1
|
Placzek M, Chinnaiya K, Kim DW, Blackshaw S. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol 2025; 21:118-130. [PMID: 39313573 PMCID: PMC11864813 DOI: 10.1038/s41574-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain-body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.
Collapse
Affiliation(s)
- Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | | | - Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Wang S, Qin Q, Jiang D, Xiao Y, Ye L, Jiang X, Guo Q. Re-analysis of gene mutations found in pituitary stalk interruption syndrome and a new hypothesis on the etiology. Front Endocrinol (Lausanne) 2024; 15:1338781. [PMID: 38464967 PMCID: PMC10920343 DOI: 10.3389/fendo.2024.1338781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Background Pituitary stalk interruption syndrome (PSIS) is a complex clinical syndrome characterized by varied pituitary hormone deficiencies, leading to severe manifestations across multiple systems. These include lifelong infertility, short stature, mental retardation, and potentially life-threatening pituitary crises if not promptly diagnosed and treated. Despite extensive research, the precise pathogenesis of PSIS remains unclear. Currently, there are two proposed theories regarding the pathogenic mechanisms: the genetic defect theory and the perinatal injury theory. Methods We systematically searched English databases (PubMed, Web of Science, Embase) and Chinese databases (CNKI, WanFang Med Online, Sinomed) up to February 24, 2023, to summarize studies on gene sequencing in PSIS patients. Enrichment analyses of reported mutated genes were subsequently performed using the Metascape platform. Results Our study included 37 articles. KEGG enrichment analysis revealed mutated genes were enriched in the Notch signaling pathway, Wnt signaling pathway, and Hedgehog signaling pathway. GO enrichment analysis demonstrated mutated genes were enriched in biological processes such as embryonic development, brain development, axon development and guidance, and development of other organs. Conclusion Based on our summary and analyses, we propose a new hypothesis: disruptions in normal embryonic development, partially stemming from the genetic background and/or specific gene mutations in individuals, may increase the likelihood of abnormal fetal deliveries, where different degrees of traction during delivery may lead to different levels of pituitary stalk interruption and posterior lobe ectopia. The clinical diversity observed in PSIS patients may result from a combination of genetic background, specific mutations, and variable degrees of traction during delivery.
Collapse
Affiliation(s)
- Shengjie Wang
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Deyue Jiang
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Xiao
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lingtong Ye
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qinghua Guo
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Catozzi A, Peiris-Pagès M, Humphrey S, Revill M, Morgan D, Roebuck J, Chen Y, Davies-Williams B, Lallo A, Galvin M, Pearce SP, Kerr A, Priest L, Foy V, Carter M, Caeser R, Chan J, Rudin CM, Blackhall F, Frese KK, Dive C, Simpson KL. Functional Characterisation of the ATOH1 Molecular Subtype Indicates a Pro-Metastatic Role in Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580247. [PMID: 38405859 PMCID: PMC10888785 DOI: 10.1101/2024.02.16.580247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Molecular subtypes of Small Cell Lung Cancer (SCLC) have been described based on differential expression of transcription factors (TFs) ASCL1, NEUROD1, POU2F3 and immune-related genes. We previously reported an additional subtype based on expression of the neurogenic TF ATOH1 within our SCLC Circulating tumour cell-Derived eXplant (CDX) model biobank. Here we show that ATOH1 protein was detected in 7/81 preclinical models and 16/102 clinical samples of SCLC. In CDX models, ATOH1 directly regulated neurogenesis and differentiation programs consistent with roles in normal tissues. In ex vivo cultures of ATOH1-positive CDX, ATOH1 was required for cell survival. In vivo, ATOH1 depletion slowed tumour growth and suppressed liver metastasis. Our data validate ATOH1 as a bona fide oncogenic driver of SCLC with tumour cell survival and pro-metastatic functions. Further investigation to explore ATOH1 driven vulnerabilities for targeted treatment with predictive biomarkers is warranted.
