1
|
Aicardi S, Bozzo M, Guallart J, Garibaldi F, Lanteri L, Terzibasi E, Bagnoli S, Dionigi F, Steffensen JF, Poulsen AB, Domenici P, Candiani S, Amaroli A, Němec P, Ferrando S. The olfactory system of sharks and rays in numbers. Anat Rec (Hoboken) 2024. [PMID: 39030913 DOI: 10.1002/ar.25537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Cartilaginous fishes have large and elaborate olfactory organs, but only a small repertoire of olfactory receptor genes. Here, we quantitatively analyze the olfactory system of 21 species of sharks and rays, assessing many features of the olfactory organ (OOR) (number of primary lamellae, branches of the secondary folds, sensory surface area, and density and number of sensory neurons) and the olfactory bulb (OB) (number of neurons and non-neuronal cells), and estimate the ratio between the number of neurons in the two structures. We show that the number of lamellae in the OOR does not correlate with the sensory surface area, while the complexity of the lamellar shape does. The total number of olfactory receptor neurons ranges from 30.5 million to 4.3 billion and the total number of OB neurons from 1.5 to 90 million. The number of neurons in the olfactory epithelium is 16 to 158 times higher (median ratio is 46) than the number of neurons in the OB. These ratios considerably exceed those reported in mammals. High convergence from receptor neurons to neurons processing olfactory information, together with the remarkably small olfactory receptor repertoire, strongly suggests that the olfactory system of sharks and rays is well adapted to detect a limited number of odorants with high sensitivity.
Collapse
Affiliation(s)
- S Aicardi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - M Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | | | - F Garibaldi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - L Lanteri
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - E Terzibasi
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - S Bagnoli
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - F Dionigi
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - A B Poulsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - P Domenici
- CNR-IBF Institute of Biophysiscs, Pisa, Italy
- CNR-IAS Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment, Oristano, Italy
| | - S Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - A Amaroli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - P Němec
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - S Ferrando
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
2
|
Liao BY, Weng MP, Chang TY, Chang AYF, Ching YH, Wu CH. Degeneration of the Olfactory System in a Murid Rodent that Evolved Diurnalism. Mol Biol Evol 2024; 41:msae037. [PMID: 38376543 PMCID: PMC10906987 DOI: 10.1093/molbev/msae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/03/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
In mammalian research, it has been debated what can initiate an evolutionary tradeoff between different senses, and the phenomenon of sensory tradeoff in rodents, the most abundant mammalian clade, is not evident. The Nile rat (Arvicanthis niloticus), a murid rodent, recently adapted to a diurnal niche through an evolutionary acquisition of daylight vision with enhanced visual acuity. As such, this model provides an opportunity for a cross-species investigation where comparative morphological and multi-omic analyses of the Nile rat are made with its closely related nocturnal species, e.g. the mouse (Mus musculus) and the rat (Rattus norvegicus). Thus, morphological examinations were performed, and evolutionary reductions in relative sizes of turbinal bone surfaces, the cribriform plate, and the olfactory bulb were discovered in Nile rats. Subsequently, we compared multiple murid genomes, and profiled olfactory epithelium transcriptomes of mice and Nile rats at various ages with RNA sequencing. The results further demonstrate that, in comparison with mouse olfactory receptor (OR) genes, Nile rat OR genes have experienced less frequent gain, more frequent loss, and more frequent expression reduction during their evolution. Furthermore, functional degeneration of coding sequences in the Nile rat lineage was found in OR genes, yet not in other genes. Taken together, these results suggest that acquisition of improved vision in the Nile rat has been accompanied by degeneration of both olfaction-related anatomical structures and OR gene repertoires, consistent with the hypothesis of an olfaction-vision tradeoff initiated by the switch from a nocturnal to a diurnal lifestyle in mammals.
