1
|
Hutchens SED, Khurram I, Hurley LM. Solitude and serotonin: juvenile isolation alters the covariation between social behavior and cFos expression by serotonergic neurons. Front Neurosci 2024; 18:1446866. [PMID: 39502712 PMCID: PMC11535725 DOI: 10.3389/fnins.2024.1446866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Variation in the mutual responsiveness of social partners to each other can be reflected in behavioral suites that covary with neural activity in ways that track the salience or valence of interactions. Juvenile social isolation alters social behavior and neural activity during social interaction, but whether and how it alters the covariation between behavior and neural activity has not been as well explored. To address this issue, four classes of experimental subjects: isolated males, socially housed males, isolated females, and socially housed females, were paired with an opposite-sex social partner that had been socially housed. Social behaviors and c-Fos expression in the serotonergic dorsal raphe nucleus (DRN) were then measured in subjects following the social interactions. Relative to social housing, postweaning isolation led to a decrease in the density of neurons double-labeled for tryptophan hydroxylase and c-Fos in the dorsomedial subdivision of the DRN, regardless of sex. Vocal and non-vocal behaviors were also affected by isolation. In interactions with isolated males, both ultrasonic vocalization (USVs) and broadband vocalizations (squeaks) increased in conjunction with greater male investigation of females. Neural and behavioral measures also correlated with each other. In the isolated male group, the density of double-labeled neurons in the dorsomedial DRN was negatively correlated with USV production and positively correlated with a principal component of non-vocal behavior corresponding to greater defensive kicking by females and less investigation and mounting behavior. This correlation was reversed in direction for socially housed males, and for isolated males versus isolated females. These findings confirm that the dynamics of social interactions are reflected in c-Fos activation in the dorsomedial DRN, and suggest an altered responsiveness of serotonergic neurons to social interaction following social isolation in males, in parallel with an altered male response to female cues.
Collapse
Affiliation(s)
- Sarah E. D. Hutchens
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Izza Khurram
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Sewall KB, Beck ML, Lane SJ, Davies S. Urban and rural male song sparrows (Melospiza melodia) differ in territorial aggression and activation of vasotocin neurons in response to song challenge. Horm Behav 2023; 156:105438. [PMID: 37801916 DOI: 10.1016/j.yhbeh.2023.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
When living in urban habitats, 'urban adapter' species often show greater aggression toward conspecifics, yet we do not understand the mechanisms underlying this behavioral shift. The neuroendocrine system regulates socio-sexual behaviors including aggression and thus could mediate behavioral responses to urbanization. Indeed, urban male song sparrows (Melospiza melodia), which are more territorially aggressive, also have greater abundance of the neuropeptide arginine vasotocin (AVT) in nodes of the brain social behavior network. Higher abundance of AVT could reflect long-term synthesis that underlies baseline territoriality or short-term changes that regulate aggression in response to social challenge. To begin to resolve the timeframe over which the AVT system contributes to habitat differences in aggression we used immediate early gene co-expression as a measure of the activation of AVT neurons. We compared Fos induction in AVT-immunoreactive neurons of the bed nucleus of the stria terminalis (BSTm) and paraventricular nucleus of the hypothalamus (PVN) between urban and rural male song sparrows in response to a short (< 5 min.) or long (> 30 min.) song playback to simulate territorial intrusion by another male. We found that urban males had a higher proportion of Fos-positive AVT neurons in both brain regions compared to rural males, regardless of the duration of song playback. Our results suggest that AVT neurons remain activated in urban males, independently of the duration of social challenge. These findings that Fos induction in AVT neurons differs between rural and urban male song sparrows further implicate this system in regulating behavioral responses to urbanization.
