.T.)
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy; (F.V.); (V.S.); (N.T.)
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Simone Pomati
- Neurology Unit, Luigi Sacco University Hospital, 20157 Milan, Italy;
| | | | - Valentina Granese
- Catholic University, 20123 Milan, Italy; (V.B.); (V.G.); (B.V.); (G.M.)
| | - Benedetta Vignati
- Catholic University, 20123 Milan, Italy; (V.B.); (V.G.); (B.V.); (G.M.)
| | - Gloria Marchesi
- Catholic University, 20123 Milan, Italy; (V.B.); (V.G.); (B.V.); (G.M.)
| | - Lorenzo Augusto Prete
- School of Specialization in Clinical Psychology, Catholic University, 20123 Milan, Italy; (L.A.P.); (G.P.)
| | - Giada Pavanello
- School of Specialization in Clinical Psychology, Catholic University, 20123 Milan, Italy; (L.A.P.); (G.P.)
| | - Gianluca Castelnuovo
- Department of Psychology, Catholic University, 20123 Milan, Italy;
- Clinical Psychology Research Laboratory, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| |
Collapse
|
10
|
Rykov YG, Patterson MD, Gangwar BA, Jabar SB, Leonardo J, Ng KP, Kandiah N. Predicting cognitive scores from wearable-based digital physiological features using machine learning: data from a clinical trial in mild cognitive impairment. BMC Med 2024; 22:36. [PMID: 38273340 PMCID: PMC10809621 DOI: 10.1186/s12916-024-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Continuous assessment and remote monitoring of cognitive function in individuals with mild cognitive impairment (MCI) enables tracking therapeutic effects and modifying treatment to achieve better clinical outcomes. While standardized neuropsychological tests are inconvenient for this purpose, wearable sensor technology collecting physiological and behavioral data looks promising to provide proxy measures of cognitive function. The objective of this study was to evaluate the predictive ability of digital physiological features, based on sensor data from wrist-worn wearables, in determining neuropsychological test scores in individuals with MCI. METHODS We used the dataset collected from a 10-week single-arm clinical trial in older adults (50-70 years old) diagnosed with amnestic MCI (N = 30) who received a digitally delivered multidomain therapeutic intervention. Cognitive performance was assessed before and after the intervention using the Neuropsychological Test Battery (NTB) from which composite scores were calculated (executive function, processing speed, immediate memory, delayed memory and global cognition). The Empatica E4, a wrist-wearable medical-grade device, was used to collect physiological data including blood volume pulse, electrodermal activity, and skin temperature. We processed sensors' data and extracted a range of physiological features. We used interpolated NTB scores for 10-day intervals to test predictability of scores over short periods and to leverage the maximum of wearable data available. In addition, we used individually centered data which represents deviations from personal baselines. Supervised machine learning was used to train models predicting NTB scores from digital physiological features and demographics. Performance was evaluated using "leave-one-subject-out" and "leave-one-interval-out" cross-validation. RESULTS The final sample included 96 aggregated data intervals from 17 individuals. In total, 106 digital physiological features were extracted. We found that physiological features, especially measures of heart rate variability, correlated most strongly to the executive function compared to other cognitive composites. The model predicted the actual executive function scores with correlation r = 0.69 and intra-individual changes in executive function scores with r = 0.61. CONCLUSIONS Our findings demonstrated that wearable-based physiological measures, primarily HRV, have potential to be used for the continuous assessments of cognitive function in individuals with MCI.
