1
|
Bhagwandin A, Molnár Z, Bertelsen MF, Karlsson KÆ, Alagaili AN, Bennett NC, Hof PR, Kaswera-Kyamakya C, Gilissen E, Jayakumar J, Manger PR. Where Do Core Thalamocortical Axons Terminate in Mammalian Neocortex When There Is No Cytoarchitecturally Distinct Layer 4? J Comp Neurol 2024; 532:e25652. [PMID: 38962882 DOI: 10.1002/cne.25652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Although the mammalian cerebral cortex is most often described as a hexalaminar structure, there are cortical areas (primary motor cortex) and species (elephants, cetaceans, and hippopotami), where a cytoarchitecturally indistinct, or absent, layer 4 is noted. Thalamocortical projections from the core, or first order, thalamic system terminate primarily in layers 4/inner 3. We explored the termination sites of core thalamocortical projections in cortical areas and in species where there is no cytoarchitecturally distinct layer 4 using the immunolocalization of vesicular glutamate transporter 2, a known marker of core thalamocortical axon terminals, in 31 mammal species spanning the eutherian radiation. Several variations from the canonical cortical column outline of layer 4 and core thalamocortical inputs were noted. In shrews/microchiropterans, layer 4 was present, but many core thalamocortical projections terminated in layer 1 in addition to layers 4 and inner 3. In primate primary visual cortex, the sublaminated layer 4 was associated with a specialized core thalamocortical projection pattern. In primate primary motor cortex, no cytoarchitecturally distinct layer 4 was evident and the core thalamocortical projections terminated throughout layer 3. In the African elephant, cetaceans, and river hippopotamus, no cytoarchitecturally distinct layer 4 was observed and core thalamocortical projections terminated primarily in inner layer 3 and less densely in outer layer 3. These findings are contextualized in terms of cortical processing, perception, and the evolutionary trajectory leading to an indistinct or absent cortical layer 4.
Collapse
Affiliation(s)
- Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Karl Æ Karlsson
- Biomedical Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Nigel C Bennett
- South African Research Chair of Mammal Behavioural Ecology and Physiology, University of Pretoria, Pretoria, South Africa
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Center for Discovery and Innovation, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, India
- Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, India
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
2
|
Benavides-Piccione R, Blazquez-Llorca L, Kastanauskaite A, Fernaud-Espinosa I, Tapia-González S, DeFelipe J. Key morphological features of human pyramidal neurons. Cereb Cortex 2024; 34:bhae180. [PMID: 38745556 PMCID: PMC11094408 DOI: 10.1093/cercor/bhae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
The basic building block of the cerebral cortex, the pyramidal cell, has been shown to be characterized by a markedly different dendritic structure among layers, cortical areas, and species. Functionally, differences in the structure of their dendrites and axons are critical in determining how neurons integrate information. However, within the human cortex, these neurons have not been quantified in detail. In the present work, we performed intracellular injections of Lucifer Yellow and 3D reconstructed over 200 pyramidal neurons, including apical and basal dendritic and local axonal arbors and dendritic spines, from human occipital primary visual area and associative temporal cortex. We found that human pyramidal neurons from temporal cortex were larger, displayed more complex apical and basal structural organization, and had more spines compared to those in primary sensory cortex. Moreover, these human neocortical neurons displayed specific shared and distinct characteristics in comparison to previously published human hippocampal pyramidal neurons. Additionally, we identified distinct morphological features in human neurons that set them apart from mouse neurons. Lastly, we observed certain consistent organizational patterns shared across species. This study emphasizes the existing diversity within pyramidal cell structures across different cortical areas and species, suggesting substantial species-specific variations in their computational properties.
Collapse
Affiliation(s)
- Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Lidia Blazquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Asta Kastanauskaite
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Isabel Fernaud-Espinosa
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
| | - Silvia Tapia-González
- Laboratorio de Neurofisiología Celular, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| |
Collapse
|
3
|
Freire MAM, Franca JG, Picanco-Diniz CW, Manger PR, Kaas JH, Pereira A. Organization of Somatosensory Cortex in the South American Rodent Paca (Cuniculus paca). BRAIN, BEHAVIOR AND EVOLUTION 2024; 98:275-289. [PMID: 38198769 DOI: 10.1159/000534469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/02/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION The study of non-laboratory species has been part of a broader effort to establish the basic organization of the mammalian neocortex, as these species may provide unique insights relevant to cortical organization, function, and evolution. METHODS In the present study, the organization of three somatosensory cortical areas of the medium-sized (5-11 kg body mass) Amazonian rodent, the paca (Cuniculus paca), was determined using a combination of electrophysiological microelectrode mapping and histochemical techniques (cytochrome oxidase and NADPH diaphorase) in tangential sections. RESULTS Electrophysiological mapping revealed a somatotopically organized primary somatosensory cortical area (S1) located in the rostral parietal cortex with a characteristic foot-medial/head-lateral contralateral body surface representation similar to that found in other species. S1 was bordered laterally by two regions housing neurons responsive to tactile stimuli, presumably the secondary somatosensory (S2) and parietal ventral (PV) cortical areas that evinced a mirror-reversal representation (relative to S1) of the contralateral body surface. The limits of the putative primary visual (V1) and primary auditory (A1) cortical areas, as well as the complete representation of the contralateral body surface in S1, were determined indirectly by the histochemical stains. Like the barrel field described in small rodents, we identified a modular arrangement located in the face representation of S1. CONCLUSIONS The relative location, somatotopic organization, and pattern of neuropil histochemical reactivity in the three paca somatosensory cortical areas investigated are similar to those described in other mammalian species, providing additional evidence of a common plan of organization for the somatosensory cortex in the rostral parietal cortex of mammals.
