1
|
Santos-Durán GN, Ferreiro-Galve S, Mazan S, Anadón R, Rodríguez-Moldes I, Candal E. Developmental genoarchitectonics as a key tool to interpret the mature anatomy of the chondrichthyan hypothalamus according to the prosomeric model. Front Neuroanat 2022; 16:901451. [PMID: 35991967 PMCID: PMC9385951 DOI: 10.3389/fnana.2022.901451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The hypothalamus is a key vertebrate brain region involved in survival and physiological functions. Understanding hypothalamic organization and evolution is important to deciphering many aspects of vertebrate biology. Recent comparative studies based on gene expression patterns have proposed the existence of hypothalamic histogenetic domains (paraventricular, TPa/PPa; subparaventricular, TSPa/PSPa; tuberal, Tu/RTu; perimamillary, PM/PRM; and mamillary, MM/RM), revealing conserved evolutionary trends. To shed light on the functional relevance of these histogenetic domains, this work aims to interpret the location of developed cell groups according to the prosomeric model in the hypothalamus of the catshark Scyliorhinus canicula, a representative of Chondrichthyans (the sister group of Osteichthyes, at the base of the gnathostome lineage). To this end, we review in detail the expression patterns of ScOtp, ScDlx2, and ScPitx2, as well as Pax6-immunoreactivity in embryos at stage 32, when the morphology of the adult catshark hypothalamus is already organized. We also propose homologies with mammals when possible. This study provides a comprehensive tool to better understand previous and novel data on hypothalamic development and evolution.
Collapse
Affiliation(s)
- Gabriel N. Santos-Durán
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Susana Ferreiro-Galve
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Sylvie Mazan
- CNRS-UMR 7232, Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Paris, France
| | - Ramón Anadón
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Isabel Rodríguez-Moldes
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
| | - Eva Candal
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, Santiago, Spain
- *Correspondence: Eva Candal,
| |
Collapse
|
2
|
Vinnicombe KRT, Volkoff H. Possible role of transcription factors (BSX, NKX2.1, IRX3 and SIRT1) in the regulation of appetite in goldfish (Carassius auratus). Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111189. [PMID: 35307341 DOI: 10.1016/j.cbpa.2022.111189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 12/17/2022]
Abstract
The homeobox genes play important roles in the embryonic development of animals. Recent evidence suggests they might also regulate feeding and act as transcription factors of appetite regulators. Examples of these genes are a brain-specific homeobox transcription factor (BSX), NK2 homeobox 1 (NKX2.1) and the Iroquois homeobox 3 (IRX3). Sirtuin1 (SIRT1) acts as a transcription factor for nutrient (e.g. lipid, glucose) homeostasis and responds to stress and nutrient availability, and has been shown to interact with appetite regulators. Very little is known about the role of these genes in the regulation of feeding and nutrient homeostasis in fish. In this study, we assessed the roles of BSX, NKX2.1, IRX3 and SIRT1 in the central regulation of feeding in goldfish by examining their mRNA brain distribution, assessing the effects of fasting on their brain expression and assessing the effects of peripheral injections of cholecystokinin (CCK, a brain-gut peptide), on their brain expression. All genes showed a widespread distribution in the brain, with high levels in the hypothalamus. In both hypothalamus and telencephalon, fasting induced increases in BSX, IRX3 and NKX2.1 expressions but had no effect on SIRT1 expression levels. CCK injections increased hypothalamic expression levels of IRX3 and SIRT1, and telencephalic expression levels of NKX2.1 and SIRT1, with no effect on either hypothalamic BSX or NKX2.1 expression levels or telencephalon BSX or IRX3 expression levels. Our results suggest that, in goldfish as in mammals, central BSX, NKX2.1, IRX3 and SIRT1 are present in regions of the brain regulating feeding, are sensitive to nutrient status and interact with appetite-regulating peptides.
