1
|
Webster SE, Les SM, Deleon N, Heck DM, Tsuj NL, Clemente MJ, Jones P, Holodick NE. Secreted IgM deficiency alters the retinal landscape enhancing neurodegeneration associated with aging. Immun Ageing 2025; 22:9. [PMID: 39994686 PMCID: PMC11849284 DOI: 10.1186/s12979-025-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Maintenance of the retina, part of the central nervous system, and other structures in the eye is critical for vision preservation. Aging increases the prevalence of vision impairment, including glaucoma, macular degeneration, and diabetic retinopathy. The retina is primarily maintained by glial cells; however, recent literature suggests that lymphocytes may play a role in the homeostasis of central nervous system tissues. Natural antibodies are produced by B cells without infection or immunization and maintain tissue homeostasis. Here, we explored the potential role of natural immunoglobulin M (IgM) produced by B lymphocytes in maintaining retinal health during aging in mice. RESULTS Our results indicate that the vitreous humor of both mice and humans contains IgM and IgG, suggesting that these immunoglobulins may play a role in ocular function. Furthermore, we observed that aged mice lacking secreted IgM (µs-/-) exhibited pronounced retinal degeneration, accompanied by reactive gliosis, and a proinflammatory cytokine environment. This contrasts with the aged wild-type counterparts, which retain their ability to secrete IgM and maintain a better retinal structure and anti-inflammatory environment. In addition to these findings, the absence of secreted IgM was associated with significant alterations in the retinal pigment epithelium, including disruptions to its morphology and signs of increased stress. This was further observed in changes to the blood-retinal-barrier, which is critical for regulation of retinal homeostasis. CONCLUSIONS These data suggest a previously unrecognized association between a lack of secreted IgM and alterations in the retinal microenvironment, leading to enhanced retinal degeneration during aging. Although the precise mechanism remains unclear, these findings highlight the potential importance of secreted IgM in processes that support retinal health over time. By increasing our understanding of ocular aging, these results show that there is a broader role for the immune system in retinal function and integrity in advanced age, opening new areas for the exploration of immune-related interventions in age-associated retinal conditions.
Collapse
Affiliation(s)
- Sarah E Webster
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA.
| | - Sydney M Les
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, United States of America
| | - Nico Deleon
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Daken M Heck
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Naomi L Tsuj
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Michael J Clemente
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
- Flow Cytometry and Imaging Core, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Prentiss Jones
- Department of Pathology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Nichol E Holodick
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
- Flow Cytometry and Imaging Core, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| |
Collapse
|
2
|
Balzamino BO, Cacciamani A, Dinice L, Cecere M, Pesci FR, Ripandelli G, Micera A. Retinal Inflammation and Reactive Müller Cells: Neurotrophins' Release and Neuroprotective Strategies. BIOLOGY 2024; 13:1030. [PMID: 39765697 PMCID: PMC11673524 DOI: 10.3390/biology13121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Millions of people worldwide suffer from retinal disorders. Retinal diseases require prompt attention to restore function or reduce progressive impairments. Genetics, epigenetics, life-styling/quality and external environmental factors may contribute to developing retinal diseases. In the physiological retina, some glial cell types sustain neuron activities by guaranteeing ion homeostasis and allowing effective interaction in synaptic transmission. Upon insults, glial cells interact with neuronal and the other non-neuronal retinal cells, at least in part counteracting the biomolecular changes that may trigger retinal complications and vision loss. Several epigenetic and oxidative stress mechanisms are quickly activated to release factors that in concert with growth, fibrogenic and angiogenic factors can influence the overall microenvironment and cell-to-cell response. Reactive Müller cells participate by secreting neurotrophic/growth/angiogenic factors, cytokines/chemokines, cytotoxic/stress molecules and neurogenic inflammation peptides. Any attempt to maintain/restore the physiological condition can be interrupted by perpetuating insults, vascular dysfunction and neurodegeneration. Herein, we critically revise the current knowledge on the cell-to-cell and cell-to-mediator interplay between Müller cells, astrocytes and microglia, with respect to pro-con modulators and neuroprotective/detrimental activities, as observed by using experimental models or analyzing ocular fluids, altogether contributing a new point of view to the field of research on precision medicine.