Collapse
Affiliation(s)
| | - João G Franca
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Antonio Pereira
- Institute of Technology, Federal University of Pará, Belem, Brazil
| |
Collapse
|
4
|
Kell AJ, Bokor SL, Jeon YN, Toosi T, Issa EB. Marmoset core visual object recognition behavior is comparable to that of macaques and humans. iScience 2023; 26:105788. [PMID: 36594035 PMCID: PMC9804140 DOI: 10.1016/j.isci.2022.105788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Among the smallest simian primates, the common marmoset offers promise as an experimentally tractable primate model for neuroscience with translational potential to humans. However, given its exceedingly small brain and body, the gap in perceptual and cognitive abilities between marmosets and humans requires study. Here, we performed a comparison of marmoset behavior to that of three other species in the domain of high-level vision. We first found that marmosets outperformed rats - a marmoset-sized rodent - on a simple recognition task, with marmosets robustly recognizing objects across views. On a more challenging invariant object recognition task used previously in humans, marmosets also achieved high performance. Notably, across hundreds of images, marmosets' image-by-image behavior was highly similar to that of humans - nearly as human-like as macaque behavior. Thus, core aspects of visual perception are conserved across monkeys and humans, and marmosets present salient behavioral advantages over other small model organisms for visual neuroscience.
Collapse
Affiliation(s)
- Alexander J.E. Kell
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Sophie L. Bokor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - You-Nah Jeon
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Tahereh Toosi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Elias B. Issa
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| |
Collapse
|
5
|
Ahmadian Y, Miller KD. What is the dynamical regime of cerebral cortex? Neuron 2021; 109:3373-3391. [PMID: 34464597 PMCID: PMC9129095 DOI: 10.1016/j.neuron.2021.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Many studies have shown that the excitation and inhibition received by cortical neurons remain roughly balanced across many conditions. A key question for understanding the dynamical regime of cortex is the nature of this balancing. Theorists have shown that network dynamics can yield systematic cancellation of most of a neuron's excitatory input by inhibition. We review a wide range of evidence pointing to this cancellation occurring in a regime in which the balance is loose, meaning that the net input remaining after cancellation of excitation and inhibition is comparable in size with the factors that cancel, rather than tight, meaning that the net input is very small relative to the canceling factors. This choice of regime has important implications for cortical functional responses, as we describe: loose balance, but not tight balance, can yield many nonlinear population behaviors seen in sensory cortical neurons, allow the presence of correlated variability, and yield decrease of that variability with increasing external stimulus drive as observed across multiple cortical areas.
Collapse
Affiliation(s)
- Yashar Ahmadian
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, and Department of Neuroscience, College of Physicians and Surgeons and Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Benavides-Piccione R, Rojo C, Kastanauskaite A, DeFelipe J. Variation in Pyramidal Cell Morphology Across the Human Anterior Temporal Lobe. Cereb Cortex 2021; 31:3592-3609. [PMID: 33723567 PMCID: PMC8258433 DOI: 10.1093/cercor/bhab034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons are the most abundant and characteristic neuronal type in the cerebral cortex and their dendritic spines are the main postsynaptic elements of cortical excitatory synapses. Previous studies have shown that pyramidal cell structure differs across layers, cortical areas, and species. However, within the human cortex, the pyramidal dendritic morphology has been quantified in detail in relatively few cortical areas. In the present work, we performed intracellular injections of Lucifer Yellow at several distances from the temporal pole. We found regional differences in pyramidal cell morphology, which showed large inter-individual variability in most of the morphological variables measured. However, some values remained similar in all cases. The smallest and least complex cells in the most posterior temporal region showed the greatest dendritic spine density. Neurons in the temporal pole showed the greatest sizes with the highest number of spines. Layer V cells were larger, more complex, and had a greater number of dendritic spines than those in layer III. The present results suggest that, while some aspects of pyramidal structure are conserved, there are specific variations across cortical regions, and species.
Collapse
Affiliation(s)
- Ruth Benavides-Piccione
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid 28031, Spain
| | - Concepcion Rojo
- Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Asta Kastanauskaite
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Javier DeFelipe
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid 28031, Spain
| |
Collapse
|
7
|
Khalil R, Farhat A, Dłotko P. Developmental Changes in Pyramidal Cell Morphology in Multiple Visual Cortical Areas Using Cluster Analysis. Front Comput Neurosci 2021; 15:667696. [PMID: 34135746 PMCID: PMC8200563 DOI: 10.3389/fncom.2021.667696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Neuronal morphology is characterized by salient features such as complex axonal and dendritic arbors. In the mammalian brain, variations in dendritic morphology among cell classes, brain regions, and animal species are thought to underlie known differences in neuronal function. In this work, we obtained a large dataset from http://neuromorpho.org/ comprising layer III pyramidal cells in different cortical areas of the ventral visual pathway (V1, V2, V4, TEO, and TE) of the macaque monkey at different developmental stages. We performed an in depth quantitative analysis of pyramidal cell morphology throughout development in an effort to determine which aspects mature early in development and which features require a protracted period of maturation. We were also interested in establishing if developmental changes in morphological features occur simultaneously or hierarchically in multiple visual cortical areas. We addressed these questions by performing principal component analysis (PCA) and hierarchical clustering analysis on relevant morphological features. Our analysis indicates that the maturation of pyramidal cell morphology is largely based on early development of topological features in most visual cortical areas. Moreover, the maturation of pyramidal cell morphology in V1, V2, V4, TEO, and TE is characterized by unique developmental trajectories.