Collapse
Affiliation(s)
- Alessia Catozzi
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Maria Peiris-Pagès
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Sam Humphrey
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Mitchell Revill
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Derrick Morgan
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Jordan Roebuck
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Yitao Chen
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Bethan Davies-Williams
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Alice Lallo
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Simon P Pearce
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Alastair Kerr
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Lynsey Priest
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Victoria Foy
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mathew Carter
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kristopher K Frese
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Kathryn L Simpson
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Marczenke M, Sunaga-Franze DY, Popp O, Althaus IW, Sauer S, Mertins P, Christ A, Allen BL, Willnow TE. GAS1 is required for NOTCH-dependent facilitation of SHH signaling in the ventral forebrain neuroepithelium. Development 2021; 148:272617. [PMID: 34698766 PMCID: PMC8627604 DOI: 10.1242/dev.200080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Growth arrest-specific 1 (GAS1) acts as a co-receptor to patched 1, promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in induced pluripotent stem cell-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating NOTCH signaling, which is essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives NOTCH pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating NOTCH and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.
Collapse
Affiliation(s)
- Maike Marczenke
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany
| | | | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Irene W Althaus
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sascha Sauer
- Genomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Annabel Christ
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas E Willnow
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
nr0b1 (DAX1) loss of function in zebrafish causes hypothalamic defects via abnormal progenitor proliferation and differentiation. J Genet Genomics 2021; 49:217-229. [PMID: 34606992 DOI: 10.1016/j.jgg.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022]
Abstract
The nuclear receptor DAX-1 (encoded by the NR0B1 gene) is presented in the hypothalamic tissues in humans and other vertebrates. Human patients with NR0B1 mutations often have hypothalamic-pituitary defects, but the involvement of NR0B1 in hypothalamic development and function is not well understood. Here, we report the disruption of the nr0b1 gene in zebrafish causes abnormal expression of gonadotropins, a reduction in fertilization rate, and an increase in post-fasting food intake, which is indicative of abnormal hypothalamic functions. We find that loss of nr0b1 increases the number of prodynorphin (pdyn)-expressing neurons but decreases the number of pro-opiomelanocortin (pomcb)-expressing neurons in the zebrafish hypothalamic arcuate region (ARC). Further examination reveals that the proliferation of progenitor cells is reduced in the hypothalamus of nr0b1 mutant embryos accompanying with the decreased expression of genes in the Notch signaling pathway. Additionally, the inhibition of Notch signaling in wild-type embryos increases the number of pdyn neurons, mimicking the nr0b1 mutant phenotype. In contrast, ectopic activation of Notch signaling in nr0b1 mutant embryos decreases the number of pdyn neurons. Taken together, our results suggest that nr0b1 regulates neural progenitor proliferation and maintenance to ensure normal hypothalamic neuron development.
Collapse
|
6
|
Gupta S, Butler SJ. Getting in touch with your senses: Mechanisms specifying sensory interneurons in the dorsal spinal cord. WIREs Mech Dis 2021; 13:e1520. [PMID: 34730293 PMCID: PMC8459260 DOI: 10.1002/wsbm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
The spinal cord is functionally and anatomically divided into ventrally derived motor circuits and dorsally derived somatosensory circuits. Sensory stimuli originating either at the periphery of the body, or internally, are relayed to the dorsal spinal cord where they are processed by distinct classes of sensory dorsal interneurons (dIs). dIs convey sensory information, such as pain, heat or itch, either to the brain, and/or to the motor circuits to initiate the appropriate response. They also regulate the intensity of sensory information and are the major target for the opioid analgesics. While the developmental mechanisms directing ventral and dorsal cell fates have been hypothesized to be similar, more recent research has suggested that dI fates are specified by novel mechanisms. In this review, we will discuss the molecular events that specify dorsal neuronal patterning in the spinal cord, thereby generating diverse dI identities. We will then discuss how this molecular understanding has led to the development of robust stem cell methods to derive multiple spinal cell types, including the dIs, and the implication of these studies for treating spinal cord injuries and neurodegenerative diseases. This article is categorized under: Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Samantha J. Butler
