1
|
Vigorito M, Chang SL. Alcohol use and the pain system. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12005. [PMID: 38389900 PMCID: PMC10880763 DOI: 10.3389/adar.2024.12005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The World Health Organization's epidemiological data from 2016 revealed that while 57% of the global population aged 15 years or older had abstained from drinking alcohol in the previous year, more than half of the population in the Americas, Europe, and Western Pacific consumed alcohol. The spectrum of alcohol use behavior is broad: low-risk use (sensible and in moderation), at-risk use (e.g., binge drinking), harmful use (misuse) and dependence (alcoholism; addiction; alcohol use disorder). The at-risk use and misuse of alcohol is associated with the transition to dependence, as well as many damaging health outcomes and preventable causes of premature death. Recent conceptualizations of alcohol dependence posit that the subjective experience of pain may be a significant contributing factor in the transition across the spectrum of alcohol use behavior. This narrative review summarizes the effects of alcohol at all levels of the pain system. The pain system includes nociceptors as sensory indicators of potentially dangerous stimuli and tissue damage (nociception), spinal circuits mediating defensive reflexes, and most importantly, the supraspinal circuits mediating nocifensive behaviors and the perception of pain. Although the functional importance of pain is to protect from injury and further or future damage, chronic pain may emerge despite the recovery from, and absence of, biological damage (i.e., in the absence of nociception). Like other biological perceptual systems, pain is a construction contingent on sensory information and a history of individual experiences (i.e., learning and memory). Neuroadaptations and brain plasticity underlying learning and memory and other basic physiological functions can also result in pathological conditions such as chronic pain and addiction. Moreover, the negative affective/emotional aspect of pain perception provides embodied and motivational components that may play a substantial role in the transition from alcohol use to dependence.
Collapse
Affiliation(s)
- Michael Vigorito
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
2
|
Kalinowski D, Bogus-Nowakowska K, Kozłowska A, Równiak M. The Co-Expression Pattern of Calcium-Binding Proteins with γ-Aminobutyric Acid and Glutamate Transporters in the Amygdala of the Guinea Pig: Evidence for Glutamatergic Subpopulations. Int J Mol Sci 2023; 24:15025. [PMID: 37834473 PMCID: PMC10573686 DOI: 10.3390/ijms241915025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The amygdala has large populations of neurons utilizing specific calcium-binding proteins such as parvalbumin (PV), calbindin (CB), or calretinin (CR). They are considered specialized subsets of γ-aminobutyric acid (GABA) interneurons; however, many of these cells are devoid of GABA or glutamate decarboxylase. The neurotransmitters used by GABA-immunonegative cells are still unknown, but it is suggested that a part may use glutamate. Thus, this study investigates in the amygdala of the guinea pig relationships between PV, CB, or CR-containing cells and GABA transporter (VGAT) or glutamate transporter type 2 (VGLUT2), markers of GABAergic and glutamatergic neurons, respectively. The results show that although most neurons using PV, CB, and CR co-expressed VGAT, each of these populations also had a fraction of VGLUT2 co-expressing cells. For almost all neurons using PV (~90%) co-expressed VGAT, while ~1.5% of them had VGLUT2. The proportion of neurons using CB and VGAT was smaller than that for PV (~80%), while the percentage of cells with VGLUT2 was larger (~4.5%). Finally, only half of the neurons using CR (~53%) co-expressed VGAT, while ~3.5% of them had VGLUT2. In conclusion, the populations of neurons co-expressing PV, CB, and CR are in the amygdala, primarily GABAergic. However, at least a fraction of neurons in each of them co-express VGLUT2, suggesting that these cells may use glutamate. Moreover, the number of PV-, CB-, and CR-containing neurons that may use glutamate is probably larger as they can utilize VGLUT1 or VGLUT3, which are also present in the amygdala.