Collapse
Affiliation(s)
- Reem Khalil
- Biology, Chemistry, and Environmental Sciences Department, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Farhat
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Dłotko
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Yakoubi R, Rollenhagen A, von Lehe M, Shao Y, Sätzler K, Lübke JHR. Quantitative Three-Dimensional Reconstructions of Excitatory Synaptic Boutons in Layer 5 of the Adult Human Temporal Lobe Neocortex: A Fine-Scale Electron Microscopic Analysis. Cereb Cortex 2020; 29:2797-2814. [PMID: 29931200 DOI: 10.1093/cercor/bhy146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 11/14/2022] Open
Abstract
Studies of synapses are available for different brain regions of several animal species including non-human primates, but comparatively little is known about their quantitative morphology in humans. Here, synaptic boutons in Layer 5 (L5) of the human temporal lobe (TL) neocortex were investigated in biopsy tissue, using fine-scale electron microscopy, and quantitative three-dimensional reconstructions. The size and organization of the presynaptic active zones (PreAZs), postsynaptic densities (PSDs), and that of the 3 distinct pools of synaptic vesicles (SVs) were particularly analyzed. L5 synaptic boutons were medium-sized (~6 μm2) with a single but relatively large PreAZ (~0.3 μm2). They contained a total of ~1500 SVs/bouton, ~20 constituting the putative readily releasable pool (RRP), ~180 the recycling pool (RP), and the remainder, the resting pool. The PreAZs, PSDs, and vesicle pools are ~3-fold larger than those of CNS synapses in other species. Astrocytic processes reached the synaptic cleft and may regulate the glutamate concentration. Profound differences exist between synapses in human TL neocortex and those described in various species, particularly in the size and geometry of PreAZs and PSDs, the large RRP/RP, and the astrocytic ensheathment suggesting high synaptic efficacy, strength, and modulation of synaptic transmission at human synapses.
Collapse
Affiliation(s)
- Rachida Yakoubi
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany
| | - Marec von Lehe
- University Hospital/Knappschaftskrankenhaus Bochum, In der Schornau 23-25, Bochum, Germany.,Department of Neurosurgery, Ruppiner Kliniken, Medizinische Hochschule Brandenburg, Fehrbelliner Str. 38, Neuruppin, Germany
| | - Yachao Shao
- Simulation Lab Neuroscience, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany.,College of Computer, National University of Defense Technology, Changsha, China
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Cromore Rd., BT52 1SA, Londonderry, UK
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Leo-Brandt Str., Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty/RWTH University Hospital Aachen, Pauwelsstr. 30, Aachen, Germany.,JARA Translational Brain Medicine, Germany
| |
Collapse
|
9
|
Chen Y, Zhang ZK, He Y, Zhou C. A Large-Scale High-Density Weighted Structural Connectome of the Macaque Brain Acquired by Predicting Missing Links. Cereb Cortex 2020; 30:4771-4789. [PMID: 32313935 PMCID: PMC7391281 DOI: 10.1093/cercor/bhaa060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 01/21/2023] Open
Abstract
As a substrate for function, large-scale brain structural networks are crucial for fundamental and systems-level understanding of primate brains. However, it is challenging to acquire a complete primate whole-brain structural connectome using track tracing techniques. Here, we acquired a weighted brain structural network across 91 cortical regions of a whole macaque brain hemisphere with a connectivity density of 59% by predicting missing links from the CoCoMac-based binary network with a low density of 26.3%. The prediction model combines three factors, including spatial proximity, topological similarity, and cytoarchitectural similarity-to predict missing links and assign connection weights. The model was tested on a recently obtained high connectivity density yet partial-coverage experimental weighted network connecting 91 sources to 29 target regions; the model showed a prediction sensitivity of 74.1% in the predicted network. This predicted macaque hemisphere-wide weighted network has module segregation closely matching functional domains. Interestingly, the areas that act as integrators linking the segregated modules are mainly distributed in the frontoparietal network and correspond to the regions with large wiring costs in the predicted weighted network. This predicted weighted network provides a high-density structural dataset for further exploration of relationships between structure, function, and metabolism in the primate brain.
Collapse
Affiliation(s)
- Yuhan Chen
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
| | - Zi-Ke Zhang
- College of Media and International Culture, Zhejiang University, Hangzhou 310058, China
- Alibaba Research Center for Complex Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
- Department of Physics, Zhejiang University, Hangzhou 310027, China
- Research Centre, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China
| |
Collapse
|
10
|
Friedman R. Measurements of neuronal morphological variation across the rat neocortex. Neurosci Lett 2020; 734:135077. [PMID: 32485285 DOI: 10.1016/j.neulet.2020.135077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022]
Abstract
Neuron morphology is highly variable across the mammalian brain. It is thought that these attributes of neuronal cell shape, such as soma surface area and branching frequency, are determined by biological function and information processing. In this study, a large data set of neurons across the rat neocortex were clustered by their anatomical characters for evidence of distinctiveness among neocortical regions and the somatosensory layers. This data set of neuronal morphologies was compiled from 31 different lab sources with a validation procedure so that data records are potentially comparable across research studies. With this large set of heterogeneous data and by clustering analysis, this study shows that neuronal morphological traits overlap among neocortical and somatosensory regions. In the context of past neuroanatomical studies, this result is not congruent with tissue level analysis and strongly suggests further sampling of neuronal data to lessen the effect of confounding factors, such as the influence of different methodologies from use of heterogeneous samples of neuronal data.
Collapse
Affiliation(s)
- Robert Friedman
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
11
|
Parra A, Baker CA, Bolton MM. Regional Specialization of Pyramidal Neuron Morphology and Physiology in the Tree Shrew Neocortex. Cereb Cortex 2019; 29:4488-4505. [PMID: 30715235 DOI: 10.1093/cercor/bhy326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/12/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
Abstract
The mammalian cerebral cortex is divided into different areas according to their function and pattern of connections. Studies comparing primary visual (V1) and prefrontal cortex (PFC) of primates have demonstrated striking pyramidal neuron (PN) specialization not present in comparable areas of the mouse neocortex. To better understand PFC evolution and regional PN specialization, we studied the tree shrew, a species with a close phylogenetic relationship to primates. We defined the tree shrew PFC based on cytoarchitectonic borders, thalamic connectivity and characterized the morphology and electrophysiology of layer II/III PNs in V1 and PFC. Similar to primates, the PFC PNs in the tree shrew fire with a regular spiking pattern and have larger dendritic tree and spines than those in V1. However, V1 PNs showed strikingly large basal dendritic arbors with high spine density, firing at higher rates and in a more varied pattern than PFC PNs. Yet, unlike in the mouse and unreported in the primate, medial prefrontal PN are more easily recruited than either the dorsolateral or V1 neurons. This specialization of PN morphology and physiology is likely to be a significant factor in the evolution of cortex, contributing to differences in the computational capacities of individual cortical areas.
