Holtman IR, Glass CK, Nott A. Interpretation of Neurodegenerative GWAS Risk Alleles in Microglia and their Interplay with Other Cell Types.
ADVANCES IN NEUROBIOLOGY 2024;
37:531-544. [PMID:
39207711 DOI:
10.1007/978-3-031-55529-9_29]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia have been implicated in numerous neurodegenerative and neuroinflammatory disorders; however, the causal contribution of this immune cell type is frequently debated. Genetic studies offer a unique vantage point in that they infer causality over a secondary consequence. Genome-wide association studies (GWASs) have identified hundreds of loci in the genome that are associated with susceptibility to neurodegenerative disorders. GWAS studies implicate microglia in the pathogenesis of Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and to a lesser degree suggest a role for microglia in vascular dementia (VaD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), and other neurodegenerative and neuropsychiatric disorders. The contribution and function of GWAS risk loci on disease progression is an ongoing field of study, in which large genomic datasets, and an extensive framework of computational tools, have proven to be crucial. Several GWAS risk loci are shared between disorders, pointing towards common pleiotropic mechanisms. In this chapter, we introduce key concepts in GWAS and post-GWAS interpretation of neurodegenerative disorders, with a focus on GWAS risk genes implicated in microglia, their interplay with other cell types and shared convergence of GWAS risk loci on microglia.
Collapse