1
|
Chapman MA, Sorg BA. A Systematic Review of Extracellular Matrix-Related Alterations in Parkinson's Disease. Brain Sci 2024; 14:522. [PMID: 38928523 PMCID: PMC11201521 DOI: 10.3390/brainsci14060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The role of the extracellular matrix (ECM) in Parkinson's disease (PD) is not well understood, even though it is critical for neuronal structure and signaling. This systematic review identified the top deregulated ECM-related pathways in studies that used gene set enrichment analyses (GSEA) to document transcriptomic, proteomic, or genomic alterations in PD. PubMed and Google scholar were searched for transcriptomics, proteomics, or genomics studies that employed GSEA on data from PD tissues or cells and reported ECM-related pathways among the top-10 most enriched versus controls. Twenty-seven studies were included, two of which used multiple omics analyses. Transcriptomics and proteomics studies were conducted on a variety of tissue and cell types. Of the 17 transcriptomics studies (16 data sets), 13 identified one or more adhesion pathways in the top-10 deregulated gene sets or pathways, primarily related to cell adhesion and focal adhesion. Among the 8 proteomics studies, 5 identified altered overarching ECM gene sets or pathways among the top 10. Among the 4 genomics studies, 3 identified focal adhesion pathways among the top 10. The findings summarized here suggest that ECM organization/structure and cell adhesion (particularly focal adhesion) are altered in PD and should be the focus of future studies.
Collapse
Affiliation(s)
| | - Barbara A. Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, USA;
| |
Collapse
|
2
|
Alshehri MM, Danazumi AU, Alshammari MK, Bello RO, Alghazwni MK, Alshehri AM, Alshlali OM, Umar HI. Repurposing the inhibitors of MMP-9 and SGLT-2 against ubiquitin specific protease 30 in Parkinson's disease: computational modelling studies. J Biomol Struct Dyn 2024; 42:1307-1318. [PMID: 37139557 DOI: 10.1080/07391102.2023.2208223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023]
Abstract
Ubiquitin specific protease 30 (USP30) has been attributed to mitochondrial dysfunction and impediment of mitophagy in Parkinson's disease (PD). This happens once ubiquitin that supposed to bind with deformed mitochondria at the insistence of Parkin, it's been recruited by USP30 via the distal ubiquitin binding domain. This is a challenge when PINK1 and Parkin loss their functions due to mutation. Although, there are reports on USP30s' inhibitors but no study on the repurposing of inhibitors approved against MMP-9 and SGLT-2 as potential inhibitors of USP30 in PD. Thus, the highlight therein, is to repurpose approved inhibitors of MMP-9 and SGLT-2 against USP30 in PD using extensive computational modelling framework. 3D structures of Ligands and USP30 were obtained from PubChem and protein database (PDB) servers respectively, and were subjected to molecular docking, ADMET evaluation, DFT calculation, molecular dynamics simulation (MDS) and free energy calculations. Out of the 18 drugs, 2 drugs showed good binding affinity to the distal ubiquitin binding domain, moderate pharmacokinetic properties and good stability. The findings showed canagliflozin and empagliflozin as potential inhibitors of USP30. Thus, we present these drugs as repurposing candidates for the treatment of PD. However, the findings in this current study needs to be validated experimentally.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed M Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Ammar Usman Danazumi
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Mohammed Kanan Alshammari
- Department of Pharmaceutical Care, Rafha Central Hospital, Rafha, North Zone, Kingdom of Saudi Arabia
| | - Ridwan Opeyemi Bello
- Computer-Aided Therapeutic Discovery and Design Group, Federal University of Technology, Akure, Nigeria
| | | | - Ahmed Mughram Alshehri
- Pharmaceutical care Department, Security Forces Hospital - Riyadh, Riyadh, Kingdom of Saudi Arabia
| | | | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Group, Federal University of Technology, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| |
Collapse
|
3
|