Collapse
Affiliation(s)
- Daniel Kalinowski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| |
Collapse
|
3
|
Kirstein CF, Güntürkün O, Ocklenburg S. Ultra-high field imaging of the amygdala - A narrative review. Neurosci Biobehav Rev 2023; 152:105245. [PMID: 37230235 DOI: 10.1016/j.neubiorev.2023.105245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The amygdala is an evolutionarily conserved core structure in emotion processing and one of the key regions of interest in affective neuroscience. Results of neuroimaging studies focusing on the amygdala are, however, often heterogeneous since it is composed of functionally and neuroanatomically distinct subnuclei. Fortunately, ultra-high-field imaging offers several advances for amygdala research, most importantly more accurate representation of functional and structural properties of subnuclei and their connectivity. Most clinical studies using ultra-high-field imaging focused on major depression, suggesting either overall rightward amygdala atrophy or distinct bilateral patterns of subnuclear atrophy and hypertrophy. Other pathologies are only sparsely covered. Connectivity analyses identified widespread networks for learning and memory, stimulus processing, cognition, and social processes. They provide evidence for distinct roles of the central, basal, and basolateral nucleus, and the extended amygdala in fear and emotion processing. Amid largely sparse and ambiguous evidence, we propose theoretical and methodological considerations that will guide ultra-high-field imaging in comprehensive investigations to help disentangle the ambiguity of the amygdala's function, structure, connectivity, and clinical relevance.
Collapse
Affiliation(s)
- Cedric Fabian Kirstein
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany.
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr-University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany; Department of Psychology, MSH Medical School Hamburg, Germany; Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Germany
| |
Collapse
|
4
|
Bertram T, Hoffmann Ayala D, Huber M, Brandl F, Starke G, Sorg C, Mulej Bratec S. Human threat circuits: Threats of pain, aggressive conspecific, and predator elicit distinct BOLD activations in the amygdala and hypothalamus. Front Psychiatry 2023; 13:1063238. [PMID: 36733415 PMCID: PMC9887727 DOI: 10.3389/fpsyt.2022.1063238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Threat processing, enabled by threat circuits, is supported by a remarkably conserved neural architecture across mammals. Threatening stimuli relevant for most species include the threat of being attacked by a predator or an aggressive conspecific and the threat of pain. Extensive studies in rodents have associated the threats of pain, predator attack and aggressive conspecific attack with distinct neural circuits in subregions of the amygdala, the hypothalamus and the periaqueductal gray. Bearing in mind the considerable conservation of both the anatomy of these regions and defensive behaviors across mammalian species, we hypothesized that distinct brain activity corresponding to the threats of pain, predator attack and aggressive conspecific attack would also exist in human subcortical brain regions. Methods Forty healthy female subjects underwent fMRI scanning during aversive classical conditioning. In close analogy to rodent studies, threat stimuli consisted of painful electric shocks, a short video clip of an attacking bear and a short video clip of an attacking man. Threat processing was conceptualized as the expectation of the aversive stimulus during the presentation of the conditioned stimulus. Results Our results demonstrate differential brain activations in the left and right amygdala as well as in the left hypothalamus for the threats of pain, predator attack and aggressive conspecific attack, for the first time showing distinct threat-related brain activity within the human subcortical brain. Specifically, the threat of pain showed an increase of activity in the left and right amygdala and the left hypothalamus compared to the threat of conspecific attack (pain > conspecific), and increased activity in the left amygdala compared to the threat of predator attack (pain > predator). Threat of conspecific attack revealed heightened activity in the right amygdala, both in comparison to threat of pain (conspecific > pain) and threat of predator attack (conspecific > predator). Finally, for the condition threat of predator attack we found increased activity in the bilateral amygdala and the hypothalamus when compared to threat of conspecific attack (predator > conspecific). No significant clusters were found for the contrast predator attack > pain. Conclusion Results suggest that threat type-specific circuits identified in rodents might be conserved in the human brain.