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Intellectual and Developmental Disabilities Research CenterUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Marelli F, Rurale G, Persani L. From Endoderm to Progenitors: An Update on the Early Steps of Thyroid Morphogenesis in the Zebrafish. Front Endocrinol (Lausanne) 2021; 12:664557. [PMID: 34149617 PMCID: PMC8213386 DOI: 10.3389/fendo.2021.664557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
The mechanisms underlying thyroid gland development have a central interest in biology and this review is aimed to provide an update on the recent advancements on the early steps of thyroid differentiation that were obtained in the zebrafish, because this teleost fish revealed to be a suitable organism to study the early developmental stages. Physiologically, the thyroid precursors fate is delineated by the appearance among the endoderm cells of the foregut of a restricted cell population expressing specific transcription factors, including pax2a, nkx2.4b, and hhex. The committed thyroid primordium first appears as a thickening of the pharyngeal floor of the anterior endoderm, that subsequently detaches from the floor and migrates to its final location where it gives rise to the thyroid hormone-producing follicles. At variance with mammalian models, thyroid precursor differentiation in zebrafish occurs early during the developmental process before the dislocation to the eutopic positioning of thyroid follicles. Several pathways have been implicated in these early events and nowadays there is evidence of a complex crosstalk between intrinsic (coming from the endoderm and thyroid precursors) and extrinsic factors (coming from surrounding tissues, as the cardiac mesoderm) whose organization in time and space is probably required for the proper thyroid development. In particular, Notch, Shh, Fgf, Bmp, and Wnt signaling seems to be required for the commitment of endodermal cells to a thyroid fate at specific developmental windows of zebrafish embryo. Here, we summarize the recent findings produced in the various zebrafish experimental models with the aim to define a comprehensive picture of such complicated puzzle.
Collapse
Affiliation(s)
- Federica Marelli
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano - LITA, Segrate, Italy
| | - Giuditta Rurale
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- Dipartimento di Malattie Endocrine e del Metabolismo, IRCCS Istituto Auxologico Italiano IRCCS, Milan, Italy
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano - LITA, Segrate, Italy
| |
Collapse
|
8
|
Hamdi-Rozé H, Ware M, Guyodo H, Rizzo A, Ratié L, Rupin M, Carré W, Kim A, Odent S, Dubourg C, David V, de Tayrac M, Dupé V. Disrupted Hypothalamo-Pituitary Axis in Association With Reduced SHH Underlies the Pathogenesis of NOTCH-Deficiency. J Clin Endocrinol Metab 2020; 105:5836893. [PMID: 32403133 DOI: 10.1210/clinem/dgaa249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT In human, Sonic hedgehog (SHH) haploinsufficiency is the predominant cause of holoprosencephaly, a structural malformation of the forebrain midline characterized by phenotypic heterogeneity and incomplete penetrance. The NOTCH signaling pathway has recently been associated with holoprosencephaly in humans, but the precise mechanism involving NOTCH signaling during early brain development remains unknown. OBJECTIVE The aim of this study was to evaluate the relationship between SHH and NOTCH signaling to determine the mechanism by which NOTCH dysfunction could cause midline malformations of the forebrain. DESIGN In this study, we have used a chemical inhibition approach in the chick model and a genetic approach in the mouse model. We also reported results obtained from the clinical diagnosis of a cohort composed of 141 holoprosencephaly patients. RESULTS We demonstrated that inhibition of NOTCH signaling in chick embryos as well as in mouse embryos induced a specific downregulation of SHH in the anterior hypothalamus. Our data in the mouse also revealed that the pituitary gland was the most sensitive tissue to Shh insufficiency and that haploinsufficiency of the SHH and NOTCH signaling pathways synergized to produce a malformed pituitary gland. Analysis of a large holoprosencephaly cohort revealed that some patients possessed multiple heterozygous mutations in several regulators of both pathways. CONCLUSIONS These results provided new insights into molecular mechanisms underlying the extreme phenotypic variability observed in human holoprosencephaly. They showed how haploinsufficiency of the SHH and NOTCH activity could contribute to specific congenital hypopituitarism that was associated with a sella turcica defect.