Collapse
Affiliation(s)
- Andres Parra
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, USA.,Functional Architecture of the Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, USA.,Cellular and Systems Neurobiology, Instituto de Neurociencias de Alicante, Alicante, Spain
| | - Christopher A Baker
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, USA
| | - M McLean Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, USA
| |
Collapse
|
12
|
Groden M, Weigand M, Triesch J, Jedlicka P, Cuntz H. A Model of Brain Folding Based on Strong Local and Weak Long-Range Connectivity Requirements. Cereb Cortex 2019; 30:2434-2451. [DOI: 10.1093/cercor/bhz249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Throughout the animal kingdom, the structure of the central nervous system varies widely from distributed ganglia in worms to compact brains with varying degrees of folding in mammals. The differences in structure may indicate a fundamentally different circuit organization. However, the folded brain most likely is a direct result of mechanical forces when considering that a larger surface area of cortex packs into the restricted volume provided by the skull. Here, we introduce a computational model that instead of modeling mechanical forces relies on dimension reduction methods to place neurons according to specific connectivity requirements. For a simplified connectivity with strong local and weak long-range connections, our model predicts a transition from separate ganglia through smooth brain structures to heavily folded brains as the number of cortical columns increases. The model reproduces experimentally determined relationships between metrics of cortical folding and its pathological phenotypes in lissencephaly, polymicrogyria, microcephaly, autism, and schizophrenia. This suggests that mechanical forces that are known to lead to cortical folding may synergistically contribute to arrangements that reduce wiring. Our model provides a unified conceptual understanding of gyrification linking cellular connectivity and macroscopic structures in large-scale neural network models of the brain.
Collapse
Affiliation(s)
- Moritz Groden
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main D-60528, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main D-60438, Germany
- ICAR3R—Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, Giessen D-35390, Germany
| | - Marvin Weigand
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main D-60528, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main D-60438, Germany
- Faculty of Biological Sciences, Goethe University, Frankfurt am Main D-60438, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main D-60438, Germany
- Faculty of Physics, Goethe University, Frankfurt am Main D-60438, Germany
- Faculty of Computer Science and Mathematics, Goethe University, Frankfurt am Main D-60438, Germany
| | - Peter Jedlicka
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main D-60438, Germany
- ICAR3R—Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, Giessen D-35390, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main D-60528, Germany
| | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main D-60528, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main D-60438, Germany
| |
Collapse
|
13
|
Friedman R. Neuronal Morphology and Synapse Count in the Nematode Worm. Front Comput Neurosci 2019; 13:74. [PMID: 31695603 PMCID: PMC6817514 DOI: 10.3389/fncom.2019.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
The somatic nervous system of the nematode worm Caenorhabditis elegans is a model for understanding the physical characteristics of the neurons and their interconnections. Its neurons show high variation in morphological attributes. This study investigates the relationship of neuronal morphology to the number of synapses per neuron. Morphology is also examined for any detectable association with neuron cell type or ganglion membership.
Collapse
Affiliation(s)
- Robert Friedman
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
14
|
Holley ZL, Bland KM, Casey ZO, Handwerk CJ, Vidal GS. Cross-Regional Gradient of Dendritic Morphology in Isochronically-Sourced Mouse Supragranular Pyramidal Neurons. Front Neuroanat 2018; 12:103. [PMID: 30564104 PMCID: PMC6288488 DOI: 10.3389/fnana.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Architectonic heterogeneity in neurons is thought to be important for equipping the mammalian cerebral cortex with an adaptable network that can organize the manifold totality of information it receives. To this end, the dendritic arbors of supragranular pyramidal neurons, even those of the same class, are known to vary substantially. This diversity of dendritic morphology appears to have a rostrocaudal configuration in some brain regions of various species. For example, in humans and non-human primates, neurons in more rostral visual association areas (e.g., V4) tend to have more complex dendritic arbors than those in the caudal primary visual cortex. A rostrocaudal configuration is not so clear in any region of the mouse, which is increasingly being used as a model for neurodevelopmental disorders that arise from dysfunctional cerebral cortical circuits. Therefore, in this study we investigated the complexity of dendritic arbors of neurons distributed throughout a broad area of the mouse cerebral cortex. We reduced selection bias by labeling neurons restricted to become supragranular pyramidal neurons using in utero electroporation. While we observed that the simple rostrocaudal position, cortical depth, or even functional region of a neuron was not directly related to its dendritic morphology, a model that instead included a caudomedial-to-rostrolateral gradient accounted for a significant amount of the observed dendritic morphological variance. In other words, rostrolateral neurons from our data set were generally more complex when compared to caudomedial neurons. Furthermore, dividing the cortex into a visual area and a non-visual area maintained the power of the relationship between caudomedial-to-rostrolateral position and dendritic complexity. Our observations therefore support the idea that dendritic morphology of mouse supragranular excitatory pyramidal neurons across much of the tangential plane of the cerebral cortex is partly shaped by a developmental gradient spanning several functional regions.
Collapse
Affiliation(s)
- Zachary Logan Holley
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Katherine M Bland
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Zachary O Casey
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - George S Vidal
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
15
|
Wang Y, Ye M, Kuang X, Li Y, Hu S. A simplified morphological classification scheme for pyramidal cells in six layers of primary somatosensory cortex of juvenile rats. IBRO Rep 2018; 5:74-90. [PMID: 30450442 PMCID: PMC6222978 DOI: 10.1016/j.ibror.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
The majority of neurons in the neocortex are excitatory pyramidal cells (PCs). Many systematic classification schemes have been proposed based the neuronal morphology, the chemical composition, and the synaptic connectivity, etc. Recently, a cortical column of primary somatosensory cortex (SSC) has been reconstruction and functionally simulated (Markram et al., 2015). Putting forward from this study, here we proposed a simplified classification scheme for PCs in all layers of the SSC by mainly identifying apical dendritic morphology based on a large data set of 3D neuron reconstructions. We used this scheme to classify three types in layer 2, two in layer 3, three in layer 4, four in layer 5, and six types in layer 6. These PC types were visually distinguished and confirmed by quantitative differences in their morphometric properties. The classes yielded using this scheme largely corresponded with PC classes that were defined previously based on other neuronal and synaptic properties such as long-range projects and synaptic innervations, further validating its applicability. Therefore, the morphology information of apical dendrites is sufficient for a simple scheme to classify a spectrum of anatomical types of PCs in the SSC.