Collapse
Affiliation(s)
- Teresa Bertram
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Hoffmann Ayala
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, Klinikum Großhadern, Ludwig-Maximilians-University, Munich, Germany
| | - Maria Huber
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Georg Starke
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- College of Humanities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christian Sorg
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Satja Mulej Bratec
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychology, Faculty of Arts, University of Maribor, Maribor, Slovenia
| |
Collapse
|
5
|
Vandenbulcke M, Van de Vliet L, Sun J, Huang YA, Van Den Bossche MJA, Sunaert S, Peeters R, Zhu Q, Vanduffel W, de Gelder B, De Winter FL, Van den Stock J. A paleo-neurologic investigation of the social brain hypothesis in frontotemporal dementia. Cereb Cortex 2023; 33:622-633. [PMID: 35253853 DOI: 10.1093/cercor/bhac089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/03/2023] Open
Abstract
The social brain hypothesis posits that a disproportionate encephalization in primates enabled to adapt behavior to a social context. Also, it has been proposed that phylogenetically recent brain areas are disproportionally affected by neurodegeneration. Using structural and functional magnetic resonance imaging, the present study investigates brain-behavior associations and neural integrity of hyperspecialized and domain-general cortical social brain areas in behavioral variant frontotemporal dementia (bvFTD). The results revealed that both structure and function of hyperspecialized social areas in the middle portion of the superior temporal sulcus (STS) are compromised in bvFTD, while no deterioration was observed in domain general social areas in the posterior STS. While the structural findings adhered to an anterior-posterior gradient, the functional group differences only occurred in the hyperspecialized locations. Activity in specialized regions was associated with structural integrity of the amygdala and with social deficits in bvFTD. In conclusion, the results are in line with the paleo-neurology hypothesis positing that neurodegeneration primarily hits cortical areas showing increased specialization, but also with the compatible alternative explanation that anterior STS regions degenerate earlier, based on stronger connections to and trans-neuronal spreading from regions affected early in bvFTD.
Collapse
Affiliation(s)
- Mathieu Vandenbulcke
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Laura Van de Vliet
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Jiaze Sun
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Yun-An Huang
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Maarten J A Van Den Bossche
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Ron Peeters
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands.,Department of Computer Science, University College London, London WC1E 6BT, UK
| | - François-Laurent De Winter
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Jan Van den Stock
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
6
|
Structural connectivity of the ANT region based on human ex-vivo and HCP data. Relevance for DBS in ANT for epilepsy. Neuroimage 2022; 262:119551. [DOI: 10.1016/j.neuroimage.2022.119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
|
7
|
Ocklenburg S, Peterburs J, Mundorf A. Hemispheric asymmetries in the amygdala: a comparative primer. Prog Neurobiol 2022; 214:102283. [DOI: 10.1016/j.pneurobio.2022.102283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
8
|
Równiak M, Bogus‐Nowakowska K, Kalinowski D, Kozłowska A. The evolutionary trajectories of the individual amygdala nuclei in the common shrew, guinea pig, rabbit, fox and pig: A consequence of embryological fate and mosaic-like evolution. J Anat 2022; 240:489-502. [PMID: 34648181 PMCID: PMC8819052 DOI: 10.1111/joa.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
The amygdala primarily evolved as a danger detector that regulates emotional behaviours and learning. However, it is also engaged in stress responses as well as olfactory/pheromonal and reproductive functions. All of these functions are processed by a set of nuclei which are derived from different telencephalic sources (pallial and subpallial) and have a unique cellular structure and specific connections. It is unclear how these individual anatomical and functional units evolved to fit the amygdala to the specific needs of various mammals. Thus, this study provides quantitative data regarding volumes, neuron density and neuron numbers in the main amygdala nuclei of the common shrew, guinea pig, rabbit, fox and pig - species from across the mammalian phylogeny which differ in brain complexity and ecology. The results show that the volume of the amygdala and its individual nuclei scale with negative allometry relative to brain mass (an allometric coefficient below one). However, in relation to the whole amygdala volume, volumes and volumetric percentages of the lateral (LA) and basomedial (BM) nuclei scale with positive allometry, for the medial (ME) and lateral olfactory tract (NLOT) nuclei these parameters scale with negative allometry while the values of these parameters for the basolateral (BL), central (CE) and cortical (CO) nuclei scale with isometry. Moreover, density of neurons scales with strong negative allometry relative to both brain mass and amygdala volume with values of allometric coefficient below zero across studied species. This value for BL is significantly lower than that for the whole amygdala, for ME it is significantly higher while values for NLOT, CE, CO, LA and BM are quite similar to the value for whole amygdala. Finally, neuron numbers in the whole amygdala and its individual nuclei scale with negative allometry in relation to brain mass. However, in relation to the number of neurons in the whole amygdala, neuron numbers and percentages of neurons for LA and BM scale with positive allometry, for BL and NLOT they scale with negative allometry while the values of these parameters for CE, CO and ME scale with isometry. In conclusion, all of these results indicate that each of the nuclei studied displays a different and unique pattern of evolution in relation to brain mass or the whole amygdala volume. These patterns do not match with the various classical concepts of amygdala parcellation; however, in some way, they reflect diversity revealed by the expression of homeobox genes in various embryological studies.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Krystyna Bogus‐Nowakowska
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Daniel Kalinowski
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Anna Kozłowska
- Department of Human Physiology and PathophysiologySchool of MedicineUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
9
|
Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala. Metabolites 2021; 11:metabo11120837. [PMID: 34940594 PMCID: PMC8708157 DOI: 10.3390/metabo11120837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Body energy and metabolic homeostasis are exquisitely controlled by multiple, often overlapping regulatory mechanisms, which permit the tight adjustment between fuel reserves, internal needs, and environmental (e.g., nutritional) conditions. As such, this function is sensitive to and closely connected with other relevant bodily systems, including reproduction and gonadal function. The aim of this mini-review article is to summarize the most salient experimental data supporting a role of the amygdala as a key brain region for emotional learning and behavior, including reward processing, in the physiological control of feeding and energy balance. In particular, a major focus will be placed on the putative interplay between reproductive signals and amygdala pathways, as it pertains to the control of metabolism, as complementary, extrahypothalamic circuit for the integral control of energy balance and gonadal function.
Collapse
|
10
|
Rodríguez-Moldes I, Quintana-Urzainqui I, Santos-Durán GN, Ferreiro-Galve S, Pereira-Guldrís S, Candás M, Mazan S, Candal E. Identifying Amygdala-Like Territories in Scyliorhinus canicula (Chondrichthyan): Evidence for a Pallial Amygdala. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:283-304. [PMID: 34662880 DOI: 10.1159/000519221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
To identify the putative amygdalar complex in cartilaginous fishes, our first step was to obtain evidence that supports the existence of a pallial amygdala in the catshark Scyliorhinus canicula, at present the prevailing chondrichthyan model in comparative neurobiology and developmental biology. To this end, we analyzed the organization of the lateral walls of the telencephalic hemispheres of adults, juveniles, and early prehatching embryos by immunohistochemistry against tyrosine hydroxylase (TH), somatostatin (SOM), Pax6, serotonin (5HT), substance P (SP), and Met-enkephalin (MetEnk), calbindin-28k (CB), and calretinin (CR), and by in situ hybridization against regulatory genes such as Tbr1, Lhx9, Emx1, and Dlx2. Our data were integrated with those available from the literature related to the secondary olfactory projections in this shark species. We have characterized two possible amygdalar territories. One, which may represent a ventropallial component, was identified by its chemical signature (moderate density of Pax6-ir cells, scarce TH-ir and SOM-ir cells, and absence of CR-ir and CB-ir cells) and gene expressions (Tbr1 and Lhx9 expressions in an Emx1 negative domain, as the ventral pallium of amniotes). It is perhaps comparable to the lateral amygdala of amphibians and the pallial amygdala of teleosts. The second was a territory related to the pallial-subpallial boundary with abundant Pax6-ir and CR-ir cells, and 5HT-ir, SP-ir, and MetEnk-ir fibers capping dorsally the area superficialis basalis. This olfactory-related region at the neighborhood of the pallial-subpallial boundary may represent a subpallial amygdala subdivision that possibly contains migrated cells of ventropallial origin.
