1
|
Rybnicek J, Chen Y, Milic M, Tio ES, McLaurin J, Hohman TJ, De Jager PL, Schneider JA, Wang Y, Bennett DA, Tripathy S, Felsky D, Lambe EK. CHRNA5 links chandelier cells to severity of amyloid pathology in aging and Alzheimer's disease. Transl Psychiatry 2024; 14:83. [PMID: 38331937 PMCID: PMC10853183 DOI: 10.1038/s41398-024-02785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimer's Disease (AD). Protective and cognitive-enhancing roles for the nicotinic α5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic α5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical β-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against β-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic α5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic α5 subunit exert a neuroprotective role in aging and Alzheimer's disease centered on chandelier interneurons.
Collapse
Affiliation(s)
- Jonas Rybnicek
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yuxiao Chen
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Milos Milic
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Earvin S Tio
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie A Schneider
- Department of Pathology, Rush University, Chicago, IL, USA
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Yanling Wang
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Shreejoy Tripathy
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of OBGYN, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Valappil DK, Mini NJ, Dilna A, Nath S. Membrane interaction to intercellular spread of pathology in Alzheimer’s disease. Front Neurosci 2022; 16:936897. [PMID: 36161178 PMCID: PMC9500529 DOI: 10.3389/fnins.2022.936897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Progressive development of pathology is one of the major characteristic features of neurodegenerative diseases. Alzheimer’s disease (AD) is the most prevalent among them. Extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles are the pathological phenotypes of AD. However, cellular and animal studies implicate tau as a secondary pathology in developing AD while Aβ aggregates is considered as a trigger point. Interaction of Aβ peptides with plasma membrane (PM) seems to be a promising site of involvement in the events that lead to AD. Aβ binding to the lipid membranes initiates formation of oligomers of Aβ species, and these oligomers are known as primary toxic agents for neuronal toxicities. Once initiated, neuropathological toxicities spread in a “prion-like” fashion probably through the mechanism of intercellular transfer of pathogenic aggregates. In the last two decades, several studies have demonstrated neuron-to-neuron transfer of neurodegenerative proteins including Aβ and tau via exosomes and tunneling nanotubes (TNTs), the two modes of long-range intercellular transfer. Emerging pieces of evidence indicate that molecular pathways related to the biogenesis of exosomes and TNTs interface with endo-lysosomal pathways and cellular signaling in connection to vesicle recycling-imposed PM and actin remodulation. In this review, we discuss interactions of Aβ aggregates at the membrane level and its implications in intercellular spread of pathogenic aggregates. Furthermore, we hypothesize how spread of pathogenic aggregates contributes to complex molecular events that could regulate pathological and synaptic changes related to AD.
Collapse
Affiliation(s)
| | | | | | - Sangeeta Nath
- *Correspondence: Sangeeta Nath, ; orcid.org/0000-0003-0050-0606
| |
Collapse
|
3
|
Morrone CD, Lai AY, Bishay J, Hill ME, McLaurin J. Parvalbumin neuroplasticity compensates for somatostatin impairment, maintaining cognitive function in Alzheimer's disease. Transl Neurodegener 2022; 11:26. [PMID: 35501886 PMCID: PMC9063209 DOI: 10.1186/s40035-022-00300-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patient-to-patient variability in the degree to which β-amyloid, tau and neurodegeneration impact cognitive decline in Alzheimer's disease (AD) complicates disease modeling and treatment. However, the underlying mechanisms leading to cognitive resilience are not resolved. We hypothesize that the variability in cognitive function and loss relates to neuronal resilience of the hippocampal GABAergic network. METHODS We compared TgF344-AD and non-transgenic littermate rats at 9, 12, and 15 months of age. Neurons, β-amyloid plaques and tau inclusions were quantified in hippocampus and entorhinal cortex. Somatostatin (SST) and parvalbumin (PVB) interneurons were traced to examine hippocampal neuroplasticity and cognition was tested in the Barnes maze. RESULTS The 9-month-old TgF344-AD rats exhibited loss of neurons in the entorhinal cortex and hippocampus. Hippocampal neuronal compensation was observed in 12-month TgF344-AD rats, with upregulation of GABAergic interneuronal marker. By 15 months, the TgF344-AD rats had robust loss of excitatory and inhibitory neurons. β-Amyloid and tau pathology accumulated continuously across age. SST interneurons exhibited tau inclusions and atrophy from 9 months, whereas PVB interneurons were resilient until 15 months. The hippocampal PVB circuit underwent neuroplastic reorganization with increased dendritic length and complexity in 9- and 12-month-old TgF344-AD rats, before atrophy at 15 months. Strikingly, 12-month-old TgF344-AD rats were resilient in executive function and cognitive flexibility. Cognitive resilience in TgF344-AD rats occurred as maintenance of function between 9 and 12 months of age despite progressive spatial memory deficits, and was sustained by PVB neuroplasticity. CONCLUSIONS Our results demonstrate the inherent neuronal processes leading to cognitive maintenance, and describe a novel finding of endogenous cognitive resilience in an AD model.
