1
|
Hagarty-Waite KA, Emmons HA, Fordahl SC, Erikson KM. The Influence of Strain and Sex on High Fat Diet-Associated Alterations of Dopamine Neurochemistry in Mice. Nutrients 2024; 16:3301. [PMID: 39408267 PMCID: PMC11479034 DOI: 10.3390/nu16193301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Objective: The objective of this study was to determine the influence of sex and strain on striatal and nucleus accumbens dopamine neurochemistry and dopamine-related behavior due to a high-saturated-fat diet (HFD). Methods: Male and female C57B6/J (B6J) and Balb/cJ (Balb/c) mice were randomly assigned to a control-fat diet (CFD) containing 10% kcal fat/g or a mineral-matched HFD containing 60% kcal fat/g for 12 weeks. Results: Intraperitoneal glucose tolerance testing (IPGTT) and elevated plus maze experiments (EPM) confirmed that an HFD produced marked blunting of glucose clearance and increased anxiety-like behavior, respectively, in male and female B6J mice. Electrically evoked dopamine release in the striatum and reuptake in the nucleus accumbens (NAc), as measured by ex vivo fast scan cyclic voltammetry, was reduced for HFD-fed B6J females. Impairment in glucose metabolism explained HFD-induced changes in dopamine neurochemistry for B6J males and, to a lesser extent, Balb/c males. The relative expressions of protein markers associated with the activation of microglia, ionized calcium binding adaptor molecule (Iba1) and cluster of differentiation molecule 11b (CD11b) in the striatum were increased due to an HFD for B6J males but were unchanged or decreased amongst HFD-fed Balb/c mice. Conclusions: Our findings demonstrate that strain and sex influence the insulin- and microglia-dependent mechanisms of alterations to dopamine neurochemistry and associated behavior due to an HFD.
Collapse
Affiliation(s)
| | | | | | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (K.A.H.-W.); (H.A.E.); (S.C.F.)
| |
Collapse
|
2
|
Qi G, Tang H, Gong P, Liu Y, He C, Hu J, Kang S, Chen L, Qin S. Sex-specific hypothalamic neuropathology and glucose metabolism in an amyloidosis transgenic mouse model of Alzheimer's disease. Cell Biosci 2024; 14:120. [PMID: 39272160 PMCID: PMC11395863 DOI: 10.1186/s13578-024-01295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Amyloid toxicity and glucose metabolic disorders are key pathological features during the progression of Alzheimer's disease (AD). While the hypothalamus plays a crucial role in regulating systemic energy balance, the distribution of amyloid plaques in the preoptic, anterior, tuberal, and mammillary regions of the hypothalamus in AD mice, particularly across both sexes, remains largely unclear. Our ongoing research aims to explore hypothalamic neuropathology and glucose metabolic disturbances in a well-described APP/PS1 mouse model of AD. RESULTS Immunocytochemical staining revealed that Old-AD-Female mice exhibited a greater hypothalamic Amyloid β (Aβ) burden than their Old-AD-Male counterparts, with the mammillary bodies showing the most severe accumulation. Analysis of ionized calcium binding adaptor molecule 1 (IBA1) immunoreactivity and Iba1 mRNA indicated differential microgliosis based on sex, while tanycytic territory and ZO-1 tight junction protein expression remained stable in AD mice. Moreover, sex-specific peripheral glucose metabolic parameters (random and fasting blood glucose) seemed to be exacerbated by age. Old AD mice of both sexes exhibited limited hypothalamic activation (c-Fos + cells) in response to blood glucose fluctuations. Hypothalamic Glut 1 expression decreased in young but increased in old female AD mice compared with age-matched male AD mice. Pearson correlation analysis further supported a negative correlation between hypothalamic Aβ load and random blood glucose in old AD groups of both genders, shedding light on the mechanisms underlying this amyloidosis mouse model. CONCLUSION Aged APP/PS1 mice exhibit sex-specific hypothalamic neuropathology and differential glucose metabolism, highlighting distinct pathological mechanisms within each gender.