Collapse
Affiliation(s)
- Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Andrea Cacciamani
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Lucia Dinice
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Michela Cecere
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Francesca Romana Pesci
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Guido Ripandelli
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| |
Collapse
|
3
|
Bighinati A, Adani E, Stanzani A, D’Alessandro S, Marigo V. Molecular mechanisms underlying inherited photoreceptor degeneration as targets for therapeutic intervention. Front Cell Neurosci 2024; 18:1343544. [PMID: 38370034 PMCID: PMC10869517 DOI: 10.3389/fncel.2024.1343544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a form of retinal degeneration characterized by primary degeneration of rod photoreceptors followed by a secondary cone loss that leads to vision impairment and finally blindness. This is a rare disease with mutations in several genes and high genetic heterogeneity. A challenging effort has been the characterization of the molecular mechanisms underlying photoreceptor cell death during the progression of the disease. Some of the cell death pathways have been identified and comprise stress events found in several neurodegenerative diseases such as oxidative stress, inflammation, calcium imbalance and endoplasmic reticulum stress. Other cell death mechanisms appear more relevant to photoreceptor cells, such as high levels of cGMP and metabolic changes. Here we review some of the cell death pathways characterized in the RP mutant retina and discuss preclinical studies of therapeutic approaches targeting the molecular outcomes that lead to photoreceptor cell demise.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Agnese Stanzani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D’Alessandro
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| |
Collapse
|
4
|
Ruiz-Pastor MJ, Sánchez-Sáez X, Kutsyr O, Albertos-Arranz H, Sánchez-Castillo C, Ortuño-Lizarán I, Martínez-Gil N, Vidal-Gil L, Méndez L, Sánchez-Martín M, Maneu V, Lax P, Cuenca N. Prph2 knock-in mice recapitulate human central areolar choroidal dystrophy retinal degeneration and exhibit aberrant synaptic remodeling and microglial activation. Cell Death Dis 2023; 14:711. [PMID: 37914688 PMCID: PMC10620171 DOI: 10.1038/s41419-023-06243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Central areolar choroidal dystrophy is an inherited disorder characterized by progressive choriocapillaris atrophy and retinal degeneration and is usually associated with mutations in the PRPH2 gene. We aimed to generate and characterize a mouse model with the p.Arg195Leu mutation previously described in patients. Heterozygous (Prph2WT/KI) and homozygous (Prph2KI/KI) mice were generated using the CRISPR/Cas9 system to introduce the p.Arg195Leu mutation. Retinal function was assessed by electroretinography and optomotor tests at 1, 3, 6, 9, 12, and 20 months of age. The structural integrity of the retinas was evaluated at the same ages using optical coherence tomography. Immunofluorescence and transmission electron microscopy images of the retina were also analyzed. Genetic sequencing confirmed that both Prph2WT/KI and Prph2KI/KI mice presented the p.Arg195Leu mutation. A progressive loss of retinal function was found in both mutant groups, with significantly reduced visual acuity from 3 months of age in Prph2KI/KI mice and from 6 months of age in Prph2WT/KI mice. Decreased amplitudes in the electroretinography responses were observed from 1 month of age in Prph2KI/KI mice and from 6 months of age in Prph2WT/KI mice. Morphological analysis of the retinas correlated with functional findings, showing a progressive decrease in retinal thickness of mutant mice, with earlier and more severe changes in the homozygous mutant mice. We corroborated the alteration of the outer segment structure, and we found changes in the synaptic connectivity in the outer plexiform layer as well as gliosis and signs of microglial activation. The new Prph2WT/KI and Prph2KI/KI murine models show a pattern of retinal degeneration similar to that described in human patients with central areolar choroidal dystrophy and appear to be good models to study the mechanisms involved in the onset and progression of the disease, as well as to test the efficacy of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xavier Sánchez-Sáez
- Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Oksana Kutsyr
- Optics, Pharmacology, and Anatomy, University of Alicante, Alicante, Spain
| | | | | | | | | | - Lorena Vidal-Gil
- Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Lucía Méndez
- Transgenic Facility and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- Transgenic Facility and Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Victoria Maneu
- Optics, Pharmacology, and Anatomy, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Pedro Lax
- Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain.
