1
|
Radhakrishna U, Radhakrishnan R, Uppala LV, Muvvala SB, Prajapati J, Rawal RM, Bahado-Singh RO, Sadhasivam S. Prenatal opioid exposure significantly impacts placental protein kinase C (PKC) and drug transporters, leading to drug resistance and neonatal opioid withdrawal syndrome. Front Neurosci 2024; 18:1442915. [PMID: 39238930 PMCID: PMC11376091 DOI: 10.3389/fnins.2024.1442915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
Background Neonatal Opioid Withdrawal Syndrome (NOWS) is a consequence of in-utero exposure to prenatal maternal opioids, resulting in the manifestation of symptoms like irritability, feeding problems, tremors, and withdrawal signs. Opioid use disorder (OUD) during pregnancy can profoundly impact both mother and fetus, disrupting fetal brain neurotransmission and potentially leading to long-term neurological, behavioral, and vision issues, and increased infant mortality. Drug resistance complicates OUD and NOWS treatment, with protein kinase regulation of drug transporters not fully understood. Methods DNA methylation levels of ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, along with protein kinase C (PKC) genes, were assessed in 96 placental samples using the Illumina Infinium MethylationEPIC array (850K). Samples were collected from three distinct groups: 32 mothers with infants prenatally exposed to opioids who needed pharmacological intervention for NOWS, 32 mothers with prenatally opioid-exposed infants who did not necessitate NOWS treatment, and 32 mothers who were not exposed to opioids during pregnancy. Results We identified 69 significantly differentially methylated SLCs, with 24 hypermethylated and 34 hypomethylated, and 11 exhibiting both types of methylation changes including SLC13A3, SLC15A2, SLC16A11, SLC16A3, SLC19A2, and SLC26A1. We identified methylation changes in 11 ABC drug transporters (ABCA1, ABCA12, ABCA2, ABCB10, ABCB5, ABCC12, ABCC2, ABCC9, ABCE1, ABCC7, ABCB3): 3 showed hypermethylation, 3 hypomethylation, and 5 exhibited both. Additionally, 7 PKC family genes (PRKCQ, PRKAA1, PRKCA, PRKCB, PRKCH, PRKCI, and PRKCZ) showed methylation changes. These genes are associated with 13 pathways involved in NOWS, including ABC transporters, bile secretion, pancreatic secretion, insulin resistance, glutamatergic synapse, and gastric acid secretion. Conclusion We report epigenetic changes in PKC-related regulation of drug transporters, which could improve our understanding of clinical outcomes like drug resistance, pharmacokinetics, drug-drug interactions, and drug toxicity, leading to maternal relapse and severe NOWS. Novel drugs targeting PKC pathways and transporters may improve treatment outcomes for OUD in pregnancy and NOWS.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lavanya V Uppala
- College of Information Science & Technology, the University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, NE, United States
| | - Srinivas B Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M Rawal
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Navarro D, Marín-Mayor M, Gasparyan A, García-Gutiérrez MS, Rubio G, Manzanares J. Molecular Changes Associated with Suicide. Int J Mol Sci 2023; 24:16726. [PMID: 38069051 PMCID: PMC10706600 DOI: 10.3390/ijms242316726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Suicide is a serious global public health problem, with a worrying recent increase in suicide rates in both adolescent and adult populations. However, it is essential to recognize that suicide is preventable. A myriad of factors contributes to an individual's vulnerability to suicide. These factors include various potential causes, from psychiatric disorders to genetic and epigenetic alterations. These changes can induce dysfunctions in crucial systems such as the serotonergic, cannabinoid, and hypothalamic-pituitary-adrenal axes. In addition, early life experiences of abuse can profoundly impact an individual's ability to cope with stress, ultimately leading to changes in the inflammatory system, which is a significant risk factor for suicidal behavior. Thus, it is clear that suicidal behavior may result from a confluence of multiple factors. This review examines the primary risk factors associated with suicidal behavior, including psychiatric disorders, early life adversities, and epigenetic modifications. Our goal is to elucidate the molecular changes at the genetic, epigenetic, and molecular levels in the brains of individuals who have taken their own lives and in the plasma and peripheral mononuclear cells of suicide attempters and how these changes may serve as predisposing factors for suicidal tendencies.