Collapse
Affiliation(s)
- Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Han Tang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenzhao He
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianian Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Siying Kang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Liang Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Yagoub S, Chesters RA, Ott J, Zhu J, Cantacorps L, Ritter K, Lippert RN. Acute elevated dietary fat alone is not sufficient to decrease AgRP projections in the paraventricular nucleus of the hypothalamus in mice. Sci Rep 2024; 14:20043. [PMID: 39209992 PMCID: PMC11362280 DOI: 10.1038/s41598-024-70870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Within the brain, the connections between neurons are constantly changing in response to environmental stimuli. A prime environmental regulator of neuronal activity is diet, and previous work has highlighted changes in hypothalamic connections in response to diets high in dietary fat and elevated sucrose. We sought to determine if the change in hypothalamic neuronal connections was driven primarily by an elevation in dietary fat alone. Analysis was performed in both male and female animals. We measured Agouti-related peptide (AgRP) neuropeptide and Synaptophysin markers in the paraventricular nucleus of the hypothalamus (PVH) in response to an acute 48 h high fat diet challenge. Using two image analysis methods described in previous studies, an effect of a high fat diet on AgRP neuronal projections in the PVH of male or female mice was not identified. These results suggest that it may not be dietary fat alone that is responsible for the previously published alterations in hypothalamic connections. Future work should focus on deciphering the role of individual macronutrients on neuroanatomical and functional changes.
Collapse
Affiliation(s)
- Selma Yagoub
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- University of Potsdam, Potsdam, Germany
| | - Robert A Chesters
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Ott
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- University of Potsdam, Potsdam, Germany
| | - Jiajie Zhu
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- University of Potsdam, Potsdam, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lídia Cantacorps
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Katrin Ritter
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Rachel N Lippert
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Valentin-Escalera J, Leclerc M, Calon F. High-Fat Diets in Animal Models of Alzheimer's Disease: How Can Eating Too Much Fat Increase Alzheimer's Disease Risk? J Alzheimers Dis 2024; 97:977-1005. [PMID: 38217592 PMCID: PMC10836579 DOI: 10.3233/jad-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD. Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing > 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32 preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found an aggravating effect of HFD on brain Aβ pathology, whereas tau pathology has been much less studied, and results are more equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most notably Aβ burden. Although there are important variations between methods, particularly the lack of diet characterization, these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of AD.
Collapse
Affiliation(s)
- Josue Valentin-Escalera
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| |
Collapse
|
5
|
Abi-Ghanem C, Salinero AE, Smith RM, Kelly RD, Belanger KM, Richard RN, Paul AS, Herzog AA, Thrasher CA, Rybka KA, Riccio D, Gannon OJ, Kordit D, Kyaw NR, Mansour FM, Groom E, Brooks HL, Robison LS, Pumiglia K, Zuloaga DG, Zuloaga KL. Effects of Menopause and High Fat Diet on Metabolic Outcomes in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 101:1177-1194. [PMID: 39302361 DOI: 10.3233/jad-231332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background About two-thirds of those with Alzheimer's disease (AD) are women, most of whom are post-menopausal. Menopause accelerates dementia risk by increasing the risk for metabolic, cardiovascular, and cerebrovascular diseases. Mid-life metabolic disease (obesity, diabetes/prediabetes) is a well-known risk factor for dementia. A high fat diet can lead to poor metabolic health in both humans and rodents. Objective Our goal was to determine the effects of a high fat diet on metabolic outcomes in the AppNL-F knock-in mouse model of AD and assess the effects of menopause. Methods First, 3-month-old AppNL-F and WT female mice were placed on either a control or a high fat diet until 10 months of age then assessed for metabolic outcomes. Next, we did a more extensive assessment in AppNL-F mice that were administered VCD (4-vinylcyclohexene diepoxide) or vehicle (oil) and placed on a control or high fat diet for 7 months. VCD was used to model menopause by causing accelerated ovarian failure. Results Compared to WT controls, AD female mice had worse glucose intolerance. Menopause led to metabolic impairment (weight gain and glucose intolerance) and further exacerbated obesity in response to a high fat diet. There were interactions between diet and menopause on some metabolic health serum biomarkers and the expression of hypothalamic markers related to energy balance. Conclusions This work highlights the need to model endocrine aging in animal models of dementia and will contribute to further understanding the interaction between menopause and metabolic health in the context of AD.