Collapse
Affiliation(s)
- Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China
| | - Meng-Pin Weng
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China
| | - Ting-Yan Chang
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China
| | - Andrew Ying-Fei Chang
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Taiwan, Republic of China
| | - Chia-Hwa Wu
- Laboratory Animal Center, National Health Research Institutes, Taiwan, Republic of China
| |
Collapse
|
3
|
Eiting TP, Smith TD, Forger NG, Dumont ER. Neuronal scaling in the olfactory system of bats. Anat Rec (Hoboken) 2023; 306:2781-2790. [PMID: 37658819 DOI: 10.1002/ar.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Comparative studies are a common way to address large-scale questions in sensory biology. For studies that investigate olfactory abilities, the most commonly used metric is olfactory bulb size. However, recent work has called into question the broad-scale use of olfactory bulb size. In this paper, we use three neuroanatomical measures with a more mechanistic link to olfactory function (number of olfactory sensory neurons (OSNs), number of mitral cells (MCs), and number of glomeruli) to ask how species with different diets may differ with respect to olfactory ability. We use phyllostomid bats as our study system because behavioral and physiological work has shown that fruit- and nectar-feeding phyllostomids rely on odors for detecting, localizing, and assessing potential foods, while insect-eating species do not. Therefore, we predicted that fruit- and nectar-feeding bats would have larger numbers of these three neuroanatomical measures than insect-eating species. In general, our results supported the predictions. We found that fruit-eaters had greater numbers of OSNs and glomeruli than insect-eaters, but we found no difference between groups in number of MCs. We also examined the allometric relationship between the three neuroanatomical variables and olfactory bulb volume, and we found isometry in all cases. These findings lend support to the notion that neuroanatomical measures can offer valuable insights into comparative olfactory abilities, and suggest that the size of the olfactory bulb may be an informative parameter to use at the whole-organism level.
Collapse
Affiliation(s)
- Thomas P Eiting
- Graduate Program in Organismic and Evolutionary Biology, 221 Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| | - Timothy D Smith
- School of Physical Therapy, 108 Central Loop, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Nancy G Forger
- Department of Psychology and Center for Neuroendocrine Studies, Tobin Hall, 135 Hicks Way, University of Massachusetts, Amherst, Massachusetts, USA
| | - Elizabeth R Dumont
- Graduate Program in Organismic and Evolutionary Biology, 221 Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Biology, 221 Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Down a Rabbit Hole: Burrowing Behaviour and Larger Home Ranges are Related to Larger Brains in Leporids. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractStudies on the evolution of brain size variation usually focus on large clades encompassing broad phylogenetic groups. This risks introducing ‘noise’ in the results, often obscuring effects that might be detected in less inclusive clades. Here, we focus on a sample of endocranial volumes (endocasts) of 18 species of rabbits and hares (Lagomorpha: Leporidae), which are a discrete radiation of mammals with a suitably large range of body sizes. Using 60 individuals, we test five popular hypotheses on brain size and olfactory bulb evolution in mammals. We also address the pervasive issue of missing data, using multiple phylogenetic imputations as to conserve the full sample size for all analyses. Our analyses show that home range and burrowing behaviour are the only predictors of leporid brain size variation. Litter size, which is one of the most widely reported constraints on brain size, was unexpectedly not associated with brain size. However, a constraining effect may be masked by a strong association of litter size with temperature seasonality, warranting further study. Lastly, we show that unreasonable estimations of phylogenetic signal (Pagel’s lamba) warrant additional caution when using small sample sizes, such as ours, in comparative studies.
Collapse
|
5
|
Abstract
The evolution of brain processing capacity has traditionally been inferred from data on brain size. However, similarly sized brains of distantly related species can differ in the number and distribution of neurons, their basic computational units. Therefore, a finer-grained approach is needed to reveal the evolutionary paths to increased cognitive capacity. Using a new, comprehensive dataset, we analyzed brain cellular composition across amniotes. Compared to reptiles, mammals and birds have dramatically increased neuron numbers in the telencephalon and cerebellum, which are brain parts associated with higher cognition. Astoundingly, a phylogenetic analysis suggests that as few as four major changes in neuron–brain scaling in over 300 million years of evolution pave the way to intelligence in endothermic land vertebrates. Reconstructing the evolution of brain information-processing capacity is paramount for understanding the rise of complex cognition. Comparative studies of brain evolution typically use brain size as a proxy. However, to get a less biased picture of the evolutionary paths leading to high cognitive power, we need to compare brains not by mass but by numbers of neurons, which are their basic computational units. This study reconstructs the evolution of brains across amniotes by directly analyzing neuron numbers by using the largest dataset of its kind and including essential data on reptiles. We show that reptiles have not only small brains relative to body size but also low neuronal densities, resulting in average neuron numbers over 20 times lower than those in birds and mammals of similar body size. Amniote brain evolution is characterized by the following four major shifts in neuron–brain scaling. The most dramatic increases in brain neurons occurred independently with the appearance of birds and mammals, resulting in convergent neuron scaling in the two endotherm lineages. The other two major increases in the number of neurons happened in core land birds and anthropoid primates, which are two groups known for their cognitive prowess. Interestingly, relative brain size is associated with relative neuronal cell density in reptiles, birds, and primates but not in other mammals. This has important implications for studies using relative brain size as a proxy when looking for evolutionary drivers of animal cognition.
