1
|
Simon B, Thury AÁ, Török L, Földesi I, Csabafi K, Bagosi Z. The effects of alcohol on anxiety-like, depression-like, and social behavior immediately and a day after binge drinking. Alcohol 2023; 112:17-24. [PMID: 37236432 DOI: 10.1016/j.alcohol.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The aim of the present study was to determine the effects of binge drinking on anxiety-like, depression-like, and social behavior. The participation of the corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) in these effects was also investigated. Therefore, male C57BL/6 mice were exposed to drinking in the dark, a classical animal model for binge drinking, and treated intracerebroventricularly (icv) with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B, immediately or 24 h after binge drinking. After 30 min, the animals were investigated in an elevated plus-maze test and a forced swim test for anxiety-like and depression-like signs, respectively. In addition, mice were tested in a three-chamber social interaction arena for sociability and preference for social novelty. Immediately after binge drinking, mice exposed to alcohol expressed anxiolytic and antidepressant effects, which were reduced by astressin2B, but not antalarmin. Moreover, mice exposed to alcohol showed increased sociability and preference for social novelty immediately after binge drinking. In contrast, 24 h after binge drinking mice exposed to alcohol presented anxiety-like and depression-like signs, which were reversed by antalarmin, but not astressin2B. However, mice exposed to alcohol did not show any significant change in social interaction after 24 h. The present study demonstrates that alcohol exerts different effects on anxiety-like, depression-like, and social behavior immediately and a day after binge drinking, and that the anxiolytic and antidepressant effects produced by binge drinking are mediated by CRF2, whereas the anxiety-like and depression-like signs observed the next day are promoted by CRF1.
Collapse
Affiliation(s)
- Balázs Simon
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| | - Attila Ágoston Thury
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - László Török
- Department of Traumatology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Institute of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Carratalá-Ros C, Martínez-Verdú A, Olivares-García R, Salamone JD, Correa M. Effects of the dopamine depleting agent tetrabenazine in tests evaluating different components of depressive-like behavior in mice: sex-dependent response to antidepressant drugs with SERT and DAT blocker profiles. Psychopharmacology (Berl) 2023; 240:1615-1628. [PMID: 37407727 PMCID: PMC10349713 DOI: 10.1007/s00213-023-06412-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Depression is a disorder twice as common in women than in men. There are sex differences in the symptomatology and treatment response to this disorder. Impairments in behavioral activation (i.e. anergia, fatigue) are often seen in people with depression and are highly resistant to treatment. The role of mesolimbic dopamine (DA) in regulating behavioral activation has been extensively studied in male rodents, but little is known in female rodents. OBJECTIVE The present studies assessed potential sex differences in rodent paradigms used to study different components of depressive-like behavior, and in the treatment response to antidepressants with different mechanisms of action. METHODS Male and female CD1 mice received Tetrabenazine (TBZ), a VMAT-2 blocker that depletes DA and induces depressive symptoms in humans. Mice were tested on the Forced Swim Test, (FST), the Dark-Light box (DL), the elevated plus maze (EPM), Social Interaction (SI) test, and sucrose preference and consumption using the two bottles test. In addition, bupropion (a DA reuptake inhibitor) or fluoxetine (a serotonin reuptake inhibitor) were used to reverse TBZ-induced anergia. RESULTS In the FST, bupropion reversed TBZ effects in both sexes but fluoxetine was only effective in female mice. DA depletion did not affect other aspects of depression such as anxiety, sociability or sucrose consumption, and there was no interaction with bupropion on these parameters. In TBZ treated-females SERT-blockers may be effective at reversing anergia in aversive contexts (FST), and potentiating avoidance of anxiogenic stimuli. CONCLUSIONS Pro-dopaminergic antidepressants seem more efficacious at improving anergia in both sexes than SERT-blockers.
Collapse
Affiliation(s)
- Carla Carratalá-Ros
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain
| | - Andrea Martínez-Verdú
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain
| | | | - John D Salamone
- Behavioral Neuroscience Div, University of Connecticut, Storrs, CT, 06269-1020, USA
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain.
