1
|
Iqbal MJ, Soomro I, Razzaq MA, Martinez EO, Martinez ZLV, Ashraf I. Investigation of structural frustration in symmetric diblock copolymers confined in polar discs through cell dynamic simulation. Sci Rep 2024; 14:25916. [PMID: 39472487 PMCID: PMC11522695 DOI: 10.1038/s41598-024-76213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Nanotechnology has opened new avenues for advanced research in various fields of soft materials. Materials scientists, chemists, physicists, and computational mathematicians have begun to take a keen interest in soft materials due to their potential applications in nanopatterning, membrane separation, drug delivery, nanolithography, advanced storage media, and nanorobotics. The unique properties of soft materials, particularly self-assembly, have made them useful in fields ranging from nanotechnology to biomedicine. The discovery of new morphologies in the diblock copolymer system in curved geometries is a challenging problem for mathematicians and theoretical scientists. Structural frustration under the effects of confinement in the system helps predict new structures. This mathematical study evaluates the effects of confinement and curvature on symmetric diblock copolymer melt using a cell dynamic simulation model. New patterns in lamella morphologies are predicted. The Laplacian involved in the cell dynamic simulation model is approximated by generating a 17-point stencil discretized to a polar grid by the finite difference method. Codes are programmed in FORTRAN to run the simulation, and IBM open DX is used to visualize the results. Comparison of computational results with existing studies validates this study and identifies defects and new patterns.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- Department of Mathematics, Shah Abdul Latif University, Khair Pur, Sindh, Pakistan
| | - Inayatullah Soomro
- Department of Mathematics, Shah Abdul Latif University, Khair Pur, Sindh, Pakistan
| | - Mirza Abdur Razzaq
- Institute of Computer Science, Shah Abdul Latif University, Khair Pur, Sindh, Pakistan
| | - Erislandy Omar Martinez
- Universidad Europea del Atlantico, Santander, 39011, Spain
- Universidad Internacional Iberoamericana, Campeche, 24560, Mexico
- Universidad de La Romana, Provincia La Romana, República Dominicana
| | - Zaily Leticia Velazquez Martinez
- Universidad Europea del Atlantico, Santander, 39011, Spain
- Universidad Internacional Iberoamericana, Campeche, 24560, Mexico
- Universidade Internacional do Cuanza, Cuito, Angola
| | - Imran Ashraf
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
2
|
Grant MJ, Fingler BJ, Buchanan N, Padmanabhan P. Coil-Helix Block Copolymers Can Exhibit Divergent Thermodynamics in the Disordered Phase. J Chem Theory Comput 2024; 20:1547-1558. [PMID: 37773005 DOI: 10.1021/acs.jctc.3c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Chiral building blocks have the ability to self-assemble and transfer chirality to larger hierarchical length scales, which can be leveraged for the development of novel nanomaterials. Chiral block copolymers, where one block is made completely chiral, are prime candidates for studying this phenomenon, but fundamental questions regarding the self-assembly are still unanswered. For one, experimental studies using different chemistries have shown unexplained diverging shifts in the order-disorder transition temperature. In this study, particle-based molecular simulations of chiral block copolymers in the disordered melt were performed to uncover the thermodynamic behavior of these systems. A wide range of helical models were selected, and several free energy calculations were performed. Specifically, we aimed to understand (1) the thermodynamic impact of changing the conformation of one block in chemically identical block copolymers and (2) the effect of the conformation on the Flory-Huggins interaction parameter, χ, when chemical disparity was introduced. We found that the effective block repulsion exhibits diverging behavior, depending on the specific conformational details of the helical block. Commonly used conformational metrics for flexible or stiff block copolymers do not capture the effective block repulsion because helical blocks are semiflexible and aspherical. Instead, pitch can quantitatively capture the effective block repulsion. Quite remarkably, the shift in χ for chemically dissimilar block copolymers can switch sign with small changes in the pitch of the helix.