Collapse
Affiliation(s)
- Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Marta Marín-Mayor
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Gabriel Rubio
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
3
|
González-Castro TB, Genis-Mendoza AD, López-Narváez ML, Juárez-Rojop IE, Ramos-Méndez MA, Tovilla-Zárate CA, Nicolini H. Gene Expression Analysis in Postmortem Brains from Individuals Who Died by Suicide: A Systematic Review. Brain Sci 2023; 13:906. [PMID: 37371384 DOI: 10.3390/brainsci13060906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Around the world, more the 700,000 individuals die by suicide every year. It is necessary to understand the mechanisms associated with suicidal behavior. Recently, an increase in gene expression studies has been in development. Through a systematic review, we aimed to find a candidate gene in gene expression studies on postmortem brains of suicide completers. Databases were systematically searched for published studies. We performed an online search using PubMed, Scopus and Web of Science databases to search studies up until May 2023. The terms included were "gene expression", "expressed genes", "microarray", "qRT-PCR", "brain samples" and "suicide". Our systematic review included 59 studies covering the analysis of 1450 brain tissues from individuals who died by suicide. The majority of gene expression profiles were obtained of the prefrontal cortex, anterior cingulate cortex, dorsolateral prefrontal cortex, ventral prefrontal cortex and orbital frontal cortex area. The most studied mRNAs came of genes in glutamate, γ-amino-butyric acid and polyamine systems. mRNAs of genes in the brain-derived neurotrophic factor, tropomyosin-related kinase B (TrkB), HPA axis and chemokine family were also studied. On the other hand, psychiatric comorbidities indicate that suicide by violent death can alter the profile of mRNA expression.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
- Servicio de Atención Psiquiátrica, Hospital Psiquiátrico Infantil Dr. Juan N. Navarro, Ciudad de México 14080, Mexico
| | - María Lilia López-Narváez
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86650, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | - Miguel Angel Ramos-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | | | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| |
Collapse
|
4
|
Kimbrel NA, Garrett ME, Evans MK, Mellows C, Dennis MF, Hair LP, Hauser MA, Ashley-Koch AE, Beckham JC. Large epigenome-wide association study identifies multiple novel differentially methylated CpG sites associated with suicidal thoughts and behaviors in veterans. Front Psychiatry 2023; 14:1145375. [PMID: 37398583 PMCID: PMC10311443 DOI: 10.3389/fpsyt.2023.1145375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/28/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The U.S. suicide mortality rate has steadily increased during the past two decades, particularly among military veterans; however, the epigenetic basis of suicidal thoughts and behaviors (STB) remains largely unknown. Methods To address this issue, we conducted an epigenome-wide association study of DNA methylation (DNAm) of peripheral blood samples obtained from 2,712 U.S. military veterans. Results Three DNAm probes were significantly associated with suicide attempts, surpassing the multiple testing threshold (FDR q-value <0.05), including cg13301722 on chromosome 7, which lies between the genes SLC4A2 and CDK5; cg04724646 in PDE3A; and cg04999352 in RARRES3. cg13301722 was also found to be differentially methylated in the cerebral cortex of suicide decedents in a publicly-available dataset (p = 0.03). Trait enrichment analysis revealed that the CpG sites most strongly associated with STB in the present sample were also associated with smoking, alcohol consumption, maternal smoking, and maternal alcohol consumption, whereas pathway enrichment analysis revealed significant associations with circadian rhythm, adherens junction, insulin secretion, and RAP-1 signaling, each of which was recently associated with suicide attempts in a large, independent genome-wide association study of suicide attempts of veterans. Discussion Taken together, the present findings suggest that SLC4A2, CDK5, PDE3A, and RARRES3 may play a role in STB. CDK5, a member of the cyclin-dependent kinase family that is highly expressed in the brain and essential for learning and memory, appears to be a particularly promising candidate worthy of future study; however, additional work is still needed to replicate these finding in independent samples.