Collapse
Affiliation(s)
| | - Aaron Yenhsin Lai
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Jossana Bishay
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
4
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by a deterioration of neuronal connectivity. The pathological accumulation of tau in neurons is one of the hallmarks of AD and has been connected to the loss of dendritic spines of pyramidal cells, which are the major targets of cortical excitatory synapses and key elements in memory storage. However, the detailed mechanisms underlying the loss of dendritic spines in individuals with AD are still unclear. Here, we used graph-theory approaches to compare the distribution of dendritic spines from neurons with and without tau pathology of AD individuals. We found that the presence of tau pathology determines the loss of dendritic spines in clusters, ruling out alternative models where spine loss occurs at random locations. Since memory storage has been associated with synaptic clusters, the present results provide a new insight into the mechanisms by which tau drives synaptic damage in AD, paving the way to memory deficits through alterations of spine organization.
Collapse
|
5
|
Montero-Crespo M, Domínguez-Álvaro M, Alonso-Nanclares L, DeFelipe J, Blazquez-Llorca L. Three-dimensional analysis of synaptic organization in the hippocampal CA1 field in Alzheimer's disease. Brain 2021; 144:553-573. [PMID: 33324984 PMCID: PMC8240746 DOI: 10.1093/brain/awaa406] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia, characterized by a persistent and progressive impairment of cognitive functions. Alzheimer's disease is typically associated with extracellular deposits of amyloid-β peptide and accumulation of abnormally phosphorylated tau protein inside neurons (amyloid-β and neurofibrillary pathologies). It has been proposed that these pathologies cause neuronal degeneration and synaptic alterations, which are thought to constitute the major neurobiological basis of cognitive dysfunction in Alzheimer's disease. The hippocampal formation is especially vulnerable in the early stages of Alzheimer's disease. However, the vast majority of electron microscopy studies have been performed in animal models. In the present study, we performed an extensive 3D study of the neuropil to investigate the synaptic organization in the stratum pyramidale and radiatum in the CA1 field of Alzheimer's disease cases with different stages of the disease, using focused ion beam/scanning electron microscopy (FIB/SEM). In cases with early stages of Alzheimer's disease, the synapse morphology looks normal and we observed no significant differences between control and Alzheimer's disease cases regarding the synaptic density, the ratio of excitatory and inhibitory synapses, or the spatial distribution of synapses. However, differences in the distribution of postsynaptic targets and synaptic shapes were found. Furthermore, a lower proportion of larger excitatory synapses in both strata were found in Alzheimer's disease cases. Individuals in late stages of the disease suffered the most severe synaptic alterations, including a decrease in synaptic density and morphological alterations of the remaining synapses. Since Alzheimer's disease cases show cortical atrophy, our data indicate a reduction in the total number (but not the density) of synapses at early stages of the disease, with this reduction being much more accentuated in subjects with late stages of Alzheimer's disease. The observed synaptic alterations may represent a structural basis for the progressive learning and memory dysfunctions seen in Alzheimer's disease cases.
