1
|
Litwiniuk A, Kalisz M, Domańska A, Chmielowska M, Martyńska L, Baranowska-Bik A, Bik W. Nicotinic acid attenuates amyloid β 1-42-induced mitochondrial dysfunction and inhibits the mitochondrial pathway of apoptosis in differentiated SH-SY5Y cells. Neurochem Int 2024; 178:105772. [PMID: 38789043 DOI: 10.1016/j.neuint.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive memory loss and behavioral disorders. The excessive accumulation of amyloid β (Aβ) and the formation of neurofibrillary tangles (NFTs) damage synaptic connections and the death of neurons. However, the underlying mechanisms of pathogenesis of AD remain unclear. Growing evidence indicates that impaired mitochondrial function may play a crucial role in the development of AD. In the current study, we investigated whether nicotinic acid (NA) could protect against amyloid β1-42-induced cytotoxicity in differentiated SH-SY5Y cells. Our results revealed the neuroprotective effects of NA on the differentiated SH-SY5Y cells treated with Aβ1-42. In detail, the 1-h pre-incubation with NA increased cell viability and lowered LDH levels. NA pre-incubation abolished Aβ1-42 treatment-associated alterations of mRNA levels of synaptic genes and enhanced the relative β3 Tubulin fluorescence intensity. NA eliminated the Aβ1-42-induced mitochondrial dysfunction by increasing the potential of mitochondrial membranes and maintaining a balance between the fusion and fission of mitochondria. Moreover, Aβ1-42 decreased mRNA levels of anti-apoptotic bcl2 and increased mRNA levels of pro-apoptotic: bim, bak, cytochrome c, and caspase 9. At the same time, the NA pre-treatment reduced Aβ1-42-dependent apoptotic death of differentiated SH-SY5Y cells. The above data suggest that NA presents a protective activity against Aβ1-42-induced cytotoxicity in differentiated SH-SY5Y cells by inhibiting the mitochondrial pathway of apoptosis and restoring the proper function of mitochondria.
Collapse
Affiliation(s)
- Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland.
| | - Małgorzata Kalisz
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Anita Domańska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Magdalena Chmielowska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Lidia Martyńska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Agnieszka Baranowska-Bik
- Department of Endocrinology, Centre of Postgraduate Medical Education, Cegłowska 80, 01-809, Warsaw, Poland
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| |
Collapse
|
2
|
Cardoso S, Carvalho C, Correia SC, Moreira PI. Protective effects of 2,4-dinitrophenol in okadaic acid-induced cellular model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167222. [PMID: 38729530 DOI: 10.1016/j.bbadis.2024.167222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) research started several decades ago and despite the many efforts employed to develop new treatments or approaches to slow and/or revert disease progression, AD treatment remains an unsolved issue. Knowing that mitochondria loss of function is a central hub for many AD-associated pathophysiological processes, there has been renewed interest in exploring mitochondria as targets for intervention. In this perspective, the present study was aimed to investigate the possible beneficial effects of 2,4 dinitrophenol (DNP), a mitochondrial uncoupler agent, in an in vitro model of AD. Retinoic acid-induced differentiated SH-SY5Y cells were incubated with okadaic acid (OA), a neurotoxin often used as an AD experimental model, and/or with DNP. OA caused a decrease in neuronal cells viability, induced multiple mitochondrial anomalies including increased levels of reactive oxygen species, decreased bioenergetics and mitochondria content markers, and an altered mitochondria morphology. OA-treated cells also presented increased lipid peroxidation levels, and overactivation of tau related kinases (GSK3β, ERK1/2 and AMPK) alongside with a significant augment in tau protein phosphorylation levels. Interestingly, DNP co-treatment ameliorated and rescued OA-induced detrimental effects not only on mitochondria but also but also reinstated signaling pathways homeostasis and ameliorated tau pathology. Overall, our results show for the first time that DNP has the potential to preserve mitochondria homeostasis under a toxic insult, like OA exposure, as well as to reestablish cellular signaling homeostasis. These observations foster the idea that DNP, as a mitochondrial modulator, might represent a new avenue for treatment of AD.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| | - Cristina Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sónia C Correia