Collapse
Affiliation(s)
- Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Michelle L Beck
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Industrial Economics Incorporated, Cambridge, MA, USA
| | - Samuel J Lane
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Scott Davies
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Quinnipiac University, Department of Biological Sciences, 275 Mt Carmel Ave, Hamden, CT 06518, USA
| |
Collapse
|
3
|
Rigney N, de Vries GJ, Petrulis A. Modulation of social behavior by distinct vasopressin sources. Front Endocrinol (Lausanne) 2023; 14:1127792. [PMID: 36860367 PMCID: PMC9968743 DOI: 10.3389/fendo.2023.1127792] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
The neuropeptide arginine-vasopressin (AVP) is well known for its peripheral effects on blood pressure and antidiuresis. However, AVP also modulates various social and anxiety-related behaviors by its actions in the brain, often sex-specifically, with effects typically being stronger in males than in females. AVP in the nervous system originates from several distinct sources which are, in turn, regulated by different inputs and regulatory factors. Based on both direct and indirect evidence, we can begin to define the specific role of AVP cell populations in social behavior, such as, social recognition, affiliation, pair bonding, parental behavior, mate competition, aggression, and social stress. Sex differences in function may be apparent in both sexually-dimorphic structures as well as ones without prominent structural differences within the hypothalamus. The understanding of how AVP systems are organized and function may ultimately lead to better therapeutic interventions for psychiatric disorders characterized by social deficits.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | | |
Collapse
|
4
|
Kabelik D, Julien AR, Waddell BR, Batschelett MA, O'Connell LA. Aggressive but not reproductive boldness in male green anole lizards correlates with baseline vasopressin activity. Horm Behav 2022; 140:105109. [PMID: 35066329 DOI: 10.1016/j.yhbeh.2022.105109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022]
Abstract
Across species, individuals within a population differ in their level of boldness in social encounters with conspecifics. This boldness phenotype is often stable across both time and social context (e.g., reproductive versus agonistic encounters). Various neural and hormonal mechanisms have been suggested as underlying these stable phenotypic differences, which are often also described as syndromes, personalities, and coping styles. Most studies examining the neuroendocrine mechanisms associated with boldness examine subjects after they have engaged in a social interaction, whereas baseline neural activity that may predispose behavioral variation is understudied. The present study tests the hypotheses that physical characteristics, steroid hormone levels, and baseline variation in Ile3-vasopressin (VP, a.k.a., Arg8-vasotocin) signaling predispose boldness during social encounters. Boldness in agonistic and reproductive contexts was extensively quantified in male green anole lizards (Anolis carolinensis), an established research organism for social behavior research that provides a crucial comparison group to investigations of birds and mammals. We found high stability of boldness across time, and between agonistic and reproductive contexts. Next, immunofluorescence was used to colocalize VP neurons with phosphorylated ribosomal protein S6 (pS6), a proxy marker of neural activity. Vasopressin-pS6 colocalization within the paraventricular and supraoptic nuclei of the hypothalamus was inversely correlated with boldness of aggressive behaviors, but not of reproductive behaviors. Our findings suggest that baseline vasopressin release, rather than solely context-dependent release, plays a role in predisposing individuals toward stable levels of displayed aggression toward conspecifics by inhibiting behavioral output in these contexts.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA.
| | - Allison R Julien
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA
| | - Brandon R Waddell
- Department of Biology & Program in Neuroscience, Rhodes College, Memphis, TN 38112, USA
| | | | | |
Collapse
|
5
|
Kelly AM, Seifert AW. Distribution of Vasopressin and Oxytocin Neurons in the Basal Forebrain and Midbrain of Spiny Mice (Acomys cahirinus). Neuroscience 2021; 468:16-28. [PMID: 34102266 DOI: 10.1016/j.neuroscience.2021.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
The nonapeptides vasopressin (VP) and oxytocin (OT) are present in some form in most vertebrates. VP and OT play critical roles in modulating physiology and are well-studied for their influences on a variety of social behaviors, ranging from affiliation to aggression. Their anatomical distributions have been mapped for numerous species across taxa, demonstrating relatively strong evolutionary conservation in distributions throughout the basal forebrain and midbrain. Here we examined the distribution of VP-immunoreactive (-ir) and OT-ir neurons in a gregarious, cooperatively breeding rodent species, the spiny mouse (Acomys cahirinus), for which nonapeptide mapping does not yet exist. Immunohistochemical techniques revealed VP-ir and OT-ir neuronal populations throughout the hypothalamus and amygdala of males and females that are consistent with those of other rodents. However, a novel population of OT-ir neurons was observed in the median preoptic nucleus of both sexes, located dorsally to the anterior commissure. Furthermore, we found widespread sex differences in OT neuronal populations, with males having significantly more OT-ir neurons than females. However, we observed a sex difference in only one VP cell group - that of the bed nucleus of the stria terminalis (BST), a VP neuronal population that exhibits a phylogenetically widespread sexual dimorphism. These findings provide mapping distributions of VP and OT neurons in Acomys cahirinus. Spiny mice lend themselves to the study of mammalian cooperation and sociality, and the nonapeptide neuronal mapping presented here can serve as a basic foundation for the study of nonapeptide-mediated behavior in a group of highly social rodents.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA.