Collapse
Affiliation(s)
- Marta Montero-Crespo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, 28002 Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Marta Domínguez-Álvaro
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Lidia Alonso-Nanclares
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, 28002 Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, c/Valderrebollo, 5, 28031 Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, 28002 Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, c/Valderrebollo, 5, 28031 Madrid, Spain
| | - Lidia Blazquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, c/Valderrebollo, 5, 28031 Madrid, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), c/Juan del Rosal, 10, 28040 Madrid, Spain
- Sección Departamental de Anatomía y Embriología (Veterinaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| |
Collapse
|
6
|
Furcila D, Domínguez-Álvaro M, DeFelipe J, Alonso-Nanclares L. Subregional Density of Neurons, Neurofibrillary Tangles and Amyloid Plaques in the Hippocampus of Patients With Alzheimer's Disease. Front Neuroanat 2019; 13:99. [PMID: 31920568 PMCID: PMC6930895 DOI: 10.3389/fnana.2019.00099] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
A variety of anatomical alterations have been reported in the hippocampal formation of patients with Alzheimer's Disease (AD) and these alterations have been correlated with cognitive symptoms in the early stages of the disease. Major hallmarks in AD are the presence of paired helical filaments of tau protein (PHFTau) within neurons, also known as neurofibrillary tangles (NFTs), and aggregates of amyloid-β protein (Aβ) which form plaques in the extracellular space. Nevertheless, how the density of plaques and NFTs relate to the severity of cell loss and cognitive decline is not yet clear. The aim of the present study was to further examine the possible relationship of both Aβ plaques and NFTs with neuronal loss in several hippocampal fields (DG, CA3, CA1, and subiculum) of 11 demented AD patients. For this purpose, using stereological techniques, we compared neuronal densities (Nissl-stained, and immunoreactive neurons for NeuN) with: (i) numbers of neurons immunostained for two isoforms of PHFTau (PHFTau-AT8 and PHFTau-pS396); and (ii) number of Aβ plaques. We found that CA1 showed the highest number of NFTs and Aβ plaques, whereas DG and CA3 displayed the lowest number of these markers. Furthermore, AD patients showed a variable neuronal loss in CA1 due to tangle-related cell death, which seems to correlate with the presence of extracellular tangles.
Collapse
Affiliation(s)
- Diana Furcila
- Cajal Laboratory of Cortical Circuits, Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Network Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Domínguez-Álvaro
- Cajal Laboratory of Cortical Circuits, Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Cajal Laboratory of Cortical Circuits, Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Network Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Cajal Institute (CSIC), Madrid, Spain
| | - Lidia Alonso-Nanclares
- Cajal Laboratory of Cortical Circuits, Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Network Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Cajal Institute (CSIC), Madrid, Spain
| |
Collapse
|
7
|
Luengo-Sanchez S, Fernaud-Espinosa I, Bielza C, Benavides-Piccione R, Larrañaga P, DeFelipe J. 3D morphology-based clustering and simulation of human pyramidal cell dendritic spines. PLoS Comput Biol 2018; 14:e1006221. [PMID: 29897896 PMCID: PMC6060563 DOI: 10.1371/journal.pcbi.1006221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/24/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
The dendritic spines of pyramidal neurons are the targets of most excitatory
synapses in the cerebral cortex. They have a wide variety of morphologies, and
their morphology appears to be critical from the functional point of view. To
further characterize dendritic spine geometry, we used in this paper over 7,000
individually 3D reconstructed dendritic spines from human cortical pyramidal
neurons to group dendritic spines using model-based clustering. This approach
uncovered six separate groups of human dendritic spines. To better understand
the differences between these groups, the discriminative characteristics of each
group were identified as a set of rules. Model-based clustering was also useful
for simulating accurate 3D virtual representations of spines that matched the
morphological definitions of each cluster. This mathematical approach could
provide a useful tool for theoretical predictions on the functional features of
human pyramidal neurons based on the morphology of dendritic spines. Dendritic spines of pyramidal neurons are the targets of most excitatory synapses
in the cerebral cortex and their morphology appears to be critical from the
functional point of view. Thus, characterizing this morphology is necessary to
link structural and functional spine data and thus interpret and make them more
meaningful. We have used a large database of more than 7,000 individually 3D
reconstructed dendritic spines from human cortical pyramidal neurons that is
first transformed into a set of 54 quantitative features characterizing spine
geometry mathematically. The resulting data set is grouped into spine clusters
based on a probabilistic model with Gaussian finite mixtures. We uncover six
groups of spines whose discriminative characteristics are identified with
machine learning methods as a set of rules. The clustering model allows us to
simulate accurate spines from human pyramidal neurons to suggest new hypotheses
of the functional organization of these cells.