Collapse
|
6
|
The Arrangement of the Peripheral Olfactory System of Pleuragramma antarcticum: A Well-Exploited Small Sensor, an Aided Water Flow, and a Prominent Effort in Primary Signal Elaboration. Animals (Basel) 2022; 12:ani12050663. [PMID: 35268231 PMCID: PMC8909514 DOI: 10.3390/ani12050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary How animals perceive their surrounding environment is crucial to their reactions and behavior. Olfaction, among others, is one of the more important senses for wide-range communication and in low-light environments. This study aims to give a morphological description of the peripheral olfactory system of the Antarctic silverfish, which is a key species in the coastal Antarctic ecosystem. The head of the Antarctic silverfish is specialized to assure that the olfactory organ keeps in contact with a large volume of water, even when the fish is not actively swimming. The sensory surface area and the number of neurons in the primary olfactory brain region show that this fish invests energy in the detection and elaboration of olfactory signals. In the cold waters of the Southern Ocean, the Antarctic silverfish is therefore likely to rely considerably on olfaction. Abstract The olfactory system is constituted in a consistent way across vertebrates. Nasal structures allow water/air to enter an olfactory cavity, conveying the odorants to a sensory surface. There, the olfactory neurons form, with their axons, a sensory nerve projecting to the telencephalic zone—named the olfactory bulb. This organization comes with many different arrangements, whose meaning is still a matter of debate. A morphological description of the olfactory system of many teleost species is present in the literature; nevertheless, morphological investigations rarely provide a quantitative approach that would help to provide a deeper understanding of the structures where sensory and elaborating events happen. In this study, the peripheral olfactory system of the Antarctic silverfish, which is a keystone species in coastal Antarctica ecosystems, has also been described, employing some quantitative methods. The olfactory chamber of this species is connected to accessory nasal sacs, which probably aid water movements in the chamber; thus, the head of the Antarctic silverfish is specialized to assure that the olfactory organ keeps in contact with a large volume of water—even when the fish is not actively swimming. Each olfactory organ, shaped like an asymmetric rosette, has, in adult fish, a sensory surface area of about 25 mm2, while each olfactory bulb contains about 100,000 neurons. The sensory surface area and the number of neurons in the primary olfactory brain region show that this fish invests energy in the detection and elaboration of olfactory signals and allow comparisons among different species. The mouse, for example—which is considered a macrosmatic vertebrate—has a sensory surface area of the same order of magnitude as that of the Antarctic silverfish, but ten times more neurons in the olfactory bulb. Catsharks, on the other hand, have a sensory surface area that is two orders of magnitude higher than that of the Antarctic silverfish, while the number of neurons has the same order of magnitude. The Antarctic silverfish is therefore likely to rely considerably on olfaction.
Collapse
|
7
|
Aicardi S, Amaroli A, Gallus L, Di Blasi D, Ghigliotti L, Betti F, Vacchi M, Ferrando S. Quantification of neurons in the olfactory bulb of the catsharks Scyliorhinus canicula (Linnaeus, 1758) and Galeus melastomus (Rafinesque, 1810). ZOOLOGY 2020; 141:125796. [PMID: 32464514 DOI: 10.1016/j.zool.2020.125796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/27/2022]
Abstract
In vertebrates, the olfactory bulb (OB) is the zone of the brain devoted to receiving the olfactory stimuli. The size of the OB relative to the size of the brain has been positively correlated to a good olfactory capability but, recently, this correlation was questioned after new investigation techniques were developed. Among them, the isotropic fractionator allows to estimate the number of neurons and non-neurons in a given portion of nervous tissue. To date, this technique has been applied in a number of species; in particular the OB was separately analyzed in numerous mammals and in a single crocodile species. Thus, a quantitative description of the OB's cells is available for a small portion of vertebrates. Main aim of this work was to apply isotropic fractionator to investigate the olfactory capability of elasmobranch fishes, whose traditional concept of outstanding olfaction has recently been scaled down by anatomical and physiological studies. For this purpose, the OB of two elasmobranch species, Galeus melastomus and Scyliorhinus canicula, was studied leading to the determination of the number of neurons vs non-neurons in the OB of the specimens. In addition, the obtained cell quantification was related to the olfactory epithelium surface area to obtain a new parameter that encapsulates both information on the peripheral olfactory organ and the OB. The analyzed species resulted in an overall similar quantitative organization of the peripheral olfactory system; slight differences were detected possibly reflecting different environment preference and feeding strategy. Moreover, the non-neurons/neurons ratio of these species, compared to those available in the literature, seems to place elasmobranch fishes among the vertebrate species in which olfaction plays an important role.