Collapse
Affiliation(s)
- Isabel Rodríguez-Moldes
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Idoia Quintana-Urzainqui
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gabriel Nicolás Santos-Durán
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Susana Ferreiro-Galve
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Santiago Pereira-Guldrís
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Candás
- REBUSC-Marine Biology Station of A Graña, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sylvie Mazan
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls, France
| | - Eva Candal
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Zeng Y, Tao F, Cui Z, Wu L, Xu J, Dong W, Liu C, Yang Z, Qin S. Dynamic integration and segregation of amygdala subregional functional circuits linking to physiological arousal. Neuroimage 2021; 238:118224. [PMID: 34087364 DOI: 10.1016/j.neuroimage.2021.118224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/23/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022] Open
Abstract
The dynamical organization of brain networks is essential to support human cognition and emotion for rapid adaption to ever-changing environment. As the core nodes of emotion-related brain circuitry, the basolateral amygdala (BLA) and centromedial amygdala (CMA) as two major amygdalar nuclei, are recognized to play distinct roles in affective functions and internal states, via their unique connections with cortical and subcortical structures in rodents. However, little is known how the dynamical organization of emotion-related brain circuitry reflects internal autonomic responses in humans. Using resting-state functional magnetic resonance imaging (fMRI) with K-means clustering approach in a total of 79 young healthy individuals (cohort 1: 42; cohort 2: 37), we identified two distinct states of BLA- and CMA-based intrinsic connectivity patterns, with one state (integration) showing generally stronger BLA- and CMA-based intrinsic connectivity with multiple brain networks, while the other (segregation) exhibiting weaker yet dissociable connectivity patterns. In an independent cohort 2 of fMRI data with concurrent recording of skin conductance, we replicated two similar dynamic states and further found higher skin conductance level in the integration than segregation state. Moreover, machine learning-based Elastic-net regression analyses revealed that time-varying BLA and CMA intrinsic connectivity with distinct network configurations yield higher predictive values for spontaneous fluctuations of skin conductance level in the integration than segregation state. Our findings highlight dynamic functional organization of emotion-related amygdala nuclei circuits and networks and its links to spontaneous autonomic arousal in humans.
Collapse
Affiliation(s)
- Yimeng Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Fuxiang Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Liyun Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Wenshan Dong
- School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhi Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| |
Collapse
|
12
|
Carlson HN, Weiner JL. The neural, behavioral, and epidemiological underpinnings of comorbid alcohol use disorder and post-traumatic stress disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:69-142. [PMID: 33648676 DOI: 10.1016/bs.irn.2020.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and (PTSD) frequently co-occur and individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Although there have been significant advances in our understanding of the neurobiological mechanisms underlying each of these disorders, the neural underpinnings of the comorbid condition remain poorly understood. This chapter summarizes recent epidemiological findings on comorbid AUD and PTSD, with a focus on vulnerable populations, the temporal relationship between these disorders, and the clinical consequences associated with the dual diagnosis. We then review animal models of the comorbid condition and emerging human and non-human animal research that is beginning to identify maladaptive neural changes common to both disorders, primarily involving functional changes in brain reward and stress networks. We end by proposing a neural framework, based on the emerging field of affective valence encoding, that may better explain the epidemiological and neural findings on AUD and PTSD.