Collapse
Affiliation(s)
- Yun Wang
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Min Ye
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xiuli Kuang
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Yaoyao Li
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Shisi Hu
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| |
Collapse
|
16
|
Jacobs B, Garcia ME, Shea-Shumsky NB, Tennison ME, Schall M, Saviano MS, Tummino TA, Bull AJ, Driscoll LL, Raghanti MA, Lewandowski AH, Wicinski B, Ki Chui H, Bertelsen MF, Walsh T, Bhagwandin A, Spocter MA, Hof PR, Sherwood CC, Manger PR. Comparative morphology of gigantopyramidal neurons in primary motor cortex across mammals. J Comp Neurol 2017; 526:496-536. [PMID: 29088505 DOI: 10.1002/cne.24349] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Gigantopyramidal neurons, referred to as Betz cells in primates, are characterized by large somata and extensive basilar dendrites. Although there have been morphological descriptions and drawings of gigantopyramidal neurons in a limited number of species, quantitative investigations have typically been limited to measures of soma size. The current study thus employed two separate analytical approaches: a morphological investigation using the Golgi technique to provide qualitative and quantitative somatodendritic measures of gigantopyramidal neurons across 19 mammalian species from 7 orders; and unbiased stereology to compare the soma volume of layer V pyramidal and gigantopyramidal neurons in primary motor cortex between 11 carnivore and 9 primate species. Of the 617 neurons traced in the morphological analysis, 181 were gigantopyramidal neurons, with deep (primarily layer V) pyramidal (n = 203) and superficial (primarily layer III) pyramidal (n = 233) neurons quantified for comparative purposes. Qualitatively, dendritic morphology varied considerably across species, with some (sub)orders (e.g., artiodactyls, perissodactyls, feliforms) exhibiting bifurcating, V-shaped apical dendrites. Basilar dendrites exhibited idiosyncratic geometry across and within taxonomic groups. Quantitatively, most dendritic measures were significantly greater in gigantopyramidal neurons than in superficial and deep pyramidal neurons. Cluster analyses revealed that most taxonomic groups could be discriminated based on somatodendritic morphology for both superficial and gigantopyramidal neurons. Finally, in agreement with Brodmann, gigantopyramidal neurons in both the morphological and stereological analyses were larger in feliforms (especially in the Panthera species) than in other (sub)orders, possibly due to specializations in muscle fiber composition and musculoskeletal systems.
Collapse
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Madeleine E Garcia
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Noah B Shea-Shumsky
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mackenzie E Tennison
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mark S Saviano
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Tia A Tummino
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Anthony J Bull
- Human Biology and Kinesiology, Colorado College, Colorado Springs, Colorado
| | - Lori L Driscoll
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | | | - Bridget Wicinski
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hong Ki Chui
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Fredericksberg, Denmark
| | - Timothy Walsh
- Smithsonian National Zoological Park, Washington, District of Columbia
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa.,Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Abstract
The ability for cortical neurons to adapt their input/output characteristics and information processing capabilities ultimately relies on the interplay between synaptic plasticity, synapse location, and the nonlinear properties of the dendrite. Collectively, they shape both the strengths and spatial arrangements of convergent afferent inputs to neuronal dendrites. Recent experimental and theoretical studies support a clustered plasticity model, a view that synaptic plasticity promotes the formation of clusters or hotspots of synapses sharing similar properties. We have previously shown that spike timing-dependent plasticity (STDP) can lead to synaptic efficacies being arranged into spatially segregated clusters. This effectively partitions the dendritic tree into a tessellated imprint which we have called a dendritic mosaic. Here, using a biophysically detailed neuron model of a reconstructed layer 2/3 pyramidal cell and STDP learning, we investigated the impact of altered STDP balance on forming such a spatial organization. We show that cluster formation and extend depend on several factors, including the balance between potentiation and depression, the afferents' mean firing rate and crucially on the dendritic morphology. We find that STDP balance has an important role to play for this emergent mode of spatial organization since any imbalances lead to severe degradation- and in some case even destruction- of the mosaic. Our model suggests that, over a broad range of of STDP parameters, synaptic plasticity shapes the spatial arrangement of synapses, favoring the formation of clustered efficacy engrams.
Collapse
Affiliation(s)
- Nicolangelo Iannella
- School of Mathematical Sciences, University of NottinghamNottingham, United Kingdom.,Computational and Theoretical Neuroscience Laboratory, Institute for Telecommunications Research, University of South AustraliaMawson Lakes, SA, Australia
| | - Thomas Launey
- Laboratory for Synaptic Molecules of Memory Persistence, RIKEN, Brain Science InstituteSaitama, Japan
| |
Collapse
|
18
|
Gilman JP, Medalla M, Luebke JI. Area-Specific Features of Pyramidal Neurons-a Comparative Study in Mouse and Rhesus Monkey. Cereb Cortex 2017; 27:2078-2094. [PMID: 26965903 DOI: 10.1093/cercor/bhw062] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A principal challenge of systems neuroscience is to understand the unique characteristics of cortical neurons and circuits that enable area- and species-specific sensory encoding, motor function, cognition, and behavior. To address this issue, we compared properties of layer 3 pyramidal neurons in 2 cortical areas that span a broad range of cortical function-primary sensory (V1), to cognitive (frontal)-in the mouse and the rhesus monkey. Hierarchical clustering and discriminant analyses of 15 physiological and 25 morphological variables revealed 2 fundamental principles. First, V1 and frontal neurons are remarkably similar with regard to nearly every property in the mouse, while the opposite is true in the monkey, with V1 and frontal neurons exhibiting significant differences in nearly every property assessed. Second, neurons within visual and frontal areas differ significantly between the mouse and the monkey. Neurons in mouse and monkey V1 are the same size, but differ in nearly every other way; mouse frontal cortical neurons are smaller than those in the monkey and also differ substantially with regard to most other properties. These findings have broad implications for understanding the differential contributions of heterogeneous neuronal types in construction of cortical microcircuitry in diverse brain areas and species.