Collapse
Affiliation(s)
- Sergio Luengo-Sanchez
- Computational Intelligence Group, Departamento de Inteligencia
Artificial, Escuela Técnica Superior de Ingenieros Informáticos, Universidad
Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
- * E-mail:
| | - Isabel Fernaud-Espinosa
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología
Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo, Madrid,
Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades
Neurodegenerativas, Instituto de Salud Carlos III, Madrid,
Spain
| | - Concha Bielza
- Computational Intelligence Group, Departamento de Inteligencia
Artificial, Escuela Técnica Superior de Ingenieros Informáticos, Universidad
Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología
Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo, Madrid,
Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades
Neurodegenerativas, Instituto de Salud Carlos III, Madrid,
Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal
(CSIC), Madrid, Spain
| | - Pedro Larrañaga
- Computational Intelligence Group, Departamento de Inteligencia
Artificial, Escuela Técnica Superior de Ingenieros Informáticos, Universidad
Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología
Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo, Madrid,
Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades
Neurodegenerativas, Instituto de Salud Carlos III, Madrid,
Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal
(CSIC), Madrid, Spain
| |
Collapse
|
8
|
Furcila D, DeFelipe J, Alonso-Nanclares L. A Study of Amyloid-β and Phosphotau in Plaques and Neurons in the Hippocampus of Alzheimer's Disease Patients. J Alzheimers Dis 2018; 64:417-435. [PMID: 29914033 PMCID: PMC6027945 DOI: 10.3233/jad-180173] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
The main pathological hallmarks in Alzheimer's disease (AD) are the presence of extracellular amyloid plaques, primarily consisting of amyloid-β (Aβ) peptide, and the accumulation of paired helical filaments of hyperphosphorylated tau protein (PHF-Tau) within neurons. Since CA1 is one of the most affected regions in AD, mainly at early stages, we have performed a detailed analysis of the CA1 region from 11 AD patients (demented and clinically similar; Braak stages IV-VI) to better understand the possible relationship between the presence and distribution of different neurochemical types of Aβ plaques and PHF-Tau immunoreactive (- ir) neurons. Hence, we have examined hippocampal sections in confocal microscopy images from double and triple-immunostained sections, to study labeled plaques and PHF-Tau-ir neurons using specific software tools. There are four main findings in the present study. First, the pyramidal layer of proximal CA1 (close to CA2) contains the smallest number of both plaques and PHF-Tau-ir neurons. Second, a large proportion of Aβ-ir plaques were also characterized by the presence of PHF-Tau-ir. Third, all plaques containing one of the two PHF-Tau isoforms also express the other isoform, that is, if a plaque contains PHFpS396, it also contains PHFAT8, and vice versa. Fourth, the coexpression study of both PHF-Tau isoforms in CA1 neurons revealed that most of the labeled neurons express only PHFpS396. Our findings further support the idea that AD is not a unique entity even within the same neuropathological stage, since the microanatomical/neurochemical changes that occur in the hippocampus greatly vary from one patient to another.
Collapse
Affiliation(s)
- Diana Furcila
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Madrid, Spain
| |
Collapse
|
9
|
Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons. PLoS One 2017; 12:e0180400. [PMID: 28662210 PMCID: PMC5491215 DOI: 10.1371/journal.pone.0180400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 06/15/2017] [Indexed: 01/08/2023] Open
Abstract
We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley’s K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains.