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 675 Rose Street, Lexington KY 40508, USA
| |
Collapse
|
6
|
Wacker D, Ludwig M. The role of vasopressin in olfactory and visual processing. Cell Tissue Res 2018; 375:201-215. [PMID: 29951699 PMCID: PMC6335376 DOI: 10.1007/s00441-018-2867-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Neural vasopressin is a potent modulator of behaviour in vertebrates. It acts at both sensory processing regions and within larger regulatory networks to mediate changes in social recognition, affiliation, aggression, communication and other social behaviours. There are multiple populations of vasopressin neurons within the brain, including groups in olfactory and visual processing regions. Some of these vasopressin neurons, such as those in the main and accessory olfactory bulbs, anterior olfactory nucleus, piriform cortex and retina, were recently identified using an enhanced green fluorescent protein-vasopressin (eGFP-VP) transgenic rat. Based on the interconnectivity of vasopressin-producing and sensitive brain areas and in consideration of autocrine, paracrine and neurohormone-like actions associated with somato-dendritic release, we discuss how these different neuronal populations may interact to impact behaviour.
Collapse
Affiliation(s)
- Douglas Wacker
- School of STEM (Division of Biological Sciences), University of Washington Bothell, Bothell, WA, USA.
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Hope SF, Kennamer RA, Moore IT, Hopkins WA. Incubation temperature influences the behavioral traits of a young precocial bird. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:191-202. [PMID: 29806120 DOI: 10.1002/jez.2176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
The environment in which animals develop can have important consequences for their phenotype. In reptiles, incubation temperature is a critical aspect of the early developmental environment. Incubation temperature influences morphology, physiology, and behavior of non-avian reptiles, however, little is known about how incubation temperature influences offspring phenotype and behaviors important to avian survival. To investigate whether incubation temperature influences avian behaviors, we collected wood duck (Aix sponsa) eggs from the field and incubated them at three naturally occurring incubation temperatures (35.0, 35.8, and 37.0°C). We conducted multiple repeated behavioral trials on individual ducklings between 5 and 15 days post-hatch to assess activity, exploratory, and boldness behaviors, classified along a proactive-reactive continuum. We measured growth rates and circulating levels of baseline and stress-induced corticosterone levels to investigate possible physiological correlates of behavior. Ducklings incubated at the lowest temperature displayed more proactive behaviors than those incubated at the two higher temperatures. We also found that younger ducklings exhibited more proactive behavior than older ducklings and males exhibited more proactive behavior than females. Further, duckling behaviors were repeatable across time and contexts, indicative of a proactive-reactive continuum of behavioral tendencies. However, neither corticosterone levels nor growth rates were related to behavior. This provides some of the first evidence that incubation temperature, a critical parental effect, influences avian offspring behaviors that may be important for survival. Our results identify incubation temperature as a mechanism that contributes to the development of behavioral traits and, in part, explains how multiple behavioral types may be maintained within populations.