Collapse
Affiliation(s)
- Kelsey R T Vinnicombe
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
3
|
Bilbao MG, Garrigos D, Martinez-Morga M, Toval A, Kutsenko Y, Bautista R, Barreda A, Ribeiro Do-Couto B, Puelles L, Ferran JL. Prosomeric Hypothalamic Distribution of Tyrosine Hydroxylase Positive Cells in Adolescent Rats. Front Neuroanat 2022; 16:868345. [PMID: 35601999 PMCID: PMC9121318 DOI: 10.3389/fnana.2022.868345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Most of the studies on neurochemical mapping, connectivity, and physiology in the hypothalamic region were carried out in rats and under the columnar morphologic paradigm. According to the columnar model, the entire hypothalamic region lies ventrally within the diencephalon, which includes preoptic, anterior, tuberal, and mamillary anteroposterior regions, and sometimes identifying dorsal, intermediate, and ventral hypothalamic partitions. This model is weak in providing little or no experimentally corroborated causal explanation of such subdivisions. In contrast, the modern prosomeric model uses different axial assumptions based on the parallel courses of the brain floor, alar-basal boundary, and brain roof (all causally explained). This model also postulates that the hypothalamus and telencephalon jointly form the secondary prosencephalon, separately from and rostral to the diencephalon proper. The hypothalamus is divided into two neuromeric (transverse) parts called peduncular and terminal hypothalamus (PHy and THy). The classic anteroposterior (AP) divisions of the columnar hypothalamus are rather seen as dorsoventral subdivisions of the hypothalamic alar and basal plates. In this study, we offered a prosomeric immunohistochemical mapping in the rat of hypothalamic cells expressing tyrosine hydroxylase (TH), which is the enzyme that catalyzes the conversion of L-tyrosine to levodopa (L-DOPA) and a precursor of dopamine. This mapping was also combined with markers for diverse hypothalamic nuclei [agouti-related peptide (Agrp), arginine vasopressin (Avp), cocaine and amphetamine-regulated transcript (Cart), corticotropin releasing Hormone (Crh), melanin concentrating hormone (Mch), neuropeptide Y (Npy), oxytocin/neurophysin I (Oxt), proopiomelanocortin (Pomc), somatostatin (Sst), tyrosine hidroxilase (Th), and thyrotropin releasing hormone (Trh)]. TH-positive cells are particularly abundant within the periventricular stratum of the paraventricular and subparaventricular alar domains. In the tuberal region, most labeled cells are found in the acroterminal arcuate nucleus and in the terminal periventricular stratum. The dorsal retrotuberal region (PHy) contains the A13 cell group of TH-positive cells. In addition, some TH cells appear in the perimamillary and retromamillary regions. The prosomeric model proved useful for determining the precise location of TH-positive cells relative to possible origins of morphogenetic signals, thus aiding potential causal explanation of position-related specification of this hypothalamic cell type.
Collapse
Affiliation(s)
- María G. Bilbao
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, Argentina
| | - Daniel Garrigos
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Marta Martinez-Morga
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Rosario Bautista
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Bruno Ribeiro Do-Couto
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Human Anatomy and Psychobiology, Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| |
Collapse
|
4
|
López JM, Jiménez S, Morona R, Lozano D, Moreno N. Analysis of Islet-1, Nkx2.1, Pax6, and Orthopedia in the forebrain of the sturgeon Acipenser ruthenus identifies conserved prosomeric characteristics. J Comp Neurol 2021; 530:834-855. [PMID: 34547112 DOI: 10.1002/cne.25249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
The distribution patterns of a set of conserved brain developmental regulatory transcription factors were analyzed in the forebrain of the basal actinopterygian fish Acipenser ruthenus, consistent with the prosomeric model. In the telencephalon, the pallium was characterized by ventricular expression of Pax6. In the subpallium, the combined expression of Nkx2.1/Islet-1 (Isl1) allowed to propose ventral and dorsal areas, as the septo-pallidal (Nkx2.1/Isl1+) and striatal derivatives (Isl1+), respectively, and a dorsal portion of the striatal derivatives, ventricularly rich in Pax6 and devoid of Isl1 expression. Dispersed Orthopedia (Otp) cells were found in the supracommissural and posterior nuclei of the ventral telencephalon, related to the medial portion of the amygdaloid complex. The preoptic area was identified by the Nkx2.1/Isl1 expression. In the alar hypothalamus, an Otp-expressing territory, lacking Nkx2.1/Isl1, was identified as the paraventricular domain. The adjacent subparaventricular domain (Spa) was subdivided in a rostral territory expressing Nkx2.1 and an Isl1+ caudal one. In the basal hypothalamus, the tuberal region was defined by the Nkx2.1/Isl1 expression and a rostral Otp-expressing domain was identified. Moreover, the Otp/Nkx2.1 combination showed an additional zone lacking Isl1, tentatively identified as the mamillary area. In the diencephalon, both Pax6 and Isl1 defined the prethalamic domain, and within the basal prosomere 3, scattered Pax6- and Isl1-expressing cells were observed in the posterior tubercle. Finally, a small group of Pax6 cells was observed in the pretectal area. These results improve the understanding of the forebrain evolution and demonstrate that its basic bauplan is present very early in the vertebrate lineage.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
| |
Collapse
|
5
|
Sugahara F, Murakami Y, Pascual-Anaya J, Kuratani S. Forebrain Architecture and Development in Cyclostomes, with Reference to the Early Morphology and Evolution of the Vertebrate Head. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:305-317. [PMID: 34537767 DOI: 10.1159/000519026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022]