Collapse
|
10
|
Antón-Fernández A, Aparicio-Torres G, Tapia S, DeFelipe J, Muñoz A. Morphometric alterations of Golgi apparatus in Alzheimer's disease are related to tau hyperphosphorylation. Neurobiol Dis 2016; 97:11-23. [PMID: 27793637 PMCID: PMC5176038 DOI: 10.1016/j.nbd.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 12/19/2022] Open
Abstract
The Golgi apparatus (GA) is a highly dynamic organelle, which is mainly involved in the post-translational processing and targeting of cellular proteins and which undergoes significant morphological changes in response to different physiological and pathological conditions. In the present study, we have analyzed the possible alterations of GA in neurons from the temporal neocortex and hippocampus of Alzheimer's disease (AD) patients, using double immunofluorescence techniques, confocal microscopy and 3D quantification techniques. We found that in AD patients, the percentage of temporal neocortical and CA1 hippocampal pyramidal neurons with a highly altered GA is much higher (approximately 65%) in neurons with neurofibrillary tangles (NFT) than in NFT-free neurons (approximately 6%). Quantitative analysis of the surface area and volume of GA elements in neurons revealed that, compared with NFT-free neurons, NFT-bearing neurons had a reduction of approximately one half in neocortical neurons and one third in CA1 neurons. In both regions, neurons with a pre-tangle stage of phospho-tau accumulation had surface area and GA volume values that were intermediate, that is, between those of NFT-free and NFT-bearing neurons. These findings support the idea that the progressive accumulation of phospho-tau is associated with structural alterations of the GA including fragmentation and a decrease in the surface area and volume of GA elements. These alterations likely impact the processing and trafficking of proteins, which might contribute to neuronal dysfunction in AD.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Guillermo Aparicio-Torres
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Silvia Tapia
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | - Alberto Muñoz
- Instituto Cajal, CSIC, Madrid, Spain; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain; Department of Cell Biology, Complutense University, Madrid, Spain.
| |
Collapse
|
11
|
Llorens-Martín M, Blazquez-Llorca L, Benavides-Piccione R, Rabano A, Hernandez F, Avila J, DeFelipe J. Selective alterations of neurons and circuits related to early memory loss in Alzheimer's disease. Front Neuroanat 2014; 8:38. [PMID: 24904307 PMCID: PMC4034155 DOI: 10.3389/fnana.2014.00038] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/30/2014] [Indexed: 12/17/2022] Open
Abstract
A progressive loss of episodic memory is a well-known clinical symptom that characterizes Alzheimer’s disease (AD). The beginning of this loss of memory has been associated with the very early, pathological accumulation of tau and neuronal degeneration observed in the entorhinal cortex (EC). Tau-related pathology is thought to then spread progressively to the hippocampal formation and other brain areas as the disease progresses. The major cortical afferent source of the hippocampus and dentate gyrus is the EC through the perforant pathway. At least two main circuits participate in the connection between EC and the hippocampus; one originating in layer II and the other in layer III of the EC giving rise to the classical trisynaptic (ECII → dentate gyrus → CA3 → CA1) and monosynaptic (ECIII → CA1) circuits. Thus, the study of the early pathological changes in these circuits is of great interest. In this review, we will discuss mainly the alterations of the granule cell neurons of the dentate gyrus and the atrophy of CA1 pyramidal neurons that occur in AD in relation to the possible differential alterations of these two main circuits.