Collapse
Affiliation(s)
| | | | | | | | - Jacklyn Leonardo
- Dementia Research Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Dementia Research Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Nicolini P, Malfatto G, Lucchi T. Heart Rate Variability and Cognition: A Narrative Systematic Review of Longitudinal Studies. J Clin Med 2024; 13:280. [PMID: 38202287 PMCID: PMC10780278 DOI: 10.3390/jcm13010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Heart rate variability (HRV) is a reliable and convenient method to assess autonomic function. Cross-sectional studies have established a link between HRV and cognition. Longitudinal studies are an emerging area of research with important clinical implications in terms of the predictive value of HRV for future cognition and in terms of the potential causal relationship between HRV and cognition. However, they have not yet been the objective of a systematic review. Therefore, the aim of this systematic review was to investigate the association between HRV and cognition in longitudinal studies. METHODS The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The Embase, PsycINFO and PubMed databases were searched from the earliest available date to 26 June 2023. Studies were included if they involved adult human subjects and evaluated the longitudinal association between HRV and cognition. The risk of bias was assessed with the Newcastle-Ottawa Scale for Cohort Studies. The results were presented narratively. RESULTS Of 14,359 records screened, 12 studies were included in this systematic review, with a total of 24,390 participants. Two thirds of the studies were published from 2020 onwards. All studies found a longitudinal relationship between HRV and cognition. There was a consistent association between higher parasympathetic nervous system (PNS) activity and better cognition, and some association between higher sympathetic nervous system activity and worse cognition. Also, higher PNS activity persistently predicted better executive functioning, while data on episodic memory and language were more scant and/or controversial. CONCLUSIONS Our results support the role of HRV as a biomarker of future cognition and, potentially, as a therapeutic target to improve cognition. They will need confirmation by further, more comprehensive studies also including unequivocal non-HRV sympathetic measures and meta-analyses.
Collapse
Affiliation(s)
- Paola Nicolini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Geriatric Unit, Internal Medicine Department, 20122 Milan, Italy;
| | - Gabriella Malfatto
- Istituto Auxologico Italiano IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, Ospedale San Luca, 20149 Milan, Italy;
| | - Tiziano Lucchi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Geriatric Unit, Internal Medicine Department, 20122 Milan, Italy;
| |
Collapse
|
12
|
Nicolini P, Lucchi T, Vicenzi M. Heart rate variability: a predictor of cognitive decline. Aging (Albany NY) 2023; 15:9233-9234. [PMID: 37733678 PMCID: PMC10564411 DOI: 10.18632/aging.204715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Paola Nicolini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Geriatric Unit, Internal Medicine Department, Milan, Italy
| | - Tiziano Lucchi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Geriatric Unit, Internal Medicine Department, Milan, Italy
| | - Marco Vicenzi
- Dyspnea Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Cardio-Thoracic-Vascular Diseases, Milan, Italy
| |
Collapse
|
13
|
Molloy C, Choy EH, Arechavala RJ, Buennagel D, Nolty A, Spezzaferri MR, Sin C, Rising S, Yu J, Al-Ezzi A, Kleinman MT, Kloner RA, Arakaki X. Resting heart rate (variability) and cognition relationships reveal cognitively healthy individuals with pathological amyloid/tau ratio. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1168847. [PMID: 37587981 PMCID: PMC10428767 DOI: 10.3389/fepid.2023.1168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Introduction Resting heart rate (HR) and heart rate variability (HRV) have been linked with cognition in the general population and in older individuals. The knowledge of this aspect of heart-brain relationship is relatively absent in older individuals with early Alzheimer's disease (AD) pathology. This study explores relationships of the HR, HRV, and cognition in cognitively healthy individuals with pathological amyloid/tau ratio (CH-PATs) in cerebral spinal fluid (CSF) compared to those with normal ratio (CH-NATs). Methods We examined therelationshipsbetween1) resting HR and Mini-Mental State Examination (MMSE); 2) resting HR and brain processing during Stroop interference; and 3) resting vagally mediated HRV (vmHRV) and task switching performance. Results Our studies showed that compared to CH-NATs, those CH-PATs with higher resting HR presented with lower MMSE, and less brain activation during interference processing. In addition, resting vmHRV was significantly correlated with task switching accuracy in CH-NATs, but not in CH-PATs. Discussion Thesethreedifferenttestsindicatedysfunctionalheart-brainconnections in CH-PATs, suggesting a potential cardio-cerebral dysfunctional integration.
Collapse
Affiliation(s)
- Cathleen Molloy
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Elizabeth H. Choy
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Rebecca J. Arechavala
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - David Buennagel
- Clinical Neuroscience Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Anne Nolty
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Mitchell R. Spezzaferri
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Caleb Sin
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Shant Rising
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Jeremy Yu
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - Abdulhakim Al-Ezzi
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Michael T. Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Robert A. Kloner
- Clinical Neuroscience Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
- Cardiovascular Research, Huntington Medical Research Institutes, Pasadena, CA, United States
- Cardiovascular Division, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, United States
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|