Collapse
Affiliation(s)
- Houda Hamdi-Rozé
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Michelle Ware
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Hélène Guyodo
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Aurélie Rizzo
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Leslie Ratié
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Maïlys Rupin
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Wilfrid Carré
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Artem Kim
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Sylvie Odent
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Clinique, CHU, Rennes, France
| | - Christèle Dubourg
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Véronique David
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| |
Collapse
|
9
|
Reuter I, Jäckels J, Kneitz S, Kuper J, Lesch KP, Lillesaar C. Fgf3 is crucial for the generation of monoaminergic cerebrospinal fluid contacting cells in zebrafish. Biol Open 2019; 8:bio.040683. [PMID: 31036752 PMCID: PMC6602327 DOI: 10.1242/bio.040683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells. We show that fgf3 positively regulates the number of serotonergic CSF-c cells, as well as a subset of dopaminergic and neuroendocrine cells in the posterior hypothalamus via control of proliferation and cell survival. Further, expression of the ETS-domain transcription factor etv5b is downregulated after fgf3 impairment. Previous findings identified etv5b as critical for the proliferation of serotonergic progenitors in the hypothalamus, and therefore we now suggest that Fgf3 acts via etv5b during early development to ultimately control the number of mature serotonergic CSF-c cells. Moreover, our analysis of the developing hypothalamic transcriptome shows that the expression of fgf3 is upregulated upon fgf3 loss-of-function, suggesting activation of a self-compensatory mechanism. Together, these results highlight Fgf3 in a novel context as part of a signalling pathway of critical importance for hypothalamic development. Summary: This study highlights Fgf3 in a novel context where it is part of a signalling pathway of critical importance for development of hypothalamic monoaminergic cells in zebrafish.
Collapse
Affiliation(s)
- Isabel Reuter
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Jana Jäckels
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Susanne Kneitz
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Jochen Kuper
- Structural Biology, Rudolf Virchow Center for Biomedical Research, University of Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Christina Lillesaar
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany .,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Germany
| |
Collapse
|
10
|
Carmona-Alcocer V, Rohr KE, Joye DAM, Evans JA. Circuit development in the master clock network of mammals. Eur J Neurosci 2018; 51:82-108. [PMID: 30402923 DOI: 10.1111/ejn.14259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/08/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022]
Abstract
Daily rhythms are generated by the circadian timekeeping system, which is orchestrated by the master circadian clock in the suprachiasmatic nucleus (SCN) of mammals. Circadian timekeeping is endogenous and does not require exposure to external cues during development. Nevertheless, the circadian system is not fully formed at birth in many mammalian species and it is important to understand how SCN development can affect the function of the circadian system in adulthood. The purpose of the current review is to discuss the ontogeny of cellular and circuit function in the SCN, with a focus on work performed in model rodent species (i.e., mouse, rat, and hamster). Particular emphasis is placed on the spatial and temporal patterns of SCN development that may contribute to the function of the master clock during adulthood. Additional work aimed at decoding the mechanisms that guide circadian development is expected to provide a solid foundation upon which to better understand the sources and factors contributing to aberrant maturation of clock function.
Collapse
Affiliation(s)
| | - Kayla E Rohr
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Deborah A M Joye
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Jennifer A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Dubourg C, Kim A, Watrin E, de Tayrac M, Odent S, David V, Dupé V. Recent advances in understanding inheritance of holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:258-269. [PMID: 29785796 DOI: 10.1002/ajmg.c.31619] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
Holoprosencephaly (HPE) is a complex genetic disorder of the developing forebrain characterized by high phenotypic and genetic heterogeneity. HPE was initially defined as an autosomal dominant disease, but recent research has shown that its mode of transmission is more complex. The past decade has witnessed rapid development of novel genetic technologies and significant progresses in clinical studies of HPE. In this review, we recapitulate genetic epidemiological studies of the largest European HPE cohort and summarize the novel genetic discoveries of HPE based on recently developed diagnostic methods. Our main purpose is to present different inheritance patterns that exist for HPE with a particular emphasis on oligogenic inheritance and its implications in genetic counseling.