Collapse
Affiliation(s)
- Stefano Aicardi
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa, 26, 16132, Genoa, Italy
| | - Andrea Amaroli
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Largo Rosanna Benzi, 8, 16132, Genoa, Italy; Department of Orthopedic Dentistry, Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Ulitsa, 19с1, Moscow, 119146, Russia
| | - Lorenzo Gallus
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa, 26, 16132, Genoa, Italy
| | - Davide Di Blasi
- Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment (IAS), National Research Council (CNR), Via De Marini, 6, 16149, Genoa, Italy
| | - Laura Ghigliotti
- Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment (IAS), National Research Council (CNR), Via De Marini, 6, 16149, Genoa, Italy
| | - Federico Betti
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa, 26, 16132, Genoa, Italy
| | - Marino Vacchi
- Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment (IAS), National Research Council (CNR), Via De Marini, 6, 16149, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa, 26, 16132, Genoa, Italy.
| |
Collapse
|
8
|
Ferrando S, Amaroli A, Gallus L, Di Blasi D, Carlig E, Rottigni M, Vacchi M, Parker SJ, Ghigliotti L. Olfaction in the Antarctic toothfish Dissostichus mawsoni: clues from the morphology and histology of the olfactory rosette and bulb. Polar Biol 2019. [DOI: 10.1007/s00300-019-02496-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Abstract
It is commonly believed that humans have a poor sense of smell compared to other mammalian species. However, this idea derives not from empirical studies of human olfaction but from a famous 19th-century anatomist's hypothesis that the evolution of human free will required a reduction in the proportional size of the brain's olfactory bulb. The human olfactory bulb is actually quite large in absolute terms and contains a similar number of neurons to that of other mammals. Moreover, humans have excellent olfactory abilities. We can detect and discriminate an extraordinary range of odors, we are more sensitive than rodents and dogs for some odors, we are capable of tracking odor trails, and our behavioral and affective states are influenced by our sense of smell.
Collapse
Affiliation(s)
- John P McGann
- Behavioral and Systems Neuroscience, Psychology Department, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Abreu MS, Giacomini AC, Kalueff AV, Barcellos LJ. The smell of “anxiety”: Behavioral modulation by experimental anosmia in zebrafish. Physiol Behav 2016; 157:67-71. [DOI: 10.1016/j.physbeh.2016.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 11/29/2022]
|
11
|
Herculano-Houzel S, Catania K, Manger PR, Kaas JH. Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:145-63. [DOI: 10.1159/000437413] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/03/2015] [Indexed: 11/19/2022]
Abstract
Comparative studies amongst extant species are one of the pillars of evolutionary neurobiology. In the 20th century, most comparative studies remained restricted to analyses of brain structure volume and surface areas, besides estimates of neuronal density largely limited to the cerebral cortex. Over the last 10 years, we have amassed data on the numbers of neurons and other cells that compose the entirety of the brain (subdivided into cerebral cortex, cerebellum, and rest of brain) of 39 mammalian species spread over 6 clades, as well as their densities. Here we provide that entire dataset in a format that is readily useful to researchers of any area of interest in the hope that it will foster the advancement of evolutionary and comparative studies well beyond the scope of neuroscience itself. We also reexamine the relationship between numbers of neurons, neuronal densities and body mass, and find that in the rest of brain, but not in the cerebral cortex or cerebellum, there is a single scaling rule that applies to average neuronal cell size, which increases with the linear dimension of the body, even though there is no single scaling rule that relates the number of neurons in the rest of brain to body mass. Thus, larger bodies do not uniformly come with more neurons - but they do fairly uniformly come with larger neurons in the rest of brain, which contains a number of structures directly connected to sources or targets in the body.