Collapse
Affiliation(s)
- Charly Abi-Ghanem
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Rachel M Smith
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Richard D Kelly
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Kasey M Belanger
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Riane N Richard
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Aaron S Paul
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Ava A Herzog
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Christina A Thrasher
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Krystyna A Rybka
- Department of Psychology and Center for Neuroscience Research, State University of New York at Albany, Albany, NY, USA
| | - David Riccio
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Olivia J Gannon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - David Kordit
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Nyi-Rein Kyaw
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Febronia M Mansour
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Emily Groom
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Heddwen L Brooks
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lisa S Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| | - Damian G Zuloaga
- Department of Psychology and Center for Neuroscience Research, State University of New York at Albany, Albany, NY, USA
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
6
|
Nyema NT, McKnight AD, Vargas-Elvira AG, Schneps HM, Gold EG, Myers KP, Alhadeff AL. AgRP neuron activity promotes associations between sensory and nutritive signals to guide flavor preference. Mol Metab 2023; 78:101833. [PMID: 37925021 PMCID: PMC10665654 DOI: 10.1016/j.molmet.2023.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVE The learned associations between sensory cues (e.g., taste, smell) and nutritive value (e.g., calories, post-ingestive signaling) of foods powerfully influences our eating behavior [1], but the neural circuits that mediate these associations are not well understood. Here, we examined the role of agouti-related protein (AgRP)-expressing neurons - neurons which are critical drivers of feeding behavior [2; 3] - in mediating flavor-nutrient learning (FNL). METHODS Because mice prefer flavors associated with AgRP neuron activity suppression [4], we examined how optogenetic stimulation of AgRP neurons during intake influences FNL, and used fiber photometry to determine how endogenous AgRP neuron activity tracks associations between flavors and nutrients. RESULTS We unexpectedly found that tonic activity in AgRP neurons during FNL potentiated, rather than prevented, the development of flavor preferences. There were notable sex differences in the mechanisms for this potentiation. Specifically, in male mice, AgRP neuron activity increased flavor consumption during FNL training, thereby strengthening the association between flavors and nutrients. In female mice, AgRP neuron activity enhanced flavor-nutrient preferences independently of consumption during training, suggesting that AgRP neuron activity enhances the reward value of the nutrient-paired flavor. Finally, in vivo neural activity analyses demonstrated that acute AgRP neuron dynamics track the association between flavors and nutrients in both sexes. CONCLUSIONS Overall, these data (1) demonstrate that AgRP neuron activity enhances associations between flavors and nutrients in a sex-dependent manner and (2) reveal that AgRP neurons track and rapidly update these associations. Taken together, our findings provide new insight into the role of AgRP neurons in assimilating sensory and nutritive signals for food reinforcement.
Collapse
Affiliation(s)
- Nathaniel T Nyema
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron D McKnight
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Heather M Schneps
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Amber L Alhadeff
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Nyema NT, McKnight AD, Vargas-Elvira AG, Schneps HM, Gold EG, Myers KP, Alhadeff AL. AgRP neuron activity promotes associations between sensory and nutritive signals to guide flavor preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558483. [PMID: 37786670 PMCID: PMC10541598 DOI: 10.1101/2023.09.19.558483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Objective The learned associations between sensory cues (e.g., taste, smell) and nutritive value (e.g., calories, post-ingestive signaling) of foods powerfully influences our eating behavior [1], but the neural circuits that mediate these associations are not well understood. Here, we examined the role of agouti-related protein (AgRP)-expressing neurons - neurons which are critical drivers of feeding behavior [2; 3] - in mediating flavor-nutrient learning (FNL). Methods Because mice prefer flavors associated with AgRP neuron activity suppression [4], we examined how optogenetic stimulation of AgRP neurons during intake influences FNL, and used fiber photometry to determine how endogenous AgRP neuron activity tracks associations between flavors and nutrients. Results We unexpectedly found that tonic activity in AgRP neurons during FNL potentiated, rather than prevented, the development of flavor preferences. There were notable sex differences in the mechanisms for this potentiation. Specifically, in male mice, AgRP neuron activity increased flavor consumption during FNL training, thereby strengthening the association between flavors and nutrients. In female mice, AgRP neuron activity enhanced flavor-nutrient preferences independently of consumption during training, suggesting that AgRP neuron activity enhances the reward value of the nutrient-paired flavor. Finally, in vivo neural activity analyses demonstrated that acute AgRP neuron dynamics track the association between flavors and nutrients in both sexes. Conclusions Overall, these data (1) demonstrate that AgRP neuron activity enhances associations between flavors and nutrients in a sex-dependent manner and (2) reveal that AgRP neurons track and update these associations on fast timescales. Taken together, our findings provide new insight into the role of AgRP neurons in assimilating sensory and nutritive signals for food reinforcement.