Collapse
Affiliation(s)
- Christèle Dubourg
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Artem Kim
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France
| | - Erwan Watrin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Sylvie Odent
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Clinique, CHU, Rennes, France
| | - Véronique David
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France
| |
Collapse
|
12
|
Mammillothalamic and Mammillotegmental Tracts as New Targets for Dementia and Epilepsy Treatment. World Neurosurg 2017; 110:133-144. [PMID: 29129763 DOI: 10.1016/j.wneu.2017.10.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Recently, neuromodulation through deep brain stimulation (DBS) has appeared as a new surgical procedure in the treatment of some types of dementia and epilepsy. The mammillothalamic and mammillotegmental tracts are involved among the new targets. To our knowledge, a review article focused specifically on these mammillary body efferents is lacking in the medical literature. Their contribution to memory is, regrettably, often overlooked. METHODS A review of the relevant literature was conducted. RESULTS There is evidence that mammillary bodies can contribute to memory independently from hippocampal formation, but the mechanism is not yet known. Recent studies in animals have provided evidence for the specific roles of these mammillary body efferents in regulating memory independently. In animal studies, it has been shown that the disruption of the mammillothalamic tract inhibits seizures and that electrical stimulation of the mammillary body or mammillothalamic tract raises the seizure threshold. In humans, DBS targeting the mammillary body through the mammillothalamic tract or the stimulation of the anterior thalamic nucleus, especially in the areas closely related to the mammillothalamic tract, has been found effective in patients with medically refractory epilepsy. Nonetheless, little knowledge exists on the functional anatomy of the mammillary body efferents, and their role in the exact mechanism of epileptogenic activity and in the memory function of the human brain. CONCLUSIONS A comprehensive knowledge of the white matter anatomy of the mammillothalamic and mammillotegmental tracts is crucial since they have emerged as new DBS targets in the treatment of various disorders including dementia and epilepsy.
Collapse
|
13
|
Xie Y, Dorsky RI. Development of the hypothalamus: conservation, modification and innovation. Development 2017; 144:1588-1599. [PMID: 28465334 DOI: 10.1242/dev.139055] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothalamus, which regulates fundamental aspects of physiological homeostasis and behavior, is a brain region that exhibits highly conserved anatomy across vertebrate species. Its development involves conserved basic mechanisms of induction and patterning, combined with a more plastic process of neuronal fate specification, to produce brain circuits that mediate physiology and behavior according to the needs of each species. Here, we review the factors involved in the induction, patterning and neuronal differentiation of the hypothalamus, highlighting recent evidence that illustrates how changes in Wnt/β-catenin signaling during development may lead to species-specific form and function of this important brain structure.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Yao L, Liu Y, Qiu Z, Kumar S, Curran JE, Blangero J, Chen Y, Lehman DM. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Hypothalamic Neurones Provides Developmental Insights into Genetic Loci for Body Weight Regulation. J Neuroendocrinol 2017; 29:10.1111/jne.12455. [PMID: 28071834 PMCID: PMC5328859 DOI: 10.1111/jne.12455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/16/2023]
Abstract
Recent data suggest that common genetic risks for metabolic disorders such as obesity may be human-specific and exert effects via the central nervous system. To overcome the limitation of human tissue access for study, we have generated induced human pluripotent stem cell (hiPSC)-derived neuronal cultures that recapture many features of hypothalamic neurones within the arcuate nucleus. In the present study, we have comprehensively characterised this model across development, benchmarked these neurones to in vivo events, and demonstrate a link between obesity risk variants and hypothalamic development. The dynamic transcriptome across neuronal maturation was examined using microarray and RNA sequencing methods at nine time points. K-means clustering of the longitudinal data was conducted to identify co-regulation and microRNA control of biological processes. The transcriptomes were compared with those of 103 samples from 13 brain regions reported in the Genotype-Tissue Expression database (GTEx) using principal components analysis. Genes with proximity to body mass index (BMI)-associated genetic variants were mapped to the developmentally expressed genesets, and enrichment significance was assessed with Fisher's exact test. The human neuronal cultures have a transcriptional and physiological profile of neuropeptide Y/agouti-related peptide arcuate nucleus neurones. The neuronal transcriptomes were highly correlated with adult hypothalamus compared to any other brain region from the GTEx. Also, approximately 25% of the transcripts showed substantial changes in expression across neuronal development and potential co-regulation of biological processes that mirror neuronal development in vivo. These developmentally expressed genes were significantly enriched for genes in proximity to BMI-associated variants. We confirmed the utility of this in vitro human model for studying the development of key hypothalamic neurones involved in energy balance and show that genes at loci associated with body weight regulation may share a pattern of developmental regulation. These data support the need to investigate early development to elucidate the human-specific central nervous system pathophysiology underlying obesity susceptibility.