Collapse
Affiliation(s)
- Nathan A. Kimbrel
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, United States
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | | | - Mariah K. Evans
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Clara Mellows
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle F. Dennis
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Lauren P. Hair
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | | | | | - Jean C. Beckham
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
5
|
Bhagar R, Le-Niculescu H, Roseberry K, Kosary K, Daly C, Ballew A, Yard M, Sandusky GE, Niculescu AB. Temporal effects on death by suicide: empirical evidence and possible molecular correlates. DISCOVER MENTAL HEALTH 2023; 3:10. [PMID: 37861857 PMCID: PMC10501025 DOI: 10.1007/s44192-023-00035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/01/2023] [Indexed: 10/21/2023]
Abstract
Popular culture and medical lore have long postulated a connection between full moon and exacerbations of psychiatric disorders. We wanted to empirically analyze the hypothesis that suicides are increased during the period around full moons. We analyzed pre-COVID suicides from the Marion County Coroner's Office (n = 776), and show that deaths by suicide are significantly increased during the week of the full moon (p = 0.037), with older individuals (age ≥ 55) showing a stronger effect (p = 0.019). We also examined in our dataset which hour of the day (3-4 pm, p = 0.035), and which month of the year (September, p = 0.09) show the most deaths by suicide. We had blood samples on a subset of the subjects (n = 45), which enabled us to look at possible molecular mechanisms. We tested a list of top blood biomarkers for suicidality (n = 154) from previous studies of ours 7, to assess which of them are predictive. The biomarkers for suicidality that are predictive of death by suicide during full moon, peak hour of day, and peak month of year, respectively, compared to outside of those periods, appear to be enriched in circadian clock genes. For full moon it is AHCYL2, ACSM3, AK2, and RBM3. For peak hour it is GSK3B, AK2, and PRKCB. For peak month it is TBL1XR1 and PRKCI. Half of these genes are modulated in expression by lithium and by valproate in opposite direction to suicidality, and all of them are modulated by depression and alcohol in the same direction as suicidality. These data suggest that there are temporal effects on suicidality, possibly mediated by biological clocks, pointing to changes in ambient light (timing and intensity) as a therapeutically addressable target to decrease suicidality, that can be coupled with psychiatric pharmacological and addiction treatment preventive interventions.
Collapse
Affiliation(s)
- R Bhagar
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA
| | - K Roseberry
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA
| | - K Kosary
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA
| | - C Daly
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA
| | - A Ballew
- Marion County Coroner's Office, Indianapolis, IN, USA
| | - M Yard
- INBRAIN, Indiana University School of Medicine, Indianapolis, IN, USA
| | - G E Sandusky
- INBRAIN, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Building 200B, 320 W. 15thStreet, Indianapolis, IN, 46202, USA.
- INBRAIN, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indianapolis VA Medical Center, Indianapolis, USA.
| |
Collapse
|
6
|
The Roles of Par3, Par6, and aPKC Polarity Proteins in Normal Neurodevelopment and in Neurodegenerative and Neuropsychiatric Disorders. J Neurosci 2022; 42:4774-4793. [PMID: 35705493 DOI: 10.1523/jneurosci.0059-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Normal neural circuits and functions depend on proper neuronal differentiation, migration, synaptic plasticity, and maintenance. Abnormalities in these processes underlie various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Neural development and maintenance are regulated by many proteins. Among them are Par3, Par6 (partitioning defective 3 and 6), and aPKC (atypical protein kinase C) families of evolutionarily conserved polarity proteins. These proteins perform versatile functions by forming tripartite or other combinations of protein complexes, which hereafter are collectively referred to as "Par complexes." In this review, we summarize the major findings on their biophysical and biochemical properties in cell polarization and signaling pathways. We next summarize their expression and localization in the nervous system as well as their versatile functions in various aspects of neurodevelopment, including neuroepithelial polarity, neurogenesis, neuronal migration, neurite differentiation, synaptic plasticity, and memory. These versatile functions rely on the fundamental roles of Par complexes in cell polarity in distinct cellular contexts. We also discuss how cell polarization may correlate with subcellular polarization in neurons. Finally, we review the involvement of Par complexes in neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. While emerging evidence indicates that Par complexes are essential for proper neural development and maintenance, many questions on their in vivo functions have yet to be answered. Thus, Par3, Par6, and aPKC continue to be important research topics to advance neuroscience.
Collapse
|
7
|
Zeng D, He S, Ma C, Wen Y, Song W, Xu Q, Zhao N, Wang Q, Yu Y, Shen Y, Huang J, Li H. Network-based approach to identify molecular signatures in the brains of depressed suicides. Psychiatry Res 2020; 294:113513. [PMID: 33137553 DOI: 10.1016/j.psychres.2020.113513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Suicide is a serious and global health problem that has a strong association with major depressive disorder (MDD). Weighted gene co-expression network analysis (WGCNA) was performed for the construction of a co-expression network to get important gene modules associated with depressed suicide. METHODS Transcriptome sequencing data from dorsolateral prefrontal cortex was used, which included 29 non-psychiatric controls (CON), 21 MDD suicides (MDD-S) and 9 MDD non-suicides (MDD-NS) of medication-free sudden death individuals. RESULTS The highest correlation in the module-traits relationship was discovered between the black module and suicide (r = -0.30, p = 0.024) as well as MDD (r = -0.34, p = 0.010).Furthermore, the expression levels of genes decreased progressively across the three groups (CON>MDD-NS>MDD-S). Therefore, the genes in the black module was selected for subsequent analyses. Protein-Protein Interaction Network found that the top 10 hub genes were somehow involved in depressed suicide including JUN, FOS, ATF3, MYC, EGR1, FOSB, DUSP1, NFKBIA, TLR2, NR4A1. Most of the GO terms were enriched in cell death and apoptosis and KEGG was mainly enriched in MAPK pathway. Cell Type-Specific Analysis found these genes were significantly enriched in endothelial and microglia (p<0.000) cell types. In addition, 92 genes in this module had at least one highly significant differentially methylated positions between MDD-S and controls. CONCLUSION Cell death and apoptosis may participate in the interplay between depressed suicide and neuro-inflammation system.