Collapse
Affiliation(s)
- Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
13
|
Kryklywy JH, Ehlers MR, Anderson AK, Todd RM. From Architecture to Evolution: Multisensory Evidence of Decentralized Emotion. Trends Cogn Sci 2020; 24:916-929. [DOI: 10.1016/j.tics.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
|
14
|
Jones DN, Erwin JM, Sherwood CC, Hof PR, Raghanti MA. A comparison of cell density and serotonergic innervation of the amygdala among four macaque species. J Comp Neurol 2020; 529:1659-1668. [PMID: 33022073 DOI: 10.1002/cne.25048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023]
Abstract
The genus Macaca is an ideal model for investigating the biological basis of primate social behavior from an evolutionary perspective. A significant amount of behavioral diversity has been reported among the macaque species, but little is known about the neural substrates that support this variation. The present study compared neural cell density and serotonergic innervation of the amygdala among four macaque species using histological and immunohistochemical methods. The species examined included rhesus (Macaca mulatta), Japanese (M. fuscata), pigtailed (M. nemestrina), and moor macaques (M. maura). We anticipated that the more aggressive rhesus and Japanese macaques would have lower serotonergic innervation within the amygdala compared to the more affiliative pigtailed and moor macaques. In contrast to our prediction, pigtailed macaques had higher serotonergic innervation than Japanese and moor macaques in the basal and central amygdala nuclei when controlling for neuron density. Our analysis of neural cell populations revealed that Japanese macaques possess significantly higher neuron and glia densities relative to the other three species, however we observed no glia-to-neuron ratio differences among species. The results of this study revealed serotonergic innervation and cell density differences among closely related macaque species, which may play a role in modulating subtle differences in emotional processing and species-typical social styles.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Joseph M Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|
15
|
Równiak M, Bogus-Nowakowska K. The amygdala of the common shrew, guinea pig, rabbit, fox and pig: five flavours of the mammalian amygdala as a consequence of clade-specific mosaic-like evolution. J Anat 2020; 236:891-905. [PMID: 31898329 DOI: 10.1111/joa.13148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 01/11/2023] Open
Abstract
The amygdala is a part of neural networks that contribute to the regulation of emotional behaviours and emotional learning, stress response, and olfactory, pheromonal and reproductive functions. All these various functions are processed by the three main functional systems, frontotemporal, autonomic and olfactory, which are derived from different telencephalic sources (claustrum, striatum and olfactory cortex) and are represented, respectively, by the basolateral complex (BLC), the central complex (CC) and corticomedial complex (CMC) of the amygdala. The question arises of how these three functional systems evolved during mammalian phylogeny to fit the amygdala to specific needs of various animals. In the present study, we provide quantitative information regarding the individual volumes and neuron numbers in the BLC, CC and CMC of the common shrew, guinea pig, rabbit, fox and pig, a series of animals arranged according to increasing size and complexity of the brain. The results show that, in this series of animals, the BLC underwent a gradual size increase in volume and number of neurons, whereas the CMC was gradually reduced with regard to both these measures. The CC was more or less conserved across studied species. For example, the volume of the amygdala in pigs is ~250 times larger than that in shrews and it also has almost 26 times as many neurons as the amygdala of shrews. However, the volumes of the BLC, CC and CMC were ~380, 208 and 148 times larger, respectively, in pigs than in shrews. The number of neurons in these three regions was ~38, 23 and 20 times greater, respectively, in pigs than in shrews. The results also show striking morphometric similarities of the amygdala in the guinea pig and rabbit as well as fox and pig. For example, the percentages of neurons in the fox and pig are 42.23% and 42.78%, respectively, for the BLC, 16.64% and 16.58%, respectively, for the CC, and 41.12% and 40.64%, respectively, for the CMC. In conclusion, our results indicate that the amygdala does not evolve as a single unit but, instead, the three main functional systems evolved independently, which suggests that brain structures with major functional links evolve together independently of evolutionary changes in other unrelated structures. The size progression of the BLC parallels the size progression of the neocortex with which it is strongly functionally linked, whereas the CMC is strongly connected to olfactory regions, and all these structures follow the same regression course. Remarkable morphometric similarity of the amygdala in the guinea pig and rabbit as well as in the fox and pig, however, suggest that there must also be another mechanism shaping the morphology of the amygdala and the brain during evolution. The gradual nature of size changes in the BLC and CMC support this hypothesis as well.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
16
|
Chiurliza B, Joiner TE. The Influence of Acetaminophen and Observational Conditioning on the Acquired Capability for Suicide. Behav Ther 2018; 49:681-690. [PMID: 30146136 DOI: 10.1016/j.beth.2017.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022]
Abstract
The effects of acetaminophen and a reading task on physical pain tolerance and fearlessness about death were tested in 106 undergraduate students. Participants were randomized into four groups, each receiving either acetaminophen or no medication, along with either a control or experimental reading task. It was predicted that acetaminophen would increase pain tolerance and fearlessness about death, that the experimental reading task would decrease both outcomes, and that the interventions would interact (i.e., acetaminophen would dampen the effects of the reading task). Multivariate analysis of variance was used to test hypotheses. No significant interaction was found (p = .17) and there was no effect for acetaminophen (p = .56), but individuals administered the experimental reading task demonstrated significantly higher physical pain tolerance (p < .05).