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paula I Moreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
3
|
Choi EH, Kim MH, Park SJ. Targeting Mitochondrial Dysfunction and Reactive Oxygen Species for Neurodegenerative Disease Treatment. Int J Mol Sci 2024; 25:7952. [PMID: 39063194 PMCID: PMC11277296 DOI: 10.3390/ijms25147952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, and they affect millions of people worldwide, particularly older individuals. Therefore, there is a clear need to develop novel drug targets for the treatment of age-related neurodegenerative diseases. Emerging evidence suggests that mitochondrial dysfunction and reactive oxygen species (ROS) generation play central roles in the onset and progression of neurodegenerative diseases. Mitochondria are key regulators of respiratory function, cellular energy adenosine triphosphate production, and the maintenance of cellular redox homeostasis, which are essential for cell survival. Mitochondrial morphology and function are tightly regulated by maintaining a balance among mitochondrial fission, fusion, biogenesis, and mitophagy. In this review, we provide an overview of the main functions of mitochondria, with a focus on recent progress highlighting the critical role of ROS-induced oxidative stress, dysregulated mitochondrial dynamics, mitochondrial apoptosis, mitochondria-associated inflammation, and impaired mitochondrial function in the pathogenesis of age-related neurodegenerative diseases, such as AD and PD. We also discuss the potential of mitochondrial fusion and biogenesis enhancers, mitochondrial fission inhibitors, and mitochondria-targeted antioxidants as novel drugs for the treatment of these diseases.
Collapse
Affiliation(s)
| | | | - Sun-Ji Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea; (E.-H.C.); (M.-H.K.)
| |
Collapse
|
4
|
Rao S, Madhu LN, Babu RS, Nagarajan A, Upadhya R, Narvekar E, Shetty AK. Extracellular Vesicles from hiPSC-derived NSCs Protect Human Neurons against Aβ-42 Oligomers Induced Neurodegeneration, Mitochondrial Dysfunction and Tau Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603159. [PMID: 39071270 PMCID: PMC11275725 DOI: 10.1101/2024.07.11.603159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background One of the hallmarks of Alzheimer's disease (AD) is the buildup of amyloid beta-42 (Aβ-42) in the brain, which leads to various adverse effects. Therefore, therapeutic interventions proficient in reducing Aβ-42-induced toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aβ-42-induced pathological changes. Therefore, this in vitro study investigated the proficiency of hiPSC-NSC-EVs to protect human neurons derived from two distinct hiPSC lines from Aβ-42o-induced neurodegeneration. Methods We isolated hiPSC-NSC-EVs using chromatographic methods and characterized their size, ultrastructure, expression of EV-specific markers and proficiency in getting incorporated into mature human neurons. Next, mature human neurons differentiated from two different hiPSC lines were exposed to 1 µM Aβ-42 oligomers (Aβ-42o) alone or with varying concentrations of hiPSC-NSC-EVs. The protective effects of hiPSC-NSC-EVs against Aβ-42o-induced neurodegeneration, increased oxidative stress, mitochondrial dysfunction, impaired autophagy, and tau phosphorylation were ascertained using multiple measures and one-way ANOVA with Newman-Keuls multiple comparisons post hoc tests. Results Significant neurodegeneration was observed when human neurons were exposed to Aβ-42o alone. Notably, neurodegeneration was associated with elevated levels of oxidative stress markers malondialdehyde (MDA) and protein carbonyls (PCs), increased expression of proapoptotic Bax and Bad genes and proteins, reduced expression of the antiapoptotic gene and protein Bcl-2, increased expression of genes encoding mitochondrial complex proteins, decreased expression of autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3B, and increased phosphorylation of tau. However, the addition of an optimal dose of hiPSC-NSC-EVs (6 x 10 9 EVs) to human neuronal cultures exposed to Aβ-42o significantly reduced the extent of neurodegeneration, along with diminished levels of MDA and PCs, normalized expressions of Bax, Bad, and Bcl-2, and genes linked to mitochondrial complex proteins, and reduced tau phosphorylation. Conclusions The findings demonstrate that an optimal dose of hiPSC-NSC-EVs could significantly decrease the degeneration of human neurons induced by Aβ-42o. The results also support further research into the effectiveness of hiPSC-NSC-EVs in AD, particularly their proficiency in preserving neurons and slowing disease progression.