Collapse
Affiliation(s)
- Duan Zeng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Changlin Ma
- Shanghai Jiading District Mental Health Center, Shanghai, PR China
| | - Yi Wen
- Shanghai Jiading District Mental Health Center, Shanghai, PR China
| | - Weichen Song
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Qingqing Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Nan Zhao
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, PR China
| | - Qiang Wang
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, PR China
| | - Yimin Yu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Clinical Research Center for Mental Health, Shanghai, PR China
| | - Yifeng Shen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Clinical Research Center for Mental Health, Shanghai, PR China
| | - Jingjing Huang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Clinical Research Center for Mental Health, Shanghai, PR China.
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Clinical Research Center for Mental Health, Shanghai, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China.
| |
Collapse
|
8
|
Genome-wide significant regions in 43 Utah high-risk families implicate multiple genes involved in risk for completed suicide. Mol Psychiatry 2020; 25:3077-3090. [PMID: 30353169 PMCID: PMC6478563 DOI: 10.1038/s41380-018-0282-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/31/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022]
Abstract
Suicide is the 10th leading cause of death in the United States. Although environment has undeniable impact, evidence suggests that genetic factors play a significant role in completed suicide. We linked a resource of ~ 4500 DNA samples from completed suicides obtained from the Utah Medical Examiner to genealogical records and medical records data available on over eight million individuals. This linking has resulted in the identification of high-risk extended families (7-9 generations) with significant familial risk of completed suicide. Familial aggregation across distant relatives minimizes effects of shared environment, provides more genetically homogeneous risk groups, and magnifies genetic risks through familial repetition. We analyzed Illumina PsychArray genotypes from suicide cases in 43 high-risk families, identifying 30 distinct shared genomic segments with genome-wide evidence (p = 2.02E-07-1.30E-18) of segregation with completed suicide. The 207 genes implicated by the shared regions provide a focused set of genes for further study; 18 have been previously associated with suicide risk. Although PsychArray variants do not represent exhaustive variation within the 207 genes, we investigated these for specific segregation within the high-risk families, and for association of variants with predicted functional impact in ~ 1300 additional Utah suicides unrelated to the discovery families. None of the limited PsychArray variants explained the high-risk family segregation; sequencing of these regions will be needed to discover segregating risk variants, which may be rarer or regulatory. However, additional association tests yielded four significant PsychArray variants (SP110, rs181058279; AGBL2, rs76215382; SUCLA2, rs121908538; APH1B, rs745918508), raising the likelihood that these genes confer risk of completed suicide.
Collapse
|
9
|
aPKC in neuronal differentiation, maturation and function. Neuronal Signal 2019; 3:NS20190019. [PMID: 32269838 PMCID: PMC7104321 DOI: 10.1042/ns20190019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
The atypical Protein Kinase Cs (aPKCs)—PRKCI, PRKCZ and PKMζ—form a subfamily within the Protein Kinase C (PKC) family. These kinases are expressed in the nervous system, including during its development and in adulthood. One of the aPKCs, PKMζ, appears to be restricted to the nervous system. aPKCs are known to play a role in a variety of cellular responses such as proliferation, differentiation, polarity, migration, survival and key metabolic functions such as glucose uptake, that are critical for nervous system development and function. Therefore, these kinases have garnered a lot of interest in terms of their functional role in the nervous system. Here we review the expression and function of aPKCs in neural development and in neuronal maturation and function. Despite seemingly paradoxical findings with genetic deletion versus gene silencing approaches, we posit that aPKCs are likely candidates for regulating many important neurodevelopmental and neuronal functions, and may be associated with a number of human neuropsychiatric diseases.