- Behavioral Neuroscience Div, University of Connecticut, Storrs, CT, 06269-1020, USA.
| |
Collapse
|
3
|
Singer P, Yee BK. The adenosine hypothesis of schizophrenia into its third decade: From neurochemical imbalance to early life etiological risks. Front Cell Neurosci 2023; 17:1120532. [PMID: 36998267 PMCID: PMC10043328 DOI: 10.3389/fncel.2023.1120532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
The adenosine hypothesis of schizophrenia was conceptualized about two decades ago in an attempt to integrate two prominent theories of neurochemical imbalance that attribute the pathogenesis of schizophrenia to hyperfunction of the mesocorticolimbic dopamine neurotransmission and hypofunction of cortical glutamate neurotransmission. Given its unique position as an endogenous modulator of both dopamine and glutamate signaling in the brain, adenosine was postulated as a potential new drug target to achieve multiple antipsychotic actions. This new strategy may offer hope for improving treatment, especially in alleviating negative symptoms and cognitive deficits of schizophrenia that do not respond to current medications. To date, however, the adenosine hypothesis has yet led to any significant therapeutic breakthroughs. Here, we address two possible reasons for the impasse. First, neither the presence of adenosine functional deficiency in people with schizophrenia nor its causal relationship to symptom production has been satisfactorily examined. Second, the lack of novel adenosine-based drugs also impedes progress. This review updates the latest preclinical and clinical data pertinent to the construct validity of the adenosine hypothesis and explores novel molecular processes whereby dysregulation of adenosine signaling could be linked to the etiology of schizophrenia. It is intended to stimulate and revitalize research into the adenosine hypothesis towards the development of a new and improved generation of antipsychotic drugs that has eluded us for decades.
Collapse
Affiliation(s)
- Philipp Singer
- Roche Diagnostics International AG, Rotkreuz, Switzerland
- *Correspondence: Philipp Singer Benjamin K. Yee
| | - Benjamin K. Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Philipp Singer Benjamin K. Yee
| |
Collapse
|
4
|
Purnell BS, Thompson S, Bowman T, Bhasin J, George S, Rust B, Murugan M, Fedele D, Boison D. The role of adenosine in alcohol-induced respiratory suppression. Neuropharmacology 2023; 222:109296. [PMID: 36377091 PMCID: PMC10208026 DOI: 10.1016/j.neuropharm.2022.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Alcohol-related poisoning is the foremost cause of death resulting from excessive acute alcohol consumption. Respiratory failure is crucial to the pathophysiology of fatal alcohol poisoning. Alcohol increases accumulation of extracellular adenosine. Adenosine suppresses breathing. The goal of this investigation was to test the hypothesis that adenosine signaling contributes to alcohol-induced respiratory suppression. In the first experiment, the breathing of mice was monitored following an injection of the non-selective adenosine receptor antagonist caffeine (40 mg/kg), alcohol (5 g/kg), or alcohol and caffeine combined. Caffeine reduced alcohol-induced respiratory suppression suggesting that adenosine contributes to the effects of alcohol on breathing. The second experiment utilized the same experimental design, but with the blood brain barrier impermeant non-selective adenosine receptor antagonist 8-sulfophenyltheophylline (8-SPT, 60 mg/kg) instead of caffeine. 8-SPT did not reduce alcohol-induced respiratory suppression suggesting that adenosine is contributing to alcohol-induced respiratory suppression in the central nervous system. The third and fourth experiments used the same experimental design as the first, but with the selective A1 receptor antagonist DPCPX (1 mg/kg) and the selective A2A receptor antagonist istradefylline (3.3 mg/kg). Istradefylline, but not DPCPX, reduced alcohol-induced respiratory suppression indicating an A2A receptor mediated effect. In the fifth experiment, alcohol-induced respiratory suppression was evaluated in Adk+/- mice which have impaired adenosine metabolism. Alcohol-induced respiratory suppression was exacerbated in Adk+/- mice. These findings indicate that adenosinergic signaling contributes to alcohol-induced respiratory suppression. Improving our understanding of how alcohol affects breathing may lead to better treatment strategies and better outcomes for patients with severe alcohol poisoning.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Sydney Thompson
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Tenise Bowman
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Jayant Bhasin
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Steven George
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Rust
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Denise Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
5
|
Piccin A, Courtand G, Contarino A. Morphine reduces the interest for natural rewards. Psychopharmacology (Berl) 2022; 239:2407-2419. [PMID: 35396673 DOI: 10.1007/s00213-022-06131-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
RATIONALE Alongside a pathological, excessive, motivation for substances of abuse, substance use disorder (SUD) patients often show a dramatic loss of interest for naturally rewarding activities, such as positive peer social interaction and food intake. Yet, pre-clinical evidence of the latter SUD features remains scarce and inconsistent. OBJECTIVES In the current study, we investigated the effect of non-rewarding and rewarding doses of morphine upon social behaviour, motivation for and intake of palatable food, in male and female C57BL/6J mice. METHODS First, the rewarding effects of two relatively low morphine doses (1.25 and 2.5 mg/kg) were assessed using a newly established single substance administration/conditioning trial conditioned place preference (CPP) paradigm. Then, morphine (1.25 and 2.5 mg/kg) effects upon social behaviour, motivation for and intake of palatable food were examined by the three-chamber (3-CH), an operant behaviour and a palatable food preference test, respectively. RESULTS Morphine (2.5 mg/kg) induced CPP in both male and female mice, whereas morphine (1.25 mg/kg) induced CPP only in female mice. Both morphine doses (1.25 and 2.5 mg/kg) reduced sociability, motivation for and intake of palatable food in male and female mice, independently of cognitive function or locomotor activity. CONCLUSIONS Female mice were more sensitive than male mice to the rewarding effects of morphine. Moreover, both a non-rewarding and a rewarding dose of morphine impaired the interest for naturally rewarding activities, indicating that brain reward systems might be more sensitive to the deleterious than to the rewarding effects of substances of abuse.