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain.
| | - Nicolás Cuenca
- Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain.
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain.
| |
Collapse
|
5
|
García-Arroyo R, Domènech EB, Herrera-Úbeda C, Asensi MA, Núñez de Arenas C, Cuezva JM, Garcia-Fernàndez J, Pallardó FV, Mirra S, Marfany G. Exacerbated response to oxidative stress in the Retinitis Pigmentosa Cerkl KD/KO mouse model triggers retinal degeneration pathways upon acute light stress. Redox Biol 2023; 66:102862. [PMID: 37660443 PMCID: PMC10491808 DOI: 10.1016/j.redox.2023.102862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
The retina is particularly vulnerable to genetic and environmental alterations that generate oxidative stress and cause cellular damage in photoreceptors and other retinal neurons, eventually leading to cell death. CERKL (CERamide Kinase-Like) mutations cause Retinitis Pigmentosa and Cone-Rod Dystrophy in humans, two disorders characterized by photoreceptor degeneration and progressive vision loss. CERKL is a resilience gene against oxidative stress, and its overexpression protects cells from oxidative stress-induced apoptosis. Besides, CERKL contributes to stress granule-formation and regulates mitochondrial dynamics in the retina. Using the CerklKD/KO albino mouse model, which recapitulates the human disease, we aimed to study the impact of Cerkl knockdown on stress response and activation of photoreceptor death mechanisms upon light/oxidative stress. After acute light injury, we assessed immediate or late retinal stress response, by combining both omic and non-omic approaches. Our results show that Cerkl knockdown increases ROS levels and causes a basal exacerbated stress state in the retina, through alterations in glutathione metabolism and stress granule production, overall compromising an adequate response to additional oxidative damage. As a consequence, several cell death mechanisms are triggered in CerklKD/KO retinas after acute light stress. Our studies indicate that Cerkl gene is a pivotal player in regulating light-challenged retinal homeostasis and shed light on how mutations in CERKL lead to blindness by dysregulation of the basal oxidative stress response in the retina.
Collapse
Affiliation(s)
- Rocío García-Arroyo
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Elena B Domènech
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain
| | - Miguel A Asensi
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Department of Physiology, University of Valencia-INCLIVA, Valencia, Spain
| | - Cristina Núñez de Arenas
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Departament of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - José M Cuezva
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Departament of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Department of Physiology, University of Valencia-INCLIVA, Valencia, Spain
| | - Serena Mirra
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona - Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Barcelona, Spain; Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
6
|
Becherucci V, Bacci GM, Marziali E, Sodi A, Bambi F, Caputo R. The New Era of Therapeutic Strategies for the Treatment of Retinitis Pigmentosa: A Narrative Review of Pathomolecular Mechanisms for the Development of Cell-Based Therapies. Biomedicines 2023; 11:2656. [PMID: 37893030 PMCID: PMC10604477 DOI: 10.3390/biomedicines11102656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Retinitis pigmentosa, defined more properly as cone-rod dystrophy, is a paradigm of inherited diffuse retinal dystrophies, one of the rare diseases with the highest prevalence in the worldwide population and one of the main causes of low vision in the pediatric and elderly age groups. Advancements in and the understanding of molecular biology and gene-editing technologies have raised interest in laying the foundation for new therapeutic strategies for rare diseases. As a consequence, new possibilities for clinicians and patients are arising due to the feasibility of treating such a devastating disorder, reducing its complications. The scope of this review focuses on the pathomolecular mechanisms underlying RP better to understand the prospects of its treatment using innovative approaches.
Collapse
Affiliation(s)
- Valentina Becherucci
- Cell Factory Meyer, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| | - Elisa Marziali
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy;
| | - Franco Bambi
- Cell Factory Meyer, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Roberto Caputo
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| |
Collapse
|