Collapse
Affiliation(s)
- Michael J Grant
- Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Brennan J Fingler
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Natalie Buchanan
- Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Poornima Padmanabhan
- Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
3
|
Hu XH, Zhang R, Zhang X, Wu Z, Zhou J, Li W, Xiong S. Focused solar annealing for block copolymer fast self-assembly. Heliyon 2024; 10:e24016. [PMID: 38293481 PMCID: PMC10825308 DOI: 10.1016/j.heliyon.2024.e24016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Block copolymer (BCP) self-assembly has tremendous potential applications in next-generation nanolithography. It offers significant advantages, including high resolution and cost-effectiveness, effectively overcoming the limitations associated with conventional optical lithography. In this work, we demonstrate a focused solar annealing (FSA) technique that is facile, eco-friendly, and energy-efficient for fast self-assembly of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) thin films. The FSA principle involves utilizing a common biconvex lens to converge incident solar radiation into a high-temperature spot, which is directly used to drive the microphase separation of PS-b-PMMA thin films. As a result, PS-b-PMMA undergoes self-assembly, forming ordered nanostructures in a vertical orientation at seconds timescales on silicon substrates with a neutral layer. In addition, the FSA technique can be employed for grafting neutral polymer brushes onto the silicon substrate. Furthermore, the FSA's compatibility with graphoepitaxy-directed self-assembly (DSA) of BCP is also demonstrated in the patterning of contact holes. The results of contact hole shrinking show that contact hole prepatterns of ∼60.4 nm could be uniformly shrunk to ∼20.5 nm DSA hole patterns with a hole open yield (HOY) of 100 %. For contact hole multiplication, doublet DSA holes were successfully generated on elliptical templates, revealing an average DSA hole size of ∼21.3 nm. Most importantly, due to the direct use of solar energy, the FSA technique provides many significant advantages such as simplicity, environmental friendliness, solvent-free, low cost, and net-zero carbon emissions, and will open up a new direction for BCP lithography that is sustainable, pollution-free, and carbon-neutral.
Collapse
Affiliation(s)
- Xiao-Hua Hu
- School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Rui Zhang
- School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xiaohui Zhang
- Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Zhiyong Wu
- School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jing Zhou
- School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Weihua Li
- Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Shisheng Xiong
- School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201204, China
| |
Collapse
|
4
|
Sharma R, Shrivastava P, Gautam L, Agrawal U, Mohana Lakshmi S, Vyas SP. Rationally designed block copolymer-based nanoarchitectures: An emerging paradigm for effective drug delivery. Drug Discov Today 2023; 28:103786. [PMID: 37742910 DOI: 10.1016/j.drudis.2023.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Various polymeric materials have been investigated to produce unique modes of delivery for drug modules to achieve either temporal or spatial control of bioactives delivery. However, after intravenous administration, phagocytic cells quickly remove these nanostructures from the systemic circulation via the reticuloendothelial system (RES). To overcome these concerns, ecofriendly block copolymers are increasingly being investigated as innovative carriers for the delivery of bioactives. In this review, we discuss the design, fabrication techniques, and recent advances in the development of block copolymers and their applications as drug carrier systems to improve the physicochemical and pharmacological attributes of bioactives.
Collapse
Affiliation(s)
- Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India; Babulal Tarabai Institute of Pharmaceutical Science, Sagar, M.P., 470228
| | - Udita Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - S Mohana Lakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
5
|
Guo Y. Effect of Film Thickness on the Self-Assembly of CBABC Symmetric Pentablock Terpolymer Melts under 1D Confinement: A Dissipative Particle Dynamic Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6862. [PMID: 37959459 PMCID: PMC10648495 DOI: 10.3390/ma16216862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The study investigates the impact of film thickness on the phase behavior of pentablock terpolymers, denoted as C3B3A6B3C3, when subjected to wall confinement by utilizing the dissipative particle dynamics method. Phase diagrams were constructed to elucidate how factors such as block-block interaction strength, film thickness, and wall properties affect the self-assembly structures. In cases where the wall exhibits no preference for any of the blocks, lamellae phases with orientations perpendicular to the wall are observed. The order-disorder transition (ODT) temperature is found to be influenced by the interaction between the polymer and the wall in thin confinement scenarios. When the wall displays a preference for specific blocks, the orientation of lamellae structures undergoes variations. Lamellae tend to align parallel to the wall when the wall favors A or C blocks, and they orient perpendicularly when B blocks are favored. Furthermore, the mechanical properties of the lamellae structures are related to the conformations of the polymer chains. Structures where chains predominantly adopt a loop conformation exhibit enhanced elastic properties. The ratio of looping to bridging conformations can be adjusted by altering the film thickness and wall selectivity.