Collapse
|
17
|
Hunnicutt BJ, Jongbloets BC, Birdsong WT, Gertz KJ, Zhong H, Mao T. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife 2016; 5. [PMID: 27892854 PMCID: PMC5207773 DOI: 10.7554/elife.19103] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/25/2016] [Indexed: 01/02/2023] Open
Abstract
The striatum integrates excitatory inputs from the cortex and the thalamus to control diverse functions. Although the striatum is thought to consist of sensorimotor, associative and limbic domains, their precise demarcations and whether additional functional subdivisions exist remain unclear. How striatal inputs are differentially segregated into each domain is also poorly understood. This study presents a comprehensive map of the excitatory inputs to the mouse striatum. The input patterns reveal boundaries between the known striatal domains. The most posterior striatum likely represents the 4th functional subdivision, and the dorsomedial striatum integrates highly heterogeneous, multimodal inputs. The complete thalamo-cortico-striatal loop is also presented, which reveals that the thalamic subregions innervated by the basal ganglia preferentially interconnect with motor-related cortical areas. Optogenetic experiments show the subregion-specific heterogeneity in the synaptic properties of striatal inputs from both the cortex and the thalamus. This projectome will guide functional studies investigating diverse striatal functions. DOI:http://dx.doi.org/10.7554/eLife.19103.001 To fully understand how the brain works, we need to understand how different brain structures are organized and how information flows between these structures. For example, the cortex and thalamus communicate with another structure known as the basal ganglia, which is essential for controlling voluntary movement, emotions and reward behaviour in humans and other mammals. Information from the cortex and the thalamus enters the basal ganglia at an area called the striatum. This area is further divided into smaller functional regions known as domains that sort sensorimotor, emotion and executive information into the basal ganglia to control different types of behaviour. Three such domains have been identified in the striatum of mice. However, the boundaries between these domains are vague and it is not clear whether any other domains exist or if the domains can actually be divided into even smaller areas with more precise roles. Information entering the striatum from other parts of the brain can either stimulate activity in the striatum (known as an “excitatory input”) or alter existing excitatory inputs. Now, Hunnicutt et al. present the first comprehensive map of excitatory inputs into the striatum of mice. The experiments show that while many of the excitatory inputs flowing into the striatum from the cortex and thalamus are sorted into the three known domains, a unique combination of the excitatory inputs are sorted into a new domain instead. One of the original three domains of the striatum is known to relay information related to associative learning, for example, linking an emotion to a person or place. Hunnicutt et al. show that this domain has a more complex architecture than the other domains, being made up of many distinct areas. This complexity may help it to process the various types of information required to make such associations. The findings of Hunnicutt et al. provide a framework for understanding how the striatum works in healthy and diseased brains. Since faulty information processing in the striatum is a direct cause of Parkinson’s disease, Huntington’s disease and other neurological disorders in humans, this framework may aid the development of new treatments for these disorders. DOI:http://dx.doi.org/10.7554/eLife.19103.002
Collapse
Affiliation(s)
- Barbara J Hunnicutt
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Bart C Jongbloets
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - William T Birdsong
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Katrina J Gertz
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
18
|
Keifer OP, Hurt RC, Ressler KJ, Marvar PJ. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning. Physiology (Bethesda) 2016; 30:389-401. [PMID: 26328883 DOI: 10.1152/physiol.00058.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively.