Collapse
Affiliation(s)
- Alessandro Piccin
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Gilles Courtand
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Angelo Contarino
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France. .,CNRS, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
6
|
Dias ALA, de Oliveira Golzio AMF, de Lima Santos BH, da Silva Stiebbe Salvadori MG, Dos Santos SG, da Silva MS, de Almeida RN, Barbosa FF. Post-learning caffeine administration improves 'what-when' and 'what-where' components of episodic-like memory in rats. Behav Brain Res 2022; 433:113982. [PMID: 35779707 DOI: 10.1016/j.bbr.2022.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
Abstract
Episodic-like memory (ELM) consists in the capacity of nonhuman animals to remember 'where' and 'when' a specific episode occurred ('what'). Previous studies have showed that Wistar rats can form an ELM, but not after a 24 h retention delay. On the other hand, it has been demonstrated that caffeine can improve episodic memory consolidation in humans. Therefore, we verified whether acute post-sample caffeine administration could improve ELM consolidation in Wistar rats, as well if it could be related to neurochemical changes in the prefrontal cortex and hippocampus - regions related to episodic-like memory processing. 46 Male Wistar Rats, approximately 3 months-old, were divided into four groups as follows: untreated (n = 11), saline (n = 11), caffeine 10 mg ∕kg i.p (n = 12); caffeine 15 mg∕kgi.p (n = 12) and tested in WWWhen/ELM task. The animals treated with caffeine in different dosages (10 mg/kg and 15 mg/kg) discriminated temporally and spatially the objects, respectively. These groups also showed a dopamine renewal rate in the hippocampus, suggesting that there was an increase in the turnover compared with the groups with no caffeine administration. We can conclude that caffeine leads to an improvement in the consolidation of the temporal ('what-when') and spatial ('what-where') aspects of episodic-like memory.
Collapse
Affiliation(s)
| | | | | | - Mirian Graciela da Silva Stiebbe Salvadori
- Departamento de Psicologia, Programa de Pós-Graduação em Neurociência Cognitiva e Comportamento, Centro de Ciências Humanas, Letras e Artes, Universidade Federal da Paraíba, Brazil
| | - Sócrates Golzio Dos Santos
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Brazil
| | - Marcelo Sobral da Silva
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Programa de Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Brazil
| | - Flavio Freitas Barbosa
- Departamento de Psicologia, Programa de Pós-Graduação em Neurociência Cognitiva e Comportamento, Centro de Ciências Humanas, Letras e Artes, Universidade Federal da Paraíba, Brazil.
| |
Collapse
|
7
|
Henderson HJM, Etem G, Bjorni M, Belnap MA, Rosellini B, Halladay LR. Sex-dependent and ontogenetic effects of low dose ethanol on social behavioral deficits induced by mouse maternal separation. Behav Brain Res 2021; 406:113241. [PMID: 33727047 DOI: 10.1016/j.bbr.2021.113241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/06/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Early life stress can induce lifelong emotional and social behavioral deficits that may in some cases be alleviated by drugs or alcohol. A model for early life stress, rodent maternal separation, recapitulates these behavioral sequelae, which are not limited to potentiated anxiety-like behavior, attenuated social motivation, and altered reward-seeking. Here we employed mouse maternal separation with early weaning (MSEW), consisting of pup-dam separation lasting 4-8 hours on postnatal days (PD) 2-16, with early weaning on PD 17. Prior MSEW studies have limited subjects by age or sex, so we more comprehensively investigated MSEW effects in both sexes, during adolescence and adulthood. We found universal effects of MSEW to include lifelong enhancement of anxiety-like and despair behavior, as well as deficits in social motivation. We also observed some sex-dependent effects of MSEW, namely that female MSEW mice exhibited social habituation to a greater degree than their male counterparts. Low dose ethanol administration had no major effects on the social behavior of non-stressed mice. But interestingly, MSEW-induced social habituation was counteracted by low dose ethanol in adolescent female mice, and potentiated in adolescent male mice. These effects were absent in adult animals, suggesting that ethanol may exert differential effects on the developing brain in such a manner to produce age-, sex-, and stress-dependent effects upon social behavior. Together, results indicate that MSEW reliably produces long-lasting impairments in emotional and social behaviors in both sexes and across the lifespan, but may exert more salient social behavioral effects on female animals.