Collapse
Affiliation(s)
- Joshua P Gilman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
19
|
Luebke JI. Pyramidal Neurons Are Not Generalizable Building Blocks of Cortical Networks. Front Neuroanat 2017; 11:11. [PMID: 28326020 PMCID: PMC5339252 DOI: 10.3389/fnana.2017.00011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
A key challenge in cortical neuroscience is to gain a comprehensive understanding of how pyramidal neuron heterogeneity across different areas and species underlies the functional specialization of individual neurons, networks, and areas. Comparative studies have been important in this endeavor, providing data relevant to the question of which of the many inherent properties of individual pyramidal neurons are necessary and sufficient for species-specific network and areal function. In this mini review, the importance of pyramidal neuron structural properties for signaling are outlined, followed by a summary of our recent work comparing the structural features of mouse (C57/BL6 strain) and rhesus monkey layer 3 (L3) pyramidal neurons in primary visual and frontal association cortices and their implications for neuronal and areal function. Based on these and other published data, L3 pyramidal neurons plausibly might be considered broadly “generalizable” from one area to another in the mouse neocortex due to their many similarities, but major differences in the properties of these neurons in diverse areas in the rhesus monkey neocortex rules this out in the primate. Further, fundamental differences in the dendritic topology of mouse and rhesus monkey pyramidal neurons highlight the implausibility of straightforward scaling and/or extrapolation from mouse to primate neurons and cortical networks.
Collapse
Affiliation(s)
- Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
20
|
Cozzi B, De Giorgio A, Peruffo A, Montelli S, Panin M, Bombardi C, Grandis A, Pirone A, Zambenedetti P, Corain L, Granato A. The laminar organization of the motor cortex in monodactylous mammals: a comparative assessment based on horse, chimpanzee, and macaque. Brain Struct Funct 2017; 222:2743-2757. [DOI: 10.1007/s00429-017-1369-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/12/2017] [Indexed: 11/27/2022]
|
21
|
Selvas A, Coria SM, Kastanauskaite A, Fernaud-Espinosa I, DeFelipe J, Ambrosio E, Miguéns M. Rat-strain dependent changes of dendritic and spine morphology in the hippocampus after cocaine self-administration. Addict Biol 2017; 22:78-92. [PMID: 26332690 DOI: 10.1111/adb.12294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/24/2022]
Abstract
We previously showed that cocaine self-administration increases spine density in CA1 hippocampal neurons in Lewis (LEW) but not in Fischer 344 (F344) rats. Dendritic spine morphology is intimately related to its function. Thus, we conducted a 3D morphological analysis of CA1 dendrites and dendritic spines in these two strains of rats. Strain-specific differences were observed prior to cocaine self-administration: LEW rats had significantly larger dendritic diameters but lower spine density than the F344 strain. After cocaine self-administration, proximal dendritic volume, dendritic surface area and spine density were increased in LEW rats, where a higher percentage of larger spines were also observed. In addition, we found a strong positive correlation between dendritic volume and spine morphology, and a moderate correlation between dendritic volume and spine density in cocaine self-administered LEW rats, an effect that was not evident in any other condition. By contrast, after cocaine self-administration, F334 rats showed decreased spine head volumes. Our findings suggest that genetic differences could play a key role in the structural plasticity induced by cocaine in CA1 pyramidal neurons. These cocaine-induced alterations could be related to differences in the memory processing of drug reward cues that could potentially explain differential individual vulnerability to cocaine addiction.
Collapse
Affiliation(s)
- Abraham Selvas
- Departamento de Psicobiología, Facultad de Psicología; Universidad Nacional de Educación a Distancia, (UNED); Spain
- Laboratorio Cajal de Circuitos Corticales (CTB); Universidad Politécnica de Madrid; Spain
| | - Santiago M. Coria
- Departamento de Psicobiología, Facultad de Psicología; Universidad Nacional de Educación a Distancia, (UNED); Spain
| | - Asta Kastanauskaite
- Laboratorio Cajal de Circuitos Corticales (CTB); Universidad Politécnica de Madrid; Spain
| | | | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB); Universidad Politécnica de Madrid; Spain
- Instituto Cajal (CSIC); Spain
- CIBERNED; Spain
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología; Universidad Nacional de Educación a Distancia, (UNED); Spain
| | - Miguel Miguéns
- Departamento de Psicología Básica I, Facultad de Psicología; Universidad Nacional de Educación a Distancia (UNED); Spain
- Laboratorio Cajal de Circuitos Corticales (CTB); Universidad Politécnica de Madrid; Spain
| |
Collapse
|
22
|
Johnson CB, Schall M, Tennison ME, Garcia ME, Shea-Shumsky NB, Raghanti MA, Lewandowski AH, Bertelsen MF, Waller LC, Walsh T, Roberts JF, Hof PR, Sherwood CC, Manger PR, Jacobs B. Neocortical neuronal morphology in the Siberian Tiger (Panthera tigris altaica) and the clouded leopard (Neofelis nebulosa). J Comp Neurol 2016; 524:3641-3665. [DOI: 10.1002/cne.24022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Cameron B. Johnson
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Matthew Schall
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Mackenzie E. Tennison
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Madeleine E. Garcia
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Noah B. Shea-Shumsky
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences; Kent State University; Kent Ohio 44242
| | | | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health; Copenhagen Zoo; 2000 Fredericksberg Denmark
| | - Leona C. Waller
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| | - Timothy Walsh
- Smithsonian National Zoological Park; Washington DC 20008
| | - John F. Roberts
- Thompson Bishop Sparks State Diagnostic Laboratory, Alabama Department of Agriculture and Industries; Auburn Alabama 36849
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York New York 10029
| | - Chet C. Sherwood
- Department of Anthropology; The George Washington University; Washington DC 20052
| | - Paul R. Manger
- School of Anatomical Sciences, Faculty of Health Sciences; University of the Witwatersrand; Johannesburg 2000 South Africa
| | - Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program; Colorado College; Colorado Springs Colorado 80903
| |
Collapse
|
23
|
Böhm MRR, Melkonyan H, Thanos S. Life-time expression of the proteins peroxiredoxin, beta-synuclein, PARK7/DJ-1, and stathmin in the primary visual and primary somatosensory cortices in rats. Front Neuroanat 2015; 9:16. [PMID: 25788877 PMCID: PMC4349188 DOI: 10.3389/fnana.2015.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022] Open