Abstract
The vertebrate head and brain are characterized by highly complex morphological patterns. The forebrain, the most anterior division of the brain, is subdivided into the diencephalon, hypothalamus, and telencephalon from the neuromeric subdivision into prosomeres. Importantly, the telencephalon contains the cerebral cortex, which plays a key role in higher order cognitive functions in humans. To elucidate the evolution of the forebrain regionalization, comparative analyses of the brain development between extant jawed and jawless vertebrates are crucial. Cyclostomes - lampreys and hagfishes - are the only extant jawless vertebrates, and diverged from jawed vertebrates (gnathostomes) over 500 million years ago. Previous developmental studies on the cyclostome brain were conducted mainly in lampreys because hagfish embryos were rarely available. Although still scarce, the recent availability of hagfish embryos has propelled comparative studies of brain development and gene expression. By integrating findings with those of cyclostomes and fossil jawless vertebrates, we can depict the morphology, developmental mechanism, and even the evolutionary path of the brain of the last common ancestor of vertebrates. In this review, we summarize the development of the forebrain in cyclostomes and suggest what evolutionary changes each cyclostome lineage underwent during brain evolution. In addition, together with recent advances in the head morphology in fossil vertebrates revealed by CT scanning technology, we discuss how the evolution of craniofacial morphology and the changes of the developmental mechanism of the forebrain towards crown gnathostomes are causally related.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
6
|
Diaz C, Puelles L. Developmental Genes and Malformations in the Hypothalamus. Front Neuroanat 2020; 14:607111. [PMID: 33324176 PMCID: PMC7726113 DOI: 10.3389/fnana.2020.607111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus is a heterogeneous rostral forebrain region that regulates physiological processes essential for survival, energy metabolism, and reproduction, mainly mediated by the pituitary gland. In the updated prosomeric model, the hypothalamus represents the rostralmost forebrain, composed of two segmental regions (terminal and peduncular hypothalamus), which extend respectively into the non-evaginated preoptic telencephalon and the evaginated pallio-subpallial telencephalon. Complex genetic cascades of transcription factors and signaling molecules rule their development. Alterations of some of these molecular mechanisms acting during forebrain development are associated with more or less severe hypothalamic and pituitary dysfunctions, which may be associated with brain malformations such as holoprosencephaly or septo-optic dysplasia. Studies on transgenic mice with mutated genes encoding critical transcription factors implicated in hypothalamic-pituitary development are contributing to understanding the high clinical complexity of these pathologies. In this review article, we will analyze first the complex molecular genoarchitecture of the hypothalamus resulting from the activity of previous morphogenetic signaling centers and secondly some malformations related to alterations in genes implicated in the development of the hypothalamus.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Schredelseker T, Driever W. Conserved Genoarchitecture of the Basal Hypothalamus in Zebrafish Embryos. Front Neuroanat 2020; 14:3. [PMID: 32116574 PMCID: PMC7016197 DOI: 10.3389/fnana.2020.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Analyses of genoarchitecture recently stimulated substantial revisions of anatomical models for the developing hypothalamus in mammalian and other vertebrate systems. The prosomeric model proposes the hypothalamus to be derived from the secondary prosencephalon, and to consist of alar and basal regions. The basal hypothalamus can further be subdivided into tuberal and mamillary regions, each with distinct subregions. Albeit being a widely used model system for neurodevelopmental studies, no detailed genoarchitectural maps exist for the zebrafish (Danio rerio) hypothalamus. Here, we compare expression domains of zebrafish genes, including arxa, shha, otpa, isl1, lhx5, nkx2.1, nkx2.2a, pax6, and dlx5a, the orthologs of which delimit specific subregions within the murine basal hypothalamus. We develop the highly conserved brain-specific homeobox (bsx) gene as a novel marker for genoarchitectural analysis of hypothalamic regions. Our comparison of gene expression patterns reveals that the genoarchitecture of the basal hypothalamus in zebrafish embryos 48 hours post fertilization is highly similar to mouse embryos at E13.5. We found the tuberal hypothalamus in zebrafish embryos to be relatively large and to comprise previously ill-defined regions around the posterior hypothalamic recess. The mamillary hypothalamus is smaller and concentrates to rather medial areas in proximity to the anterior end of the neural tube floor plate. Within the basal hypothalamus we identified longitudinal and transverse tuberal and mamillary subregions topologically equivalent to those previously described in other vertebrates. However, the hypothalamic diencephalic boundary region and the posterior tuberculum still provide a challenge. We applied the updated prosomeric model to the developing zebrafish hypothalamus to facilitate cross-species comparisons. Accordingly, we applied the mammalian nomenclature of hypothalamic organization to zebrafish and propose it to replace some controversial previous nomenclature.
Collapse
Affiliation(s)
- Theresa Schredelseker
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|