Collapse
Affiliation(s)
- Hannah J M Henderson
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Gabrielle Etem
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Max Bjorni
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Malia A Belnap
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Bryce Rosellini
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| |
Collapse
|
8
|
Porru S, López-Cruz L, Carratalá-Ros C, Salamone JD, Acquas E, Correa M. Impact of Caffeine on Ethanol-Induced Stimulation and Sensitization: Changes in ERK and DARPP-32 Phosphorylation in Nucleus Accumbens. Alcohol Clin Exp Res 2021; 45:608-619. [PMID: 33471948 DOI: 10.1111/acer.14553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Caffeine is frequently consumed with ethanol to reduce the impairing effects induced by ethanol, including psychomotor slowing or incoordination. Both drugs modulate dopamine (DA)-related markers in accumbens (Acb), and Acb DA is involved in voluntary locomotion and locomotor sensitization. The present study determined whether caffeine can affect locomotion induced by acute and repeated ethanol administration in adult male CD-1 mice. METHODS Acute administration of caffeine (7.5 to 30.0 mg/kg) was evaluated for its effects on acute ethanol-induced (1.5 to 3.5 g/kg) changes in open-field horizontal locomotion, supported rearing, and rearing not supported by the wall. DA receptor-dependent phosphorylation markers were assessed: extracellular signal-regulated kinase (pERK), and dopamine-and cAMP-regulated phosphoprotein Mr32kDa phosphorylated at threonine 75 site (pDARPP-32-Thr75) in Acb core and shell. Acutely administered caffeine was also evaluated in ethanol-sensitized (1.5 g/kg) mice. RESULTS Acute ethanol decreased both types of rearing. Caffeine increased supported rearing but did not block ethanol -induced decreases in rearing. Both substances increased horizontal locomotion in a biphasic manner, and caffeine potentiated ethanol-induced locomotion. Although ethanol administered repeatedly induced sensitization of locomotion and unsupported rearing, acute administration of caffeine to ethanol-sensitized mice in an ethanol-free state resulted in blunted stimulant effects compared with those seen in ethanol-naïve mice. Ethanol increased pERK immunoreactivity in both subregions of the Acb, but coadministration with caffeine blunted this increase. There were no effects on pDARPP-32(Thr75) immunoreactivity. CONCLUSIONS The present results demonstrated that, after the first administration, caffeine potentiated the stimulating actions of ethanol, but did not counteract its suppressant or ataxic effects. Moreover, our results show that caffeine has less activating effects in ethanol-sensitized animals.
Collapse
Affiliation(s)
- Simona Porru
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain.,Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain
| | - Carla Carratalá-Ros
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Department of Psychology, University of Connecticut, Storrs, Connecticut, USA
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
9
|
Porru S, Maccioni R, Bassareo V, Peana AT, Salamone JD, Correa M, Acquas E. Effects of caffeine on ethanol-elicited place preference, place aversion and ERK phosphorylation in CD-1 mice. J Psychopharmacol 2020; 34:1357-1370. [PMID: 33103552 DOI: 10.1177/0269881120965892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Epidemiological studies indicate a rise in the combined consumption of caffeinated and alcoholic beverages, which can lead to increased risk of alcoholic-beverage overconsumption. However, the effects of the combination of caffeine and ethanol in animal models related to aspects of drug addiction are still underexplored. AIMS To characterize the pharmacological interaction between caffeine and ethanol and establish if caffeine can affect the ability of ethanol (2 g/kg) to elicit conditioned place preference and conditioned place aversion, we administered caffeine (3 or 15 mg/kg) to male CD-1 mice before saline or ethanol. Moreover, we determined if these doses of caffeine could affect ethanol (2 g/kg) elicited extracellular signal-regulated kinase phosphorylation in brain areas, nucleus accumbens, bed nucleus of stria terminalis, central nucleus of the amygdala, and basolateral amygdala, previously associated with this type of associative learning. RESULTS In the place-conditioning paradigm, caffeine did not have an effect on its own, whereas ethanol elicited significant conditioned-place preference and conditioned-place aversion. Caffeine (15 mg/kg) significantly prevented the acquisition of ethanol-elicited conditioned-place preference and, at both doses, also prevented the acquisition of ethanol-elicited conditioned-place aversion. Moreover, both doses of caffeine also prevented ethanol-elicited extracellular signal-regulated kinase phosphorylation expression in all brain areas examined. CONCLUSIONS The present data indicate a functional antagonistic action of caffeine and ethanol on associative learning and extracellular signal-regulated kinase phosphorylation after an acute interaction. These results could provide exciting grounds for further studies, also in a translational perspective, of their pharmacological interaction modulating other processes involved in drug consumption and addiction.