Collapse
|
5
|
Cheslow L, Snook AE, Waldman SA. Biomarkers for Managing Neurodegenerative Diseases. Biomolecules 2024; 14:398. [PMID: 38672416 PMCID: PMC11048498 DOI: 10.3390/biom14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Neurological disorders are the leading cause of cognitive and physical disability worldwide, affecting 15% of the global population. Due to the demographics of aging, the prevalence of neurological disorders, including neurodegenerative diseases, will double over the next two decades. Unfortunately, while available therapies provide symptomatic relief for cognitive and motor impairment, there is an urgent unmet need to develop disease-modifying therapies that slow the rate of pathological progression. In that context, biomarkers could identify at-risk and prodromal patients, monitor disease progression, track responses to therapy, and parse the causality of molecular events to identify novel targets for further clinical investigation. Thus, identifying biomarkers that discriminate between diseases and reflect specific stages of pathology would catalyze the discovery and development of therapeutic targets. This review will describe the prevalence, known mechanisms, ongoing or recently concluded therapeutic clinical trials, and biomarkers of three of the most prevalent neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.C.); (A.E.S.)
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E. Snook
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.C.); (A.E.S.)
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A. Waldman
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.C.); (A.E.S.)
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
German‐Castelan L, Shanks HRC, Gros R, Saito T, Saido TC, Saksida LM, Bussey TJ, Prado MAM, Schmitz TW, Prado VF. Sex-dependent cholinergic effects on amyloid pathology: A translational study. Alzheimers Dement 2024; 20:995-1012. [PMID: 37846816 PMCID: PMC10916951 DOI: 10.1002/alz.13481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION About two-thirds of Alzheimer's Disease (AD) patients are women, who exhibit more severe pathology and cognitive decline than men. Whether biological sex causally modulates the relationship between cholinergic signaling and amyloid pathology remains unknown. METHODS We quantified amyloid beta (Aβ) in male and female App-mutant mice with either decreased or increased cholinergic tone and examined the impact of ovariectomy and estradiol replacement in this relationship. We also investigated longitudinal changes in basal forebrain (cholinergic function) and Aβ in elderly individuals. RESULTS We show a causal relationship between cholinergic tone and amyloid pathology in males and ovariectomized female mice, which is decoupled in ovary-intact and ovariectomized females receiving estradiol. In elderly humans, cholinergic loss exacerbates Aβ. DISCUSSION Our findings emphasize the importance of reflecting human menopause in mouse models. They also support a role for therapies targeting estradiol and cholinergic signaling to reduce Aβ. HIGHLIGHTS Cholinergic tone regulates amyloid beta (Aβ) pathology in males and ovariectomized female mice. Estradiol uncouples the relationship between cholinergic tone and Aβ. In elderly humans, cholinergic loss correlates with increased Aβ in both sexes.