Collapse
Affiliation(s)
- Yingying Guo
- School of Science, Qingdao University of Technology, Qingdao 266525, China
| |
Collapse
|
6
|
Andreozzi L, Martinelli E. An Electron Spin Resonance Study Comparing Nanometer-Nanosecond Dynamics in Diblock Copolymers and Their Poly(methyl Methacrylate) Binary Blends. Polymers (Basel) 2023; 15:4195. [PMID: 37896439 PMCID: PMC10611165 DOI: 10.3390/polym15204195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Block copolymers are a class of materials that are particularly interesting with respect to their capability to self-assemble in ordered structures. In this context, the coupling between environment and dynamics is particularly relevant given that movements at the molecular level influence various properties of macromolecules. Mixing the polymer with a second macromolecule appears to be an easy method for studying these relationships. In this work, we studied blends of poly(methyl methacrylate) (PMMA) and a block copolymer composed of PMMA as the first block and poly(3-methyl-4-[6-(methylacryloyloxy)-hexyloxy]-4'-pentyloxy azobenzene) as the second block. The relaxational properties of these blends were investigated via electron spin resonance (ESR) spectroscopy, which is sensitive to nanometric length scales. The results of the investigations on the blends were related to the dynamic behavior of the copolymers. At the nanoscale, the study revealed the presence of heterogeneities, with slow and fast dynamics available for molecular reorientation, which are further modulated by the ability of the block copolymers to form supramolecular structures. For blends, the heterogeneities at the nanoscale were still detected. However, it was observed that the presence of the PMMA as a major component of the blends modified their dynamic behavior.
Collapse
Affiliation(s)
- Laura Andreozzi
- Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
- Istituto per i Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche (IPCF-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy
- CISUP, Centro per l’Integrazione della Strumentazione dell’Università di Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy;
| | - Elisa Martinelli
- CISUP, Centro per l’Integrazione della Strumentazione dell’Università di Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy;
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
7
|
Guo Y, Bai L. Dissipative Particle Dynamics Simulation for the Self-Assembly of Symmetric Pentablock Terpolymers Melts under 1D Confinements. Polymers (Basel) 2023; 15:3982. [PMID: 37836033 PMCID: PMC10575399 DOI: 10.3390/polym15193982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The phase behavior of CBABC pentablock terpolymers confined in thin films is investigated using the Dissipative Particle Dynamic method. Phase diagrams are constructed and used to reveal how chain length (i-block length), block composition and wall selectivity influence the self-assembly structures. Under neutral walls, four categories of morphologies, i.e., perpendicular lamellae, core-shell types of microstructures, complex networks, and half-domain morphologies, are identified with the change in i-block length. Ordered structures are more common at weak polymer-polymer interaction strengths. For polymers of a consistent chain length, when one of the three components has a relatively smaller length, the morphologies transition is sensitive to block composition. With selective walls, parallel lamellae structures are prevalent. Wall selectivity also impacts chain conformations. While a large portion of chains form loop conformations under A-selective walls, more chains adopt bridge conformation when the wall prefers C-blocks. These findings offer insights for designing nanopatterns using symmetric pentablock terpolymers.