Collapse
Affiliation(s)
- Li Yao
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yuanhang Liu
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhifang Qiu
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute (STDOI), University of Texas Rio Grande Valley (UTRGV) School of Medicine, Brownsville, TX, USA
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute (STDOI), University of Texas Rio Grande Valley (UTRGV) School of Medicine, Brownsville, TX, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute (STDOI), University of Texas Rio Grande Valley (UTRGV) School of Medicine, Brownsville, TX, USA
| | - Yidong Chen
- Department of Epidemiology and Biostatistics, and Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Donna M. Lehman
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
15
|
Ware M, Hamdi-Rozé H, Le Friec J, David V, Dupé V. Regulation of downstream neuronal genes by proneural transcription factors during initial neurogenesis in the vertebrate brain. Neural Dev 2016; 11:22. [PMID: 27923395 PMCID: PMC5142277 DOI: 10.1186/s13064-016-0077-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/29/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Neurons arise in very specific regions of the neural tube, controlled by components of the Notch signalling pathway, proneural genes, and other bHLH transcription factors. How these specific neuronal areas in the brain are generated during development is just beginning to be elucidated. Notably, the critical role of proneural genes during differentiation of the neuronal populations that give rise to the early axon scaffold in the developing brain is not understood. The regulation of their downstream effectors remains poorly defined. RESULTS This study provides the first overview of the spatiotemporal expression of proneural genes in the neuronal populations of the early axon scaffold in both chick and mouse. Overexpression studies and mutant mice have identified a number of specific neuronal genes that are targets of proneural transcription factors in these neuronal populations. CONCLUSION Together, these results improve our understanding of the molecular mechanisms involved in differentiation of the first neuronal populations in the brain.
Collapse
Affiliation(s)
- Michelle Ware
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.,Present address: Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, CB2 3DY, Cambridge, UK
| | - Houda Hamdi-Rozé
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.,Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
| | - Julien Le Friec
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France
| | - Véronique David
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.,Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
| | - Valérie Dupé
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.