Eckert D, Evic M, Schang J, Isbruch M, Er M, Dörrschuck L, Rapp F, Donaubauer AJ, Gaipl US, Frey B, Fournier C. Osteo-immunological impact of radon spa treatment: due to radon or spa alone? Results from the prospective, thermal bath placebo-controlled RAD-ON02 trial. Front Immunol 2024; 14:1284609. [PMID: 38292488 PMCID: PMC10824901 DOI: 10.3389/fimmu.2023.1284609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Musculoskeletal disorders (MSDs) are associated with pain and lead to reduced mobility and quality of life for patients. Radon therapy is used as alternative or complementary to pharmaceutical treatments. According to previous reports, radon spa leads to analgesic and anti-inflammatory effects, but the cellular and molecular mechanisms are widely unknown. A previous study (RAD-ON01) revealed, that bone erosion markers like collagen fragments (C-terminal telopeptide, CTX) are reduced after radon spa treatment in serum of patients with degenerative MSDs. Within the scope of the prospective, placebo-controlled RAD-ON02 trial presented here, we analyzed the influence of radon and thermal spa treatment on osteoclastogenesis. From patient blood, we isolate monocytes, seeded them on bone slices and differentiated them in the presence of growth factors into mature osteoclasts (mOCs). Subsequent analysis showed a smaller fraction of mOCs after both treatments, which was even smaller after radon spa treatment. A significantly reduced resorbed area on bone slices reflects this result. Only after radon spa treatment, we detected in the serum of patients a significant decrease of receptor activator of NF-κB ligand (RANKL), which indicates reduced differentiation of OCs. However, other markers for bone resorption (CTX) and bone formation (OPG, OCN) were not altered after both treatments. Adipokines, such as visfatin and leptin that play a role in some MSD-types by affecting osteoclastogenesis, were not changed after both treatments. Further, also immune cells have an influence on osteoclastogenesis, by inhibiting and promoting terminal differentiation and activation of OCs, respectively. After radon treatment, the fraction of Treg cells was significantly increased, whereas Th17 cells were not altered. Overall, we observed that both treatments had an influence on osteoclastogenesis and bone resorption. Moreover, radon spa treatment affected the Treg cell population as well as the Th17/Treg ratio were affected, pointing toward a contribution of the immune system after radon spa. These data obtained from patients enrolled in the RAD-ON02 trial indicate that radon is not alone responsible for the effects on bone metabolism, even though they are more pronounced after radon compared to thermal spa treatment.
Collapse
Affiliation(s)
- Denise Eckert
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Megi Evic
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Jasmin Schang
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Maike Isbruch
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Melissa Er
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Lea Dörrschuck
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Felicitas Rapp
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Anna-Jasmina Donaubauer
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S. Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
4
|
Khotimchenko YS, Silachev DN, Katanaev VL. Marine Natural Products from the Russian Pacific as Sources of Drugs for Neurodegenerative Diseases. Mar Drugs 2022; 20:708. [PMID: 36421986 PMCID: PMC9697637 DOI: 10.3390/md20110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/05/2023] Open
Abstract
Neurodegenerative diseases are growing to become one of humanity's biggest health problems, given the number of individuals affected by them. They cause enough mortalities and severe economic impact to rival cancers and infections. With the current diversity of pathophysiological mechanisms involved in neurodegenerative diseases, on the one hand, and scarcity of efficient prevention and treatment strategies, on the other, all possible sources for novel drug discovery must be employed. Marine pharmacology represents a relatively uncharted territory to seek promising compounds, despite the enormous chemodiversity it offers. The current work discusses one vast marine region-the Northwestern or Russian Pacific-as the treasure chest for marine-based drug discovery targeting neurodegenerative diseases. We overview the natural products of neurological properties already discovered from its waters and survey the existing molecular and cellular targets for pharmacological modulation of the disease. We further provide a general assessment of the drug discovery potential of the Russian Pacific in case of its systematic development to tackle neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuri S. Khotimchenko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- A.V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
| | - Denis N. Silachev
- Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Vladimir L. Katanaev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|