Collapse
Affiliation(s)
- Yingying Guo
- School of Science, Qingdao University of Technology, Qingdao 266525, China
| | - Linqing Bai
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266525, China;
| |
Collapse
|
8
|
Liu Z, Liu YX, Yang Y, Li J. Template Design for Complex Block Copolymer Patterns Using a Machine Learning Method. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37335810 DOI: 10.1021/acsami.3c05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
This study represents the first attempt to address the inverse design problem of the guiding template for directed self-assembly (DSA) patterns using solely machine learning methods. By formulating the problem as a multi-label classification task, the study shows that it is possible to predict templates without requiring any forward simulations. A series of neural network (NN) models, ranging from the basic two-layer convolutional neural network (CNN) to the large NN models (32-layer CNN with 8 residual blocks), have been trained using simulated pattern samples generated by thousands of self-consistent field theory (SCFT) calculations; a number of augmentation techniques, especially suitable for predicting morphologies, have been also proposed to enhance the performance of the NN model. The exact match accuracy of the model in predicting the template of simulated patterns was significantly improved from 59.8% for the baseline model to 97.1% for the best model of this study. The best model also demonstrates an excellent generalization ability in predicting the template for human-designed DSA patterns, while the simplest baseline model is ineffective in this task.
Collapse
Affiliation(s)
- Zhihan Liu
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yi-Xin Liu
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuliang Yang
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jianfeng Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Tsaur L, Wiesner UB. Non-Equilibrium Block Copolymer Self-Assembly Based Porous Membrane Formation Processes Employing Multicomponent Systems. Polymers (Basel) 2023; 15:polym15092020. [PMID: 37177169 PMCID: PMC10180547 DOI: 10.3390/polym15092020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Porous polymer-derived membranes are useful for applications ranging from filtration and separation technologies to energy storage and conversion. Combining block copolymer (BCP) self-assembly with the industrially scalable, non-equilibrium phase inversion technique (SNIPS) yields membranes comprising periodically ordered top surface structures supported by asymmetric, hierarchical substructures that together overcome performance tradeoffs typically faced by materials derived from equilibrium approaches. This review first reports on recent advances in understanding the top surface structural evolution of a model SNIPS-derived system during standard membrane formation. Subsequently, the application of SNIPS to multicomponent systems is described, enabling pore size modulation, chemical modification, and transformation to non-polymeric materials classes without compromising the structural features that define SNIPS membranes. Perspectives on future directions of both single-component and multicomponent membrane materials are provided. This points to a rich and fertile ground for the study of fundamental as well as applied problems using non-equilibrium-derived asymmetric porous materials with tunable chemistry, composition, and structure.
Collapse
Affiliation(s)
- Lieihn Tsaur
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Angelopoulou PP, Moutsios I, Manesi GM, Ivanov DA, Sakellariou G, Avgeropoulos A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Dau H, Jones GR, Tsogtgerel E, Nguyen D, Keyes A, Liu YS, Rauf H, Ordonez E, Puchelle V, Basbug Alhan H, Zhao C, Harth E. Linear Block Copolymer Synthesis. Chem Rev 2022; 122:14471-14553. [PMID: 35960550 DOI: 10.1021/acs.chemrev.2c00189] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Block copolymers form the basis of the most ubiquitous materials such as thermoplastic elastomers, bridge interphases in polymer blends, and are fundamental for the development of high-performance materials. The driving force to further advance these materials is the accessibility of block copolymers, which have a wide variety in composition, functional group content, and precision of their structure. To advance and broaden the application of block copolymers will depend on the nature of combined segmented blocks, guided through the combination of polymerization techniques to reach a high versatility in block copolymer architecture and function. This review provides the most comprehensive overview of techniques to prepare linear block copolymers and is intended to serve as a guideline on how polymerization techniques can work together to result in desired block combinations. As the review will give an account of the relevant procedures and access areas, the sections will include orthogonal approaches or sequentially combined polymerization techniques, which increases the synthetic options for these materials.
Collapse
Affiliation(s)
- Huong Dau
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Glen R Jones
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Enkhjargal Tsogtgerel
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Dung Nguyen
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Anthony Keyes
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Yu-Sheng Liu
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Hasaan Rauf
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Estela Ordonez
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Valentin Puchelle
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Hatice Basbug Alhan
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Chenying Zhao
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Eva Harth
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| |
Collapse
|