Collapse
Affiliation(s)
- Sydney F Hope
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia
| | - Robert A Kennamer
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - William A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
8
|
Petersen CL, Hurley LM. Putting it in Context: Linking Auditory Processing with Social Behavior Circuits in the Vertebrate Brain. Integr Comp Biol 2018; 57:865-877. [PMID: 28985384 DOI: 10.1093/icb/icx055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Context is critical to the adaptive value of communication. Sensory systems such as the auditory system represent an important juncture at which information on physiological state or social valence can be added to communicative information. However, the neural pathways that convey context to the auditory system are not well understood. The serotonergic system offers an excellent model to address these types of questions. Serotonin fluctuates in the mouse inferior colliculus (IC), an auditory midbrain region important for species-specific vocalizations, during specific social and non-social contexts. Furthermore, serotonin is an indicator of the valence of event-based changes within individual social interactions. We propose a model in which the brain's social behavior network serves as an afferent effector of the serotonergic dorsal raphe nucleus in order to gate contextual release of serotonin in the IC. Specifically, discrete vasopressinergic nuclei within the hypothalamus and extended amygdala that project to the dorsal raphe are functionally engaged during contexts in which serotonin fluctuates in the IC. Since serotonin strongly influences the responses of IC neurons to social vocalizations, this pathway could serve as a feedback loop whereby integrative social centers modulate their own sources of input. The end result of this feedback would be to produce a process that is geared, from sensory input to motor output, toward responding appropriately to a dynamic external world.
Collapse
Affiliation(s)
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, 47405 IN, USA
| |
Collapse
|
9
|
Spencer KA. Developmental stress and social phenotypes: integrating neuroendocrine, behavioural and evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0242. [PMID: 28673918 DOI: 10.1098/rstb.2016.0242] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/19/2023] Open
Abstract
The social world is filled with different types of interactions, and social experience interacts with stress on several different levels. Activation of the neuroendocrine axis that regulates the response to stress can have consequences for innumerable behavioural responses, including social decision-making and aspects of sociality, such as gregariousness and aggression. This is especially true for stress experienced during early life, when physiological systems are developing and highly sensitive to perturbation. Stress at this time can have persistent effects on social behaviours into adulthood. One important question remaining is to what extent these effects are adaptive. This paper initially reviews the current literature investigating the complex relationships between the hypothalamic-pituitary-adrenal (HPA) axis and other neuroendocrine systems and several aspects of social behaviour in vertebrates. In addition, the review explores the evidence surrounding the potential for 'social programming' via differential development and activation of the HPA axis, providing an insight into the potential for positive effects on fitness following early life stress. Finally, the paper provides a framework from which novel investigations could work to fully understand the adaptive significance of early life effects on social behaviours.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, South Street, St Andrews KY16 9JP, UK
| |
Collapse
|
10
|
Kelly AM, Hiura LC, Saunders AG, Ophir AG. Oxytocin Neurons Exhibit Extensive Functional Plasticity Due To Offspring Age in Mothers and Fathers. Integr Comp Biol 2018; 57:603-618. [PMID: 28957529 DOI: 10.1093/icb/icx036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The needs of offspring change as they develop. Thus, parents should concomitantly change their investment based on the age-related needs of the offspring as they mature. Due to the high costs of parental care, it is optimal for parents to exhibit a shift from intense caregiving of young offspring to promoting independence in older offspring. Yet, the neural mechanisms that underlie shifts in parental behavior are poorly understood, and little is known about how the parental brain responds to offspring of different ages. To elucidate mechanisms that relate to shifts in parental behavior as offspring develop, we examined behavioral and neural responses of male and female prairie voles (Microtus ochrogaster), a biparental rodent, to interactions with offspring at different stages of development (ranging from neonatal to weaning age). Importantly, in biparental species, males and females may adjust their behavior differentially as offspring develop. Because the nonapeptides, vasopressin (VP) and oxytocin (OT), are well known for modulating aspects of parental care, we focused on functional activity of distinct VP and OT cell groups within the maternal and paternal brain in response to separation from, reunion (after a brief period of separation) with, or no separation from offspring of different ages. We found several differences in the neural responses of individual VP and OT cell groups that varied based on the age of pups and sex of the parent. Hypothalamic VP neurons exhibit similar functional responses in both mothers and fathers. However, hypothalamic and amygdalar OT neurons exhibit differential functional responses to being separated from pups based on the sex of the parent. Our results also reveal that the developmental stage of offspring significantly impacts neural function within OT, but not VP, cell groups of both mothers and fathers. These findings provide insight into the functional plastic capabilities of the nonapeptide system, specifically in relation to parental behavior. Identifying neural mechanisms that exhibit functional plasticity can elucidate one way in which animals are able to shift behavior on relatively short timescales in order to exhibit the most context-appropriate and adaptive behaviors.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Lisa C Hiura