Collapse
Affiliation(s)
- Nathaniel T. Nyema
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| | - Aaron D. McKnight
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| | | | - Heather M. Schneps
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| | | | | | - Amber L. Alhadeff
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
8
|
Fico BG, Maharaj A, Pena GS, Huang CJ. The Effects of Obesity on the Inflammatory, Cardiovascular, and Neurobiological Responses to Exercise in Older Adults. BIOLOGY 2023; 12:865. [PMID: 37372149 DOI: 10.3390/biology12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Obesity with advancing age leads to increased health complications that are involved in various complex physiological processes. For example, inflammation is a critical cardiovascular disease risk factor that plays a role in the stages of atherosclerosis in both aging and obesity. Obesity can also induce profound changes to the neural circuitry that regulates food intake and energy homeostasis with advancing age. Here we discuss how obesity in older adults impacts inflammatory, cardiovascular, and neurobiological functions with an emphasis on how exercise mediates each topic. Although obesity is a reversible disorder through lifestyle changes, it is important to note that early interventions are crucial to prevent pathological changes seen in the aging obese population. Lifestyle modifications such as physical activity (including aerobic and resistance training) should be considered as a main intervention to minimize the synergistic effect of obesity on age-related conditions, such as cerebrovascular disease.
Collapse
Affiliation(s)
- Brandon G Fico
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun Maharaj
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
9
|
Korgan AC, Oliveira-Abreu K, Wei W, Martin SLA, Bridges ZJD, Leal-Cardoso JH, Kaczorowski CC, O'Connell KMS. High sucrose consumption decouples intrinsic and synaptic excitability of AgRP neurons without altering body weight. Int J Obes (Lond) 2023; 47:224-235. [PMID: 36725979 PMCID: PMC10023568 DOI: 10.1038/s41366-023-01265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND/OBJECTIVE As the obesity epidemic continues, the understanding of macronutrient influence on central nervous system function is critical for understanding diet-induced obesity and potential therapeutics, particularly in light of the increased sugar content in processed foods. Previous research showed mixed effects of sucrose feeding on body weight gain but has yet to reveal insight into the impact of sucrose on hypothalamic functioning. Here, we explore the impact of liquid sucrose feeding for 12 weeks on body weight, body composition, caloric intake, and hypothalamic AgRP neuronal function and synaptic plasticity. METHODS Patch-clamp electrophysiology of hypothalamic AgRP neurons, metabolic phenotyping and food intake were performed on C57BL/6J mice. RESULTS While mice given sugar-sweetened water do not gain significant weight, they do show subtle differences in body composition and caloric intake. When given sugar-sweetened water, mice show similar alterations to AgRP neuronal excitability as in high-fat diet obese models. Increased sugar consumption also primes mice for increased caloric intake and weight gain when given access to a HFD. CONCLUSIONS Our results show that elevated sucrose consumption increased activity of AgRP neurons and altered synaptic excitability. This may contribute to obesity in mice and humans with access to more palatable (HFD) diets.
Collapse
Affiliation(s)
- Austin C Korgan
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Klausen Oliveira-Abreu
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Wei Wei
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Georgia State University, Atlanta, GA, USA
| | | | - Zoey J D Bridges
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | | | - Catherine C Kaczorowski
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Neuroscience Program, Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Kristen M S O'Connell
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
- Neuroscience Program, Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|