Collapse
Affiliation(s)
- Liliana German‐Castelan
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Hayley R. C. Shanks
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Robert Gros
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of MedicineSchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Takashi Saito
- Department of Neurocognitive ScienceInstitute of Brain ScienceNagoya City University Graduate School of Medical SciencesNagoyaJapan
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWako, SaitamaJapan
| | - Takaomi C. Saido
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWako, SaitamaJapan
| | - Lisa M. Saksida
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
| | - Timothy J. Bussey
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
| | - Marco A. M. Prado
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Taylor W. Schmitz
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
- Lawson Health Research InstituteSt. Joseph's HospitalLondonOntarioCanada
| | - Vania F. Prado
- Robarts Research InstituteSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Neuroscience programSchulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
- Western Institute for NeuroscienceUniversity of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine & DentistryUniversity of Western OntarioLondonOntarioCanada
| | | |
Collapse
|
7
|
Liu G, Yang C, Wang X, Chen X, Wang Y, Le W. Oxygen metabolism abnormality and Alzheimer's disease: An update. Redox Biol 2023; 68:102955. [PMID: 37956598 PMCID: PMC10665957 DOI: 10.1016/j.redox.2023.102955] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Oxygen metabolism abnormality plays a crucial role in the pathogenesis of Alzheimer's disease (AD) via several mechanisms, including hypoxia, oxidative stress, and mitochondrial dysfunction. Hypoxia condition usually results from living in a high-altitude habitat, cardiovascular and cerebrovascular diseases, and chronic obstructive sleep apnea. Chronic hypoxia has been identified as a significant risk factor for AD, showing an aggravation of various pathological components of AD, such as amyloid β-protein (Aβ) metabolism, tau phosphorylation, mitochondrial dysfunction, and neuroinflammation. It is known that hypoxia and excessive hyperoxia can both result in oxidative stress and mitochondrial dysfunction. Oxidative stress and mitochondrial dysfunction can increase Aβ and tau phosphorylation, and Aβ and tau proteins can lead to redox imbalance, thus forming a vicious cycle and exacerbating AD pathology. Hyperbaric oxygen therapy (HBOT) is a non-invasive intervention known for its capacity to significantly enhance cerebral oxygenation levels, which can significantly attenuate Aβ aggregation, tau phosphorylation, and neuroinflammation. However, further investigation is imperative to determine the optimal oxygen pressure, duration of exposure, and frequency of HBOT sessions. In this review, we explore the prospects of oxygen metabolism in AD, with the aim of enhancing our understanding of the underlying molecular mechanisms in AD. Current research aimed at attenuating abnormalities in oxygen metabolism holds promise for providing novel therapeutic approaches for AD.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
8
|
Atlante A, Valenti D. Mitochondrial Complex I and β-Amyloid Peptide Interplay in Alzheimer's Disease: A Critical Review of New and Old Little Regarded Findings. Int J Mol Sci 2023; 24:15951. [PMID: 37958934 PMCID: PMC10650435 DOI: 10.3390/ijms242115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the main cause of dementia which is characterized by a progressive cognitive decline that severely interferes with daily activities of personal life. At a pathological level, it is characterized by the accumulation of abnormal protein structures in the brain-β-amyloid (Aβ) plaques and Tau tangles-which interfere with communication between neurons and lead to their dysfunction and death. In recent years, research on AD has highlighted the critical involvement of mitochondria-the primary energy suppliers for our cells-in the onset and progression of the disease, since mitochondrial bioenergetic deficits precede the beginning of the disease and mitochondria are very sensitive to Aβ toxicity. On the other hand, if it is true that the accumulation of Aβ in the mitochondria leads to mitochondrial malfunctions, it is otherwise proven that mitochondrial dysfunction, through the generation of reactive oxygen species, causes an increase in Aβ production, by initiating a vicious cycle: there is therefore a bidirectional relationship between Aβ aggregation and mitochondrial dysfunction. Here, we focus on the latest news-but also on neglected evidence from the past-concerning the interplay between dysfunctional mitochondrial complex I, oxidative stress, and Aβ, in order to understand how their interplay is implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | | |
Collapse
|
9
|
Guo W, Hassan LA, Chu YH, Yang XP, Wang SX, Zhu HX, Li Y. Mapping trends and hotspots of mitochondrial dysfunction in Alzheimer's disease from 2013 to 2022: a bibliometric analysis of global research. Front Neurosci 2023; 17:1199625. [PMID: 37434768 PMCID: PMC10330782 DOI: 10.3389/fnins.2023.1199625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Objective Alzheimer's disease (AD), a prevalent neurodegenerative affliction that predominantly affects the elderly population, imposes a substantial burden on not only patients but also their families and society at large. Mitochondrial dysfunction plays an important role in its pathogenesis. In this study, we conducted a bibliometric analysis of research on mitochondrial dysfunction and AD over the past 10 years, with the aim of summarizing current research hotspots and trends in this field. Methods On February 12, 2023, we searched for publications about mitochondrial dysfunction and AD in the Web of Science Core Collection database from 2013 to 2022. VOSview software, CiteSpace, SCImago, and RStudio were used to analyze and visualize countries, institutions, journals, keywords, and references. Results The number of publications on mitochondrial dysfunction and AD were on the rise until 2021 and decreased slightly in 2022. The United States ranks first in the number of publications, H-index, and intensity of international cooperation in this research. In terms of institutions, Texas Tech University in the United States has the most publications. The Journal of Alzheimer's Disease has the most publications in this field of research, while Oxidative Medicine and Cellular Longevity have the highest number of citations. Mitochondrial dysfunction is still an important direction of current research. Autophagy, mitochondrial autophagy, and neuroinflammation are new hotspots. The article from Lin MT is the most cited by analyzing references. Conclusion Research on mitochondrial dysfunction in AD is gaining significant momentum as it provides a crucial research avenue for the treatment of this debilitating condition. This study sheds light on the present research trajectory concerning the molecular mechanisms underlying mitochondrial dysfunction in AD.