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
11
|
Kelly AM, Hiura LC, Ophir AG. Rapid nonapeptide synthesis during a critical period of development in the prairie vole: plasticity of the paraventricular nucleus of the hypothalamus. Brain Struct Funct 2018. [PMID: 29523998 DOI: 10.1007/s00429-018-1640-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vasopressin (VP) and oxytocin (OT) are involved in modulating basic physiology and numerous social behaviors. Although the anatomical distributions of nonapeptide neurons throughout development have been described, the functional roles of VP and OT neurons during development are surprisingly understudied, and it is unknown whether they exhibit functional changes throughout early development. We utilized an acute social isolation paradigm to determine if VP and OT neural responses in eight nonapeptide cell groups differ at three different stages of early development in prairie voles. We tested pups at ages that are representative of the three rapid growth stages of the developing brain: postnatal day (PND)2 (closed eyes; poor locomotion), PND9 (eye opening; locomotion; peak brain growth spurt), and PND21 (weaning). Neural responses were examined in pups that (1) were under normal family conditions with their parents and siblings, (2) were isolated from their parents and siblings and then reunited, and (3) were isolated from their parents and siblings. We found that VP and OT neural activity (as assessed via Fos co-localization) did not differ in response to social condition across development. However, remarkably rapid VP and OT synthesis in response to social isolation was observed only in the paraventricular nucleus of the hypothalamus (PVN) and only in PND9 pups. These results suggest that PVN nonapeptide neurons exhibit distinct cellular properties during a critical period of development, allowing nonapeptide neurons to rapidly upregulate peptide production in response to stressors on a much shorter timescale than has been observed in adult animals.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, 229 Uris Hall, Ithaca, NY, 14853, USA.
| | - Lisa C Hiura
- Department of Psychology, Cornell University, 229 Uris Hall, Ithaca, NY, 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, 229 Uris Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
12
|
Sewall KB, Davies S. Two Neural Measures Differ between Urban and Rural Song Sparrows after Conspecific Song Playback. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
13
|
Context-dependent effects of testosterone treatment to males on pair maintenance behaviour in zebra finches. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Hathaway GA, Faykoo-Martinez M, Peragine DE, Mooney SJ, Holmes MM. Subcaste differences in neural activation suggest a prosocial role for oxytocin in eusocial naked mole-rats. Horm Behav 2016; 79:1-7. [PMID: 26718226 DOI: 10.1016/j.yhbeh.2015.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/24/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
The neuropeptide oxytocin (OT) influences prosocial behavior(s), aggression, and stress responsiveness, and these diverse effects are regulated in a species- and context-specific manner. The naked mole-rat (Heterocephalus glaber) is a unique species with which to study context-dependent effects of OT, exhibiting a strict social hierarchy with behavioral specialization within the subordinate caste: soldiers are aggressive and defend colonies against unfamiliar conspecifics while workers are prosocial and contribute to in-colony behaviors such as pup care. To determine if OT is involved in subcaste-specific behaviors, we compared behavioral responses between workers and soldiers of both sexes during a modified resident/intruder paradigm, and quantified activation of OT neurons in the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) using the immediate-early-gene marker c-fos co-localized with OT neurons. Resident workers and soldiers were age-matched with unfamiliar worker stimulus animals as intruders, and encounters were videorecorded and scored for aggressive behaviors. Colony-matched controls were left in their home colony for the duration of the encounters. Brains were extracted and cell counts were conducted for OT immunoreactive (ir), c-fos-ir, and percentage of OT-c-fos double-labeled cells. Results indicate that resident workers were less aggressive but showed greater OT neural activity than soldiers. Furthermore, a linear model including social treatment, cortisol, and subcaste revealed that subcaste was the only significant predictor of OT-c-fos double-labeled cells in the PVN. These data suggest that in naked mole-rats OT promotes prosocial behaviors rather than aggression and that even within subordinates status exerts robust effects on brain and behavior.