| |
Collapse
|
16
|
Santos-Durán GN, Ferreiro-Galve S, Menuet A, Quintana-Urzainqui I, Mazan S, Rodríguez-Moldes I, Candal E. The Shark Alar Hypothalamus: Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends. Front Neuroanat 2016; 10:113. [PMID: 27932958 PMCID: PMC5121248 DOI: 10.3389/fnana.2016.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022] Open
Abstract
The hypothalamus is an important physiologic center of the vertebrate brain involved in the elaboration of individual and species survival responses. To better understand the ancestral organization of the alar hypothalamus we revisit previous data on ScOtp, ScDlx2/5, ScTbr1, ScNkx2.1 expression and Pax6 immunoreactivity jointly with new data on ScNeurog2, ScLhx9, ScLhx5, and ScNkx2.8 expression, in addition to immunoreactivity to serotonin (5-HT) and doublecortin (DCX) in the catshark Scyliorhinus canicula, a key species for this purpose since cartilaginous fishes are basal representatives of gnathostomes (jawed vertebrates). Our study revealed a complex genoarchitecture for the chondrichthyan alar hypothalamus. We identified terminal (rostral) and peduncular (caudal) subdivisions in the prosomeric paraventricular and subparaventricular areas (TPa/PPa and TSPa/PSPa, respectively) evidenced by the expression pattern of developmental genes like ScLhx5 (TPa) and immunoreactivity against Pax6 (PSPa) and 5-HT (PPa and PSPa). Dorso-ventral subdivisions were only evidenced in the SPa (SPaD, SPaV; respectively) by means of Pax6 and ScNkx2.8 (respectively). Interestingly, ScNkx2.8 expression overlaps over the alar-basal boundary, as Nkx2.2 does in other vertebrates. Our results reveal evidences for the existence of different groups of tangentially migrated cells expressing ScOtp, Pax6, and ScDlx2. The genoarchitectonic comparative analysis suggests alternative interpretations of the rostral-most alar plate in prosomeric terms and reveals a conserved molecular background for the vertebrate alar hypothalamus likely acquired before/during the agnathan-gnathostome transition, on which Otp, Pax6, Lhx5, and Neurog2 are expressed in the Pa while Dlx and Nkx2.2/Nkx2.8 are expressed in the SPa.
Collapse
Affiliation(s)
- Gabriel N Santos-Durán
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Susana Ferreiro-Galve
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Arnaud Menuet
- CNRS, UMR 7355, University of Orleans Orleans, France
| | - Idoia Quintana-Urzainqui
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de CompostelaSantiago de Compostela, Spain; Centre for Integrative Physiology, University of EdinburghEdinburgh, UK
| | - Sylvie Mazan
- Sorbonne Universités, UPMC, CNRS UMR7232 Biologie Intégrative des Organismes Marins, Observatoire Océanologique Banyuls sur Mer, France
| | - Isabel Rodríguez-Moldes
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Biología Funcional, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
17
|
Ware M, Dupé V, Schubert FR. Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain. Dev Dyn 2015; 244:1202-14. [PMID: 26228689 DOI: 10.1002/dvdy.24312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 11/11/2022] Open
Abstract
The early axon scaffold is the first axonal structure to appear in the rostral brain of vertebrates, paving the way for later, more complex connections. Several early axon scaffold components are conserved between all vertebrates; most notably two main ventral longitudinal tracts, the tract of the postoptic commissure and the medial longitudinal fascicle. While the overall structure is remarkably similar, differences both in the organization and the development of the early tracts are apparent. This review will bring together extensive data from the last 25 years in different vertebrates and for the first time, the timing and anatomy of these early tracts have been directly compared. Representatives of major vertebrate clades, including cat shark, Xenopus, chick, and mouse embryos, will be compared using immunohistochemistry staining based on previous results. There is still confusion over the nomenclature and homology of these tracts which this review will aim to address. The discussion here is relevant both for understanding the evolution of the early axon scaffold and for future studies into the molecular regulation of its formation.
Collapse
Affiliation(s)
- Michelle Ware
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom.,Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes1, IFR140, GFAS, Faculté de Médecine, Rennes, France
| | - Valérie Dupé
- Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes1, IFR140, GFAS, Faculté de Médecine, Rennes, France
| | - Frank R Schubert
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
18
|
Alvarez-Bolado G, Grinevich V, Puelles L. Editorial: Development of the hypothalamus. Front Neuroanat 2015; 9:83. [PMID: 26157363 PMCID: PMC4477166 DOI: 10.3389/fnana.2015.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/09/2015] [Indexed: 01/25/2023] Open
Affiliation(s)
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center and University of Heidelberg Heidelberg, Germany
| | - Luis Puelles
- Department of Human Anatomy and IMIB, University of Murcia Murcia, Spain
| |
Collapse
|