Collapse
Affiliation(s)
- Orion P Keifer
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| | - Robert C Hurt
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kerry J Ressler
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Howard Hughes Medical Institute, Bethesda, Maryland; and Yerkes National Primate Research Center, Atlanta, Georgia
| | - Paul J Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C.;
| |
Collapse
|
19
|
Laneri D, Schuster V, Dietsche B, Jansen A, Ott U, Sommer J. Effects of Long-Term Mindfulness Meditation on Brain's White Matter Microstructure and its Aging. Front Aging Neurosci 2016; 7:254. [PMID: 26834624 PMCID: PMC4712309 DOI: 10.3389/fnagi.2015.00254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
Although research on the effects of mindfulness meditation (MM) is increasing, still very little has been done to address its influence on the white matter (WM) of the brain. We hypothesized that the practice of MM might affect the WM microstructure adjacent to five brain regions of interest associated with mindfulness. Diffusion tensor imaging was employed on samples of meditators and non-meditators (n = 64) in order to investigate the effects of MM on group difference and aging. Tract-Based Spatial Statistics was used to estimate the fractional anisotrophy of the WM connected to the thalamus, insula, amygdala, hippocampus, and anterior cingulate cortex. The subsequent generalized linear model analysis revealed group differences and a group-by-age interaction in all five selected regions. These data provide preliminary indications that the practice of MM might result in WM connectivity change and might provide evidence on its ability to help diminish age-related WM degeneration in key regions which participate in processes of mindfulness.
Collapse
Affiliation(s)
- Davide Laneri
- Department of Psychiatry and Psychotherapy, University of Marburg Marburg, Germany
| | - Verena Schuster
- Department of Psychiatry and Psychotherapy, University of Marburg Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, University of Marburg Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg Marburg, Germany
| | - Ulrich Ott
- Department of Psychology, Bender Institute of Neuroimaging, Justus-Liebig-University Giessen Giessen, Germany
| | - Jens Sommer
- Department of Psychiatry and Psychotherapy, University of Marburg Marburg, Germany
| |
Collapse
|
20
|
Likhtik E, Paz R. Amygdala-prefrontal interactions in (mal)adaptive learning. Trends Neurosci 2015; 38:158-66. [PMID: 25583269 PMCID: PMC4352381 DOI: 10.1016/j.tins.2014.12.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/22/2022]
Abstract
The study of neurobiological mechanisms underlying anxiety disorders has been shaped by learning models that frame anxiety as maladaptive learning. Pavlovian conditioning and extinction are particularly influential in defining learning stages that can account for symptoms of anxiety disorders. Recently, dynamic and task related communication between the basolateral complex of the amygdala (BLA) and the medial prefrontal cortex (mPFC) has emerged as a crucial aspect of successful evaluation of threat and safety. Ongoing patterns of neural signaling within the mPFC-BLA circuit during encoding, expression and extinction of adaptive learning are reviewed. The mechanisms whereby deficient mPFC-BLA interactions can lead to generalized fear and anxiety are discussed in learned and innate anxiety. Findings with cross-species validity are emphasized.
Collapse
Affiliation(s)
- Ekaterina Likhtik
- Associate Research Scientist, Department of Psychiatry, 1051 Riverside Drive, Unit 87, Kolb Annex, Room 136, New York, NY 10032, USA.
| | - Rony Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100 Israel.
| |
Collapse
|
21
|
Jackson AC, Liu C, Fukuda M, Lazarus M, Gautron L. Neuroanatomy and transgenic technologies. Front Neuroanat 2015; 8:157. [PMID: 25653595 PMCID: PMC4301003 DOI: 10.3389/fnana.2014.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 12/05/2022] Open
Affiliation(s)
- Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT, USA
| | - Chen Liu
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Makoto Fukuda
- Baylor College of Medicine, Childrens Nutrition Research Ct Houston, TX, USA
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba Tsukuba, Japan
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|