Collapse
Affiliation(s)
- Maria Llorens-Martín
- Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Madrid, Spain
| | - Lidia Blazquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain ; Instituto Cajal, Consejo Superior de Investigaciones Cientificas Madrid, Spain
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain ; Instituto Cajal, Consejo Superior de Investigaciones Cientificas Madrid, Spain ; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas Madrid, Spain
| | - Alberto Rabano
- Departamento de Neuropatología y Banco de Tejidos, Fundación CIEN, Instituto de Salud Carlos III Madrid, Spain
| | - Felix Hernandez
- Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Madrid, Spain
| | - Jesus Avila
- Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain ; Instituto Cajal, Consejo Superior de Investigaciones Cientificas Madrid, Spain ; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas Madrid, Spain
| |
Collapse
|
12
|
Merino-Serrais P, Benavides-Piccione R, Blazquez-Llorca L, Kastanauskaite A, Rábano A, Avila J, DeFelipe J. The influence of phospho-τ on dendritic spines of cortical pyramidal neurons in patients with Alzheimer's disease. ACTA ACUST UNITED AC 2013; 136:1913-28. [PMID: 23715095 PMCID: PMC3673457 DOI: 10.1093/brain/awt088] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer’s disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer’s disease is likely to depend on the relative number of neurons that have well developed tangles.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo S/N, 28223 Pozuelo de Alarcón, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Benavides-Piccione R, Fernaud-Espinosa I, Robles V, Yuste R, DeFelipe J. Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. ACTA ACUST UNITED AC 2012; 23:1798-810. [PMID: 22710613 DOI: 10.1093/cercor/bhs154] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dendritic spines of pyramidal neurons are targets of most excitatory synapses in the cerebral cortex. Recent evidence suggests that the morphology of the dendritic spine could determine its synaptic strength and learning rules. However, unfortunately, there are scant data available regarding the detailed morphology of these structures for the human cerebral cortex. In the present study, we analyzed over 8900 individual dendritic spines that were completely 3D reconstructed along the length of apical and basal dendrites of layer III pyramidal neurons in the cingulate cortex of 2 male humans (aged 40 and 85 years old), using intracellular injections of Lucifer Yellow in fixed tissue. We assembled a large, quantitative database, which revealed a major reduction in spine densities in the aged case. Specifically, small and short spines of basal dendrites and long spines of apical dendrites were lost, regardless of the distance from the soma. Given the age difference between the cases, our results suggest selective alterations in spines with aging in humans and indicate that the spine volume and length are regulated by different biological mechanisms.
Collapse
|
14
|
Wang X, Sun QQ. Characterization of axo-axonic synapses in the piriform cortex of Mus musculus. J Comp Neurol 2012; 520:832-47. [PMID: 22020781 DOI: 10.1002/cne.22792] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previous anatomical and physiological studies have established major glutamatergic and GABAergic neuronal subtypes within the piriform cortical circuits. However, quantitative information regarding axo-axonic inhibitory synapses mediated by chandelier cells across major cortical subdivisions of piriform cortex is lacking. Therefore, we examined the properties of these synapses across the entire piriform cortex. Our results show the following. 1) γ-Aminobutyric acid membrane transporter 1-positive varicosities, whose appearance resembles chandelier cartridges, are found around the initial segments of axons of glutamatergic cells across layers II and III. 2) Both the density of axo-axonic cartridges and the degree of γ-aminobutyric acid membrane transporter 1 innervation in each axo-axonic synapse are significantly higher in the piriform cortex than in the neocortex. 3) Glutamate decarboxylase 67, vesicular GABA transporter, and parvalbumin, but not calbindin, are colocalized with the presynaptic varicosities, whereas gephyrin, Na-K-2Cl cotransporter 1, and GABA(A) receptor α1 subunit, but not K-Cl cotransporter 2, are colocalized at the presumed postsynaptic sites. 4) The axo-axonic cartridges innervate the majority of excitatory neurons and are distributed more frequently in putative centrifugal cells and posterior piriform cortex. We further describe the morphology of chandelier cells by using parvalbumin-immunoreactivity and single-cell labeling. In summary, our results demonstrate that a small population of chandelier cells mediates abundant axo-axonic synapses across the entire piriform cortex. Because of the critical location of these inhibitory synapses in relation to action potential regulation, our results highlight a critical role of axo-axonic synapses in regulating information flow and olfactory-related oscillations within the piriform cortex in vivo.
Collapse
Affiliation(s)
- Xinjun Wang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|