Collapse
|
10
|
Wingo AP, Velasco ER, Florido A, Lori A, Choi DC, Jovanovic T, Ressler KJ, Andero R. Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression. Biol Psychiatry 2018; 83:284-295. [PMID: 29054677 PMCID: PMC5743606 DOI: 10.1016/j.biopsych.2017.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Molecular mechanisms underlying psychological sequelae of exposure to stressful experiences, such as posttraumatic stress disorder (PTSD) and depression, are not well understood. METHODS Using convergent evidence from animal and human transcriptomic and genomic studies, we aimed to identify genetic mechanisms underlying depression and anxiety after traumatic experiences. RESULTS From a transcriptome-wide analysis in mice, we found the Ppm1f gene to be differentially expressed in the amygdala and medial prefrontal cortex (mPFC) a week after immobilization stress. Next, we found that PPM1F messenger RNA levels in human blood were downregulated in cases with symptoms of comorbid PTSD and depression and consistently in cases with anxiety symptoms in a separate human dataset. Furthermore, we showed that a genetic variant of PPM1F, rs17759843, was associated with comorbid PTSD and depression and with PPM1F expression in both human brain and blood. Given prior reported mechanistic links between PPM1F and CAMK2 (CAMKII), we examined blood messenger RNA level of CAMK2G in humans and found it to be lower in cases with comorbid PTSD and depression. We also found that PPM1F protein levels and colocalization with CAMK2G were altered in amygdala and mPFC of male mice. Additionally, we found that a systemic dose of corticosterone blocked the depressive-like phenotype elicited by stress in female mice. Lastly, corticosterone rescued the anxiety-like phenotype and messenger RNA levels of Ppm1f in amygdala and mPFC in male mice and in mPFC of female mice. CONCLUSIONS Taken together, our data suggest a mechanistic pathway involving PPM1F and CAMK2G in stress- and trauma-related manifestation of anxiety and depression across species.
Collapse
Affiliation(s)
- Aliza P Wingo
- Atlanta VA Medical Center, Decatur, Georgia; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Eric R Velasco
- Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Antonio Florido
- Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Dennis C Choi
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Raül Andero
- Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
11
|
Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes. Transl Psychiatry 2015; 5:e519. [PMID: 25734512 PMCID: PMC4429169 DOI: 10.1038/tp.2015.15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/22/2014] [Accepted: 01/12/2015] [Indexed: 12/20/2022] Open
Abstract
Despite moderate heritability estimates, progress in uncovering the molecular substrate underpinning major depressive disorder (MDD) has been slow. In this study, we used prefrontal cortex (PFC) gene expression from a genetic rat model of MDD to inform probe set prioritization in PFC in a human post-mortem study to uncover genes and gene pathways associated with MDD. Gene expression differences between Flinders sensitive (FSL) and Flinders resistant (FRL) rat lines were statistically evaluated using the RankProd, non-parametric algorithm. Top ranking probe sets in the rat study were subsequently used to prioritize orthologous selection in a human PFC in a case-control post-mortem study on MDD from the Stanley Brain Consortium. Candidate genes in the human post-mortem study were then tested against a matched control sample using the RankProd method. A total of 1767 probe sets were differentially expressed in the PFC between FSL and FRL rat lines at (q⩽0.001). A total of 898 orthologous probe sets was found on Affymetrix's HG-U95A chip used in the human study. Correcting for the number of multiple, non-independent tests, 20 probe sets were found to be significantly dysregulated between human cases and controls at q⩽0.05. These probe sets tagged the expression profile of 18 human genes (11 upregulated and seven downregulated). Using an integrative rat-human study, a number of convergent genes that may have a role in pathogenesis of MDD were uncovered. Eighty percent of these genes were functionally associated with a key stress response signalling cascade, involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1) and ERK/MAPK, which has been systematically associated with MDD, neuroplasticity and neurogenesis.