Collapse
|
12
|
Corfield JR, Price K, Iwaniuk AN, Gutierrez-Ibañez C, Birkhead T, Wylie DR. Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny. Front Neuroanat 2015; 9:102. [PMID: 26283931 PMCID: PMC4518324 DOI: 10.3389/fnana.2015.00102] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022] Open
Abstract
The relative size of olfactory bulbs (OBs) is correlated with olfactory capabilities across vertebrates and is widely used to assess the relative importance of olfaction to a species’ ecology. In birds, variations in the relative size of OBs are correlated with some behaviors; however, the factors that have led to the high level of diversity seen in OB sizes across birds are still not well understood. In this study, we use the relative size of OBs as a neuroanatomical proxy for olfactory capabilities in 135 species of birds, representing 21 orders. We examine the scaling of OBs with brain size across avian orders, determine likely ancestral states and test for correlations between OB sizes and habitat, ecology, and behavior. The size of avian OBs varied with the size of the brain and this allometric relationship was for the most part isometric, although species did deviate from this trend. Large OBs were characteristic of more basal species and in more recently derived species the OBs were small. Living and foraging in a semi-aquatic environment was the strongest variable driving the evolution of large OBs in birds; olfaction may provide cues for navigation and foraging in this otherwise featureless environment. Some of the diversity in OB sizes was also undoubtedly due to differences in migratory behavior, foraging strategies and social structure. In summary, relative OB size in birds reflect allometry, phylogeny and behavior in ways that parallel that of other vertebrate classes. This provides comparative evidence that supports recent experimental studies into avian olfaction and suggests that olfaction is an important sensory modality for all avian species.
Collapse
Affiliation(s)
- Jeremy R Corfield
- Department of Psychology, University of Alberta, Edmonton AB, Canada ; Department of Neuroscience, University of Lethbridge, Lethbridge AB, Canada
| | - Kasandra Price
- Department of Psychology, University of Alberta, Edmonton AB, Canada
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge AB, Canada
| | | | - Tim Birkhead
- Department of Animal and Plant Sciences, University of Sheffield Sheffield, UK
| | - Douglas R Wylie
- Department of Psychology, University of Alberta, Edmonton AB, Canada
| |
Collapse
|
13
|
Abstract
Olfaction, the sense of smell, was a latecomer to the systematic investigation of primate sensory ecology after long years in which it was considered to be of minor importance. This view shifted with the growing understanding of its role in social behavior and the accumulation of physiological studies demonstrating that the olfactory abilities of some primates are on a par with those of olfactory-dependent mammals such as dogs and rodents. Recent years have seen a proliferation of physiological, behavioral, anatomical, and genetic investigations of primate olfaction. These investigations have begun to shed light on the importance of olfaction in the process of food acquisition. However, integration of these works has been limited. It is therefore still difficult to pinpoint large-scale evolutionary scenarios, namely the functions that the sense of smell fulfills in primates' feeding ecology and the ecological niches that favor heavier reliance on olfaction. Here, we review available behavioral and physiological studies of primates in the field or captivity and try to elucidate how and when the sense of smell can help them acquire food.
Collapse
|
14
|
Willemet R. Commentary: Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates. Front Neuroanat 2015; 9:84. [PMID: 26157364 PMCID: PMC4477155 DOI: 10.3389/fnana.2015.00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/11/2015] [Indexed: 11/13/2022] Open
|
15
|
A unique cellular scaling rule in the avian auditory system. Brain Struct Funct 2015; 221:2675-93. [DOI: 10.1007/s00429-015-1064-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
|
16
|
Herculano-Houzel S, Manger PR, Kaas JH. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 2014; 8:77. [PMID: 25157220 PMCID: PMC4127475 DOI: 10.3389/fnana.2014.00077] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022] Open
Abstract
Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Neurociência Translacional, Ministério de Ciência e Tecnologia São Paulo, Brazil
| | - Paul R Manger
- Department of Anatomy, University of the Witwatersrand Johannesburg, South Africa
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University Nashville, TN, USA
| |
Collapse
|