Collapse
Affiliation(s)
- Georgia A Hathaway
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Mariela Faykoo-Martinez
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Deane E Peragine
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Skyler J Mooney
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Departments of Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
15
|
Kingsbury MA. New perspectives on vasoactive intestinal polypeptide as a widespread modulator of social behavior. Curr Opin Behav Sci 2015; 6:139-147. [PMID: 26858968 DOI: 10.1016/j.cobeha.2015.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In terms of reproductive and social functions, vasoactive intestinal polypeptide (VIP) is best known as a major regulator of prolactin secretion in vertebrates and hence, as an essential contributor to parental care. However, VIP and its cognate VPAC receptors are distributed throughout the social behavior network in the brain, suggesting that VIP circuits may play important roles in a variety of behaviors. With the exception of VIP neuronal populations in the suprachiasmatic nucleus and tuberal hypothalamus (which regulate circadian rhythms and prolactin secretion, respectively), we have known very little about the functional properties of VIP circuits until recently. The present review highlights new roles for VIP signaling in avian social behaviors such as affiliation, gregariousness, pair bonding and aggression, and discusses recent advances in VIP's role as a regulator of biological rhythms, including the potential timing of ovulation, photoperiodic response and seasonal migration.
Collapse
|
16
|
Prior NH, Soma KK. Neuroendocrine regulation of long-term pair maintenance in the monogamous zebra finch. Horm Behav 2015; 76:11-22. [PMID: 25935729 DOI: 10.1016/j.yhbeh.2015.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/18/2015] [Accepted: 04/06/2015] [Indexed: 01/01/2023]
Abstract
This article is part of a Special Issue "SBN 2014". Understanding affiliative behavior is critical to understanding social organisms. While affiliative behaviors are present across a wide range of taxa and contexts, much of what is known about the neuroendocrine regulation of affiliation comes from studies of pair-bond formation in prairie voles. This leaves at least three gaps in our current knowledge. First, little is known about long-term pair-bond maintenance. Second, few studies have examined non-mammalian systems, even though monogamy is much more common in birds than in mammals. Third, the influence of breeding condition on affiliation is largely unknown. The zebra finch (Taeniopygia guttata) is an excellent model system for examining the neuroendocrine regulation of affiliative behaviors, including the formation and maintenance of a long-term pair bond. Zebra finches form genetically monogamous pair bonds, which they actively maintain throughout the year. The genomic and neuroanatomical resources, combined with the wealth of knowledge on the ecology and ethology of wild zebra finches, give this model system unique advantages to study the neuroendocrine regulation of pair bonding. Here, we review the endocrinology of opportunistic breeding in zebra finches, the sex steroid profiles of breeding and non-breeding zebra finches (domesticated and wild), and the roles of sex steroids and other signaling molecules in pair-maintenance behaviors in the zebra finch and other monogamous species. Studies of zebra finches and other songbirds will be useful for broadly understanding the neuroendocrine regulation of affiliative behaviors, including pair bonding and monogamy.
Collapse
Affiliation(s)
- Nora H Prior
- Zoology Department, University of British Columbia, Vancouver, BC, Canada.
| | - Kiran K Soma
- Psychology Department, University of British Columbia, Vancouver, BC, Canada; Zoology Department, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
McGuire MC, Williams KL, Welling LLM, Vonk J. Cognitive bias in rats is not influenced by oxytocin. Front Psychol 2015; 6:1306. [PMID: 26388811 PMCID: PMC4557065 DOI: 10.3389/fpsyg.2015.01306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/17/2015] [Indexed: 01/19/2023] Open
Abstract
The effect of oxytocin on cognitive bias was investigated in rats in a modified conditioned place preference paradigm. Fifteen male rats were trained to discriminate between two different cue combinations, one paired with palatable foods (reward training), and the other paired with unpalatable food (aversive training). Next, their reactions to two ambiguous cue combinations were evaluated and their latency to contact the goal pot recorded. Rats were injected with either oxytocin (OT) or saline with the prediction that rats administered OT would display a shorter average latency to approach on ambiguous trials. There was no significant difference between latencies to approach on ambiguous trials compared to reward trials, but the rats were significantly slower on the aversive compared to the ambiguous conditions. Oxytocin did not affect approach time; however, it was unclear, after follow-up testing, whether the OT doses tested were sufficient to produce the desired effects on cognitive bias. Future research should consider this possibility.