Collapse
|
12
|
Dalgard CL, Jacobowitz DM, Singh VK, Saleem KS, Ursano RJ, Starr JM, Pollard HB. A novel analytical brain block tool to enable functional annotation of discriminatory transcript biomarkers among discrete regions of the fronto-limbic circuit in primate brain. Brain Res 2015; 1600:42-58. [DOI: 10.1016/j.brainres.2014.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023]
|
13
|
Cestari V, Rossi-Arnaud C, Saraulli D, Costanzi M. The MAP(K) of fear: from memory consolidation to memory extinction. Brain Res Bull 2013; 105:8-16. [PMID: 24080449 DOI: 10.1016/j.brainresbull.2013.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 11/25/2022]
Abstract
The highly conserved mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling cascade is involved in several intracellular processes ranging from cell differentiation to proliferation, as well as in synaptic plasticity. In the last two decades, the role of MAPK/ERK in long-term memory formation in mammals, particularly in fear-related memories, has been extensively investigated. In this review we describe knowledge advancement on the role of MAPK/ERK in orchestrating the intracellular processes that lead to the consolidation, reconsolidation and extinction of fear memories. In doing so, we report studies in which the specific role of MAP/ERK in switching from memory formation to memory erasure has been suggested. The possibility to target MAPK/ERK in developing and/or refining pharmacological approaches to treat psychiatric disorders in which fear regulation is defective has also been envisaged.
Collapse
Affiliation(s)
- Vincenzo Cestari
- Institute of Cellular Biology and Neurobiology, National Research Council and Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology and "Daniel Bovet" Center, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy.
| | - Clelia Rossi-Arnaud
- Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Daniele Saraulli
- Institute of Cellular Biology and Neurobiology, National Research Council and Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Marco Costanzi
- Institute of Cellular Biology and Neurobiology, National Research Council and Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Human Sciences, LUMSA University, p.zza delle Vaschette 101, 00193 Rome, Italy
| |
Collapse
|
14
|
Furczyk K, Schutová B, Michel TM, Thome J, Büttner A. The neurobiology of suicide - A Review of post-mortem studies. J Mol Psychiatry 2013; 1:2. [PMID: 25408895 PMCID: PMC4223890 DOI: 10.1186/2049-9256-1-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/15/2013] [Indexed: 01/15/2023] Open
Abstract
The neurobiology of suicidal behaviour, which constitutes one of the most serious problems both in psychiatry and general medical practice, still remains to a large degree unclear. As a result, scientists constantly look for new opportunities of explaining the causes underlying suicidality. In order to elucidate the biological changes occurring in the brains of the suicide victims, studies based on post-mortem brain tissue samples are increasingly being used. These studies employ different research methods to provide an insight into abnormalities in brain functioning on various levels, including gene and protein expression, neuroplasticity and neurotransmission, as well as many other areas. The aim of this paper to summarize the available data on the post-mortem studies, to provide an overview of main research directions and the most up-to-date findings, and to indicate the possibilities of further research in this field.
Collapse
Affiliation(s)
- Karolina Furczyk
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Barbora Schutová
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Tanja M Michel
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 PP UK
| | - Andreas Büttner
- Institute of Forensic Medicine, University of Rostock, St.-Georg-Strasse 108, 18055 Rostock, Germany
| |
Collapse
|
15
|
Choi K, Le T, McGuire J, Xing G, Zhang L, Li H, Parker CC, Johnson LR, Ursano RJ. Expression pattern of the cannabinoid receptor genes in the frontal cortex of mood disorder patients and mice selectively bred for high and low fear. J Psychiatr Res 2012; 46:882-9. [PMID: 22534181 DOI: 10.1016/j.jpsychires.2012.03.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 12/14/2022]
Abstract
Although the endocannabinoid system (ECS) has been implicated in brain development and various psychiatric disorders, precise mechanisms of the ECS on mood and anxiety disorders remain unclear. Here, we have investigated developmental and disease-related expression pattern of the cannabinoid receptor 1 (CB1) and the cannabinoid receptor 2 (CB2) genes in the dorsolateral prefrontal cortex (PFC) of humans. Using mice selectively bred for high and low fear, we further investigated potential association between fear memory and the cannabinoid receptor expression in the brain. The CB1, not the CB2, mRNA levels in the PFC gradually decrease during postnatal development ranging in age from birth to 50 years (r2 > 0.6 & adj. p < 0.05). The CB1 levels in the PFC of major depression patients were higher when compared to the age-matched controls (adj. p < 0.05). In mice, the CB1, not the CB2, levels in the PFC were positively correlated with freezing behavior in classical fear conditioning (p < 0.05). These results suggest that the CB1 in the PFC may play a significant role in regulating mood and anxiety symptoms. Our study demonstrates the advantage of utilizing data from postmortem brain tissue and a mouse model of fear to enhance our understanding of the role of the cannabinoid receptors in mood and anxiety disorders.
Collapse
Affiliation(s)
- Kwang Choi
- Center for the Study of Traumatic Stress, Dept. of Psychiatry, Uniformed Services University of Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|