Collapse
Affiliation(s)
- Wang Guo
- Clinical Medical School, Dali University, Dali, China
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| | - Liban Abdulle Hassan
- Clinical Medical School, Dali University, Dali, China
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| | - Yu-hao Chu
- Clinical Medical School, Dali University, Dali, China
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| | - Xue-ping Yang
- Clinical Medical School, Dali University, Dali, China
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| | - Sheng-xue Wang
- Clinical Medical School, Dali University, Dali, China
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| | - Han-xiao Zhu
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
10
|
López-Lluch G. Coenzyme Q-related compounds to maintain healthy mitochondria during aging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:277-308. [PMID: 37437981 DOI: 10.1016/bs.apcsb.2023.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial dysfunction is one of the main factors that affects aging progression and many age-related diseases. Accumulation of dysfunctional mitochondria can be driven by unbalanced mito/autophagy or by decrease in mitochondrial biosynthesis and turnover. Coenzyme Q is an essential component of the mitochondrial electron transport chain and a key factor in the protection of membrane and mitochondrial DNA against oxidation. Coenzyme Q levels decay during aging and this can be considered an accelerating factor in mitochondrial dysfunction and aging progression. Supplementation with coenzyme Q is successful for some tissues and organs but not for others. For this reason, the role of coenzyme Q in systemic aging is a complex picture that needs different strategies depending on the organ considered the main objective to be addressed. In this chapter we focus on the different effects of coenzyme Q and related compounds and the probable strategies to induce endogenous synthesis to maintain healthy aging.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
11
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Lazarev VF, Dutysheva EA, Kanunikov IE, Guzhova IV, Margulis BA. Protein Interactome of Amyloid-β as a Therapeutic Target. Pharmaceuticals (Basel) 2023; 16:312. [PMID: 37259455 PMCID: PMC9965366 DOI: 10.3390/ph16020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 04/12/2024] Open
Abstract
The amyloid concept of Alzheimer's disease (AD) assumes the β-amyloid peptide (Aβ) as the main pathogenic factor, which injures neural and other brain cells, causing their malfunction and death. Although Aβ has been documented to exert its cytotoxic effect in a solitary manner, there is much evidence to claim that its toxicity can be modulated by other proteins. The list of such Aβ co-factors or interactors includes tau, APOE, transthyretin, and others. These molecules interact with the peptide and affect the ability of Aβ to form oligomers or aggregates, modulating its toxicity. Thus, the list of potential substances able to reduce the harmful effects of the peptide should include ones that can prevent the pathogenic interactions by specifically binding Aβ and/or its partners. In the present review, we discuss the data on Aβ-based complexes in AD pathogenesis and on the compounds directly targeting Aβ or the destructors of its complexes with other polypeptides.
Collapse
Affiliation(s)
- Vladimir F. Lazarev
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Elizaveta A. Dutysheva
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Igor E. Kanunikov
- Biological Faculty, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Irina V. Guzhova
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Boris A. Margulis
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| |
Collapse
|