Abstract
Four distinct proteins are regulated in the aging neuroretina and may be regulated in the cerebral cortex, too: peroxiredoxin, beta-synuclein, PARK[Parkinson disease(autosomal recessive, early onset)]7/DJ-1, and Stathmin. Thus, we performed a comparative analysis of these proteins in the the primary somatosensory cortex (S1) and primary visual cortex (V1) in rats, in order to detect putative common development-, maturation- and age-related changes. The expressions of peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin were compared in the newborn, juvenile, adult, and aged S1 and V1. Western blot (WB), quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) analyses were employed to determine whether the changes identified by proteomics were verifiable at the cellular and molecular levels. All of the proteins were detected in both of the investigated cortical areas. Changes in the expressions of the four proteins were found throughout the life-time of the rats. Peroxiredoxin expression remained unchanged over life-time. Beta-Synuclein expression was massively increased up to the adult stage of life in both the S1 and V1. PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1 exhibited a massive up-regulation in both the S1 and V1 at all ages. Stathmin expression was massively down regulated after the neonatal period in both the S1 and V1. The detected protein alterations were analogous to their retinal profiles. This study is the first to provide evidence that peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin are associated with postnatal maturation and aging in both the S1 and V1 of rats. These changes may indicate their involvement in key functional pathways and may account for the onset or progression of age-related pathologies.
Collapse
Affiliation(s)
- Michael R R Böhm
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany ; Department of Ophthalmology, St. Franziskus Hospital Münster Münster, Germany
| | - Harutyun Melkonyan
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology and DFG-Center of Excellence Cells in Motion (CiM), area C.4, School of Medicine, Westfalian-Wilhelms-University of Münster Münster, Germany
| |
Collapse
|
24
|
Barros VN, Mundim M, Galindo LT, Bittencourt S, Porcionatto M, Mello LE. The pattern of c-Fos expression and its refractory period in the brain of rats and monkeys. Front Cell Neurosci 2015; 9:72. [PMID: 25814929 PMCID: PMC4357304 DOI: 10.3389/fncel.2015.00072] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/18/2015] [Indexed: 01/06/2023] Open
Abstract
Intense activation of neurons triggers the appearance of immediate expression genes, including c-Fos. This gene is related to various signal cascades involved in biochemical processes such as neuronal plasticity, cell growth and mitosis. Here we investigate the expression pattern and the refractory period of c-Fos in rats and monkey's brains after stimulation with pentylenetetrazol. Rats and monkeys were sacrificed at various times after PTZ-induced seizure. Here we show that rats and monkeys already showed c-Fos expression at 0.5 h after seizure. Yet, the pattern of protein expression was longer in monkeys than rats, and also was not uniform (relative intensity) across different brain regions in monkeys as opposed to rats. In addition monkeys had a regional brain variation with regard to the temporal profile of c-Fos expression, which was not seen in rats. The refractory period after a second PTZ stimulation was also markedly different between rats and monkeys with the latter even showing a summatory effect on c-Fos expression after a second stimulation. However, assessment of c-Fos mRNA in rats indicated a post-transcriptional control mechanism underlying the duration of the refractory period. The difference in the protein expression pattern in rodents and primates characterizes a functional aspect of brain biochemistry that differs between these mammalian orders and may contribute for the more developed primate cognitive complexity as compared to rodents given c-Fos involvement in cognitive and learning tasks.
Collapse
Affiliation(s)
- Vanessa N Barros
- Department of Physiology, Universidade Federal de São Paulo São Paulo, SP, Brazil
| | - Mayara Mundim
- Department of Biochemistry, Universidade Federal de São Paulo São Paulo, SP, Brazil
| | - Layla Testa Galindo
- Department of Biochemistry, Universidade Federal de São Paulo São Paulo, SP, Brazil
| | - Simone Bittencourt
- Department of Physiology, Universidade Federal de São Paulo São Paulo, SP, Brazil
| | | | - Luiz E Mello
- Department of Physiology, Universidade Federal de São Paulo São Paulo, SP, Brazil
| |
Collapse
|
25
|
Mota B, Herculano-Houzel S. All brains are made of this: a fundamental building block of brain matter with matching neuronal and glial masses. Front Neuroanat 2014; 8:127. [PMID: 25429260 PMCID: PMC4228857 DOI: 10.3389/fnana.2014.00127] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 10/20/2014] [Indexed: 11/13/2022] Open
Abstract
How does the size of the glial and neuronal cells that compose brain tissue vary across brain structures and species? Our previous studies indicate that average neuronal size is highly variable, while average glial cell size is more constant. Measuring whole cell sizes in vivo, however, is a daunting task. Here we use chi-square minimization of the relationship between measured neuronal and glial cell densities in the cerebral cortex, cerebellum, and rest of brain in 27 mammalian species to model neuronal and glial cell mass, as well as the neuronal mass fraction of the tissue (the fraction of tissue mass composed by neurons). Our model shows that while average neuronal cell mass varies by over 500-fold across brain structures and species, average glial cell mass varies only 1.4-fold. Neuronal mass fraction varies typically between 0.6 and 0.8 in all structures. Remarkably, we show that two fundamental, universal relationships apply across all brain structures and species: (1) the glia/neuron ratio varies with the total neuronal mass in the tissue (which in turn depends on variations in average neuronal cell mass), and (2) the neuronal mass per glial cell, and with it the neuronal mass fraction and neuron/glia mass ratio, varies with average glial cell mass in the tissue. We propose that there is a fundamental building block of brain tissue: the glial mass that accompanies a unit of neuronal mass. We argue that the scaling of this glial mass is a consequence of a universal mechanism whereby numbers of glial cells are added to the neuronal parenchyma during development, irrespective of whether the neurons composing it are large or small, but depending on the average mass of the glial cells being added. We also show how evolutionary variations in neuronal cell mass, glial cell mass and number of neurons suffice to determine the most basic characteristics of brain structures, such as mass, glia/neuron ratio, neuron/glia mass ratio, and cell densities.