Collapse
Affiliation(s)
- Molly C McGuire
- Department of Psychology, Oakland University , Rochester, MI, USA
| | - Keith L Williams
- Department of Psychology, Oakland University , Rochester, MI, USA
| | - Lisa L M Welling
- Department of Psychology, Oakland University , Rochester, MI, USA
| | - Jennifer Vonk
- Department of Psychology, Oakland University , Rochester, MI, USA
| |
Collapse
|
18
|
Oxytocin mechanisms of stress response and aggression in a territorial finch. Physiol Behav 2015; 141:154-63. [DOI: 10.1016/j.physbeh.2015.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/30/2022]
|
19
|
Kelly AM, Goodson JL. Social functions of individual vasopressin-oxytocin cell groups in vertebrates: what do we really know? Front Neuroendocrinol 2014; 35:512-29. [PMID: 24813923 DOI: 10.1016/j.yfrne.2014.04.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
Vasopressin-oxytocin (VP-OT) nonapeptides modulate numerous social and stress-related behaviors, yet these peptides are made in multiple nuclei and brain regions (e.g., >20 in some mammals), and VP-OT cells in these areas often exhibit overlapping axonal projections. Furthermore, the magnocellular cell groups release peptide volumetrically from dendrites and soma, which gives rise to paracrine modulation in distal brain areas. Nonapeptide receptors also tend to be promiscuous. Hence, behavioral effects that are mediated by any given receptor type (e.g., the OT receptor) in a target brain region cannot be conclusively attributed to either VP or OT, nor to a specific cell group. We here review what is actually known about the social behavior functions of nonapeptide cell groups, with a focus on aggression, affiliation, bonding, social stress, and parental behavior, and discuss recent studies that demonstrate a diversity of sex-specific contributions of VP-OT cell groups to gregariousness and pair bonding.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Hypothalamic oxytocin and vasopressin neurons exert sex-specific effects on pair bonding, gregariousness, and aggression in finches. Proc Natl Acad Sci U S A 2014; 111:6069-74. [PMID: 24711411 DOI: 10.1073/pnas.1322554111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antagonism of oxytocin (OT) receptors (OTRs) impairs the formation of pair bonds in prairie voles (Microtus ochrogaster) and zebra finches (Taenioypygia guttata), and also reduces the preference for the larger of two groups ("gregariousness") in finches. These effects tend to be stronger in females. The contributions of specific peptide cell groups to these processes remain unknown, however. This issue is complicated by the fact that OTRs in finches and voles bind not only forms of OT, but also vasopressin (VP), and >10 cell groups produce each peptide in any given species. Using RNA interference, we found that knockdown of VP and OT production in the paraventricular nucleus of the hypothalamus exerts diverse behavioral effects in zebra finches, most of which are sexually differentiated. Our data show that knockdown of VP production significantly reduces gregariousness in both sexes and exerts sex-specific effects on aggression directed toward opposite-sex birds (increases in males; decreases in females), whereas OT knockdown produces female-specific deficits in gregariousness, pair bonding, and nest cup ownership; reduces side-by-side perching in both sexes; modulates stress coping; and induces hyperphagia in males. These findings demonstrate that paraventricular neurons are major contributors to the effects of VP-OT peptides on pair bonding and gregariousness; reveal previously unknown effects of sex-specific peptide on opposite-sex aggression; and demonstrate a surprising lack of effects on same-sex aggression. Finally, the observed effects of OT knockdown on feeding and stress coping parallel findings in mammals, suggesting that OT modulation of these processes is evolutionarily conserved across the amniote vertebrate classes.
Collapse
|