Collapse
Affiliation(s)
- Bruno Mota
- Instituto de Física, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Neurociência Translacional São Paulo, Brazil
| | - Suzana Herculano-Houzel
- Instituto Nacional de Neurociência Translacional São Paulo, Brazil ; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Charvet CJ, Finlay BL. Evo-devo and the primate isocortex: the central organizing role of intrinsic gradients of neurogenesis. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:81-92. [PMID: 25247448 DOI: 10.1159/000365181] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spatial gradients in the initiation and termination of basic processes, such as cytogenesis, cell-type specification and dendritic maturation, are ubiquitous in developing nervous systems. Such gradients can produce a niche adaptation in a particular species. For example, the high density of photoreceptors and neurons in the 'area centralis' of some vertebrate retinas result from the early maturation of its center relative to its periphery. Across species, regularities in allometric scaling of brain regions can derive from conserved spatial gradients: longer neurogenesis in the alar versus the basal plate of the neural tube is associated with relatively greater expansion of alar plate derivatives in larger brains. We describe gradients of neurogenesis within the isocortex and their effects on adult cytoarchitecture within and across species. Longer duration of neurogenesis in the caudal isocortex is associated with increased neuron number and density per column relative to the rostral isocortex. Later-maturing features of single neurons, such as soma size and dendritic spine numbers reflect this gradient. Considering rodents and primates, the longer the duration of isocortical neurogenesis in each species, the greater the rostral-to-caudal difference in neuron number and density per column. Extended developmental duration produces substantial, predictable changes in the architecture of the isocortex in larger brains, and presumably a progressively changed functional organization, the properties of which we do not yet fully understand. Many features of isocortical architecture previously viewed as species- or niche-specific adaptations can now be integrated as the natural outcomes of spatiotemporal gradients that are deployed in larger brains.
Collapse
Affiliation(s)
- Christine J Charvet
- Behavioral and Evolutionary Neuroscience Group, Department of Psychology, Cornell University, Ithaca, N.Y., USA
| | | |
Collapse
|
27
|
Elston GN, Fujita I. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 2014; 8:78. [PMID: 25161611 PMCID: PMC4130200 DOI: 10.3389/fnana.2014.00078] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/22/2014] [Indexed: 01/12/2023] Open
Abstract
Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1) prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE) and granular prefrontal cortex (gPFC; Brodmann's area 12) grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the “use it or lose it” notion of synaptic reinforcement may speak to only part of the story, “use it but you still might lose it” may be just as prevalent in the cerebral cortex.
Collapse
Affiliation(s)
- Guy N Elston
- Centre for Cognitive Neuroscience Sunshine Coast, QLD, Australia
| | - Ichiro Fujita
- Graduate School of Frontier Biosciences and Center for Information and Neural Networks, Osaka University and National Institute of Communication Technology Suita, Japan
| |
Collapse
|
28
|
Herculano-Houzel S, Manger PR, Kaas JH. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 2014; 8:77. [PMID: 25157220 PMCID: PMC4127475 DOI: 10.3389/fnana.2014.00077] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022] Open
Abstract
Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Neurociência Translacional, Ministério de Ciência e Tecnologia São Paulo, Brazil
| | - Paul R Manger
- Department of Anatomy, University of the Witwatersrand Johannesburg, South Africa
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
29
|
The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis). Brain Struct Funct 2014; 220:2851-72. [PMID: 25048683 DOI: 10.1007/s00429-014-0830-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 06/21/2014] [Indexed: 12/24/2022]
Abstract
The present quantitative study extends our investigation of cetartiodactyls by exploring the neuronal morphology in the giraffe (Giraffa camelopardalis) neocortex. Here, we investigate giraffe primary visual and motor cortices from perfusion-fixed brains of three subadults stained with a modified rapid Golgi technique. Neurons (n = 244) were quantified on a computer-assisted microscopy system. Qualitatively, the giraffe neocortex contained an array of complex spiny neurons that included both "typical" pyramidal neuron morphology and "atypical" spiny neurons in terms of morphology and/or orientation. In general, the neocortex exhibited a vertical columnar organization of apical dendrites. Although there was no significant quantitative difference in dendritic complexity for pyramidal neurons between primary visual (n = 78) and motor cortices (n = 65), there was a significant difference in dendritic spine density (motor cortex > visual cortex). The morphology of aspiny neurons in giraffes appeared to be similar to that of other eutherian mammals. For cross-species comparison of neuron morphology, giraffe pyramidal neurons were compared to those quantified with the same methodology in African elephants and some cetaceans (e.g., bottlenose dolphin, minke whale, humpback whale). Across species, the giraffe (and cetaceans) exhibited less widely bifurcating apical dendrites compared to elephants. Quantitative dendritic measures revealed that the elephant and humpback whale had more extensive dendrites than giraffes, whereas the minke whale and bottlenose dolphin had less extensive dendritic arbors. Spine measures were highest in the giraffe, perhaps due to the high quality, perfusion fixation. The neuronal morphology in giraffe neocortex is thus generally consistent with what is known about other cetartiodactyls.
Collapse
|
30
|
de Sousa AA, Proulx MJ. What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives. Front Neuroanat 2014; 8:51. [PMID: 25009469 PMCID: PMC4069365 DOI: 10.3389/fnana.2014.00051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 06/03/2014] [Indexed: 11/25/2022] Open
Abstract
An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that an absolutely larger V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function.
Collapse
Affiliation(s)
| | - Michael J Proulx
- Crossmodal Cognition Lab, Department of Psychology, University of Bath Bath, UK
| |
Collapse
|