Collapse
Affiliation(s)
- Simona Porru
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy.,Department of Psychobiology, University Jaume I, Castelló, Spain
| | - Riccardo Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, USA
| | - Mercè Correa
- Department of Psychobiology, University Jaume I, Castelló, Spain
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy.,Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Sangaunchom P, Dharmasaroja P. Caffeine Potentiates Ethanol-Induced Neurotoxicity Through mTOR/p70S6K/4E-BP1 Inhibition in SH-SY5Y Cells. Int J Toxicol 2020; 39:131-140. [DOI: 10.1177/1091581819900150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caffeine is a popular psychostimulant, which is frequently consumed with ethanol. However, the effects of caffeine on neuronal cells constantly exposed to ethanol have not been investigated. Apoptosis and oxidative stress occurring in ethanol-induced neurotoxicity were previously associated with decreased phosphorylation of the mTOR/p70S6K/4E-BP1 signaling proteins. Evidence also suggested that caffeine inhibits the mTOR pathway. In this study, human SH-SY5Y neuroblastoma cells were exposed to caffeine after pretreatment for 24 hours with ethanol. Results indicated that both ethanol and caffeine caused neuronal cell death in a dose- and time-dependent manner. Exposure to 20-mM caffeine for 24 hours magnified reduced cell viability and enhanced apoptotic cell death induced by 200 mM of ethanol pretreatment. The phosphorylation of mTOR, p70S6K, and 4E-BP1 markedly decreased in cells exposed to caffeine after ethanol pretreatment, associated with a decrease of the mitochondrial membrane potential (ΔΨm). These findings suggested that caffeine treatment after neuronal cells were exposed to ethanol resulted in marked cell damages, mediated through enhanced inhibition of mTOR/p70S6K/4E-BP1 signaling leading to impaired ΔΨm and, eventually, apoptotic cell death.
Collapse
Affiliation(s)
- Pongsak Sangaunchom
- Faculty of Science, Toxicology Graduate Program, Mahidol University, Bangkok, Thailand
| | - Permphan Dharmasaroja
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand. Dharmasaroja is now with Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
11
|
Raymond JS, Wilson BB, Tan O, Gururajan A, Bowen MT. Acute alcohol exposure dose-dependently alleviates social avoidance in adolescent mice and inhibits social investigation in adult mice. Psychopharmacology (Berl) 2019; 236:3625-3639. [PMID: 31346653 DOI: 10.1007/s00213-019-05335-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Motivations for alcohol consumption often focus on ethanol's purported prosocial effects: social enhancement and reduction of socially focused anxiety. Despite substantial research supporting prosocial effects, contrary research exists demonstrating alcohol-elicited antisocial and asocial behaviours. Additionally, evidence typically fails to delineate whether alcohol-induced prosocial effects are due to alcohol expectancies or pharmacological actions of ethanol. Studies exploring ethanol's pharmacological effects on social behaviour and factors that modulate apparent contradictory prosocial versus asocial effects are lacking. OBJECTIVES This study investigated whether factors of age, ethanol dose and social fear modulate ethanol-induced pharmacological effects on sociability and social anxiety-like avoidance. METHODS Experiments examined the acute effects of ethanol doses (0, 0.25, 0.8, 1.6 g/kg; i.p.) in adult (10-week-old) and adolescent (PND 31-33) C57BL/6J male mice on social interaction using a social fear conditioning paradigm. Control experiments assessed whether ethanol-induced effects were social-specific. RESULTS In adult mice, no specific effects of ethanol on social avoidance were observed at any dose. However, high-dose ethanol (1.6 g/kg) suppressed social approach in all adult mice. In contrast, low-dose ethanol (0.25 g/kg) alleviated social avoidance in adolescent mice and no social suppression was observed at higher ethanol doses. Thus, higher doses of ethanol impair social behaviour in adult mice, whereas lower doses specifically alleviate social anxiety-like avoidance in adolescent mice. CONCLUSIONS Age, dose and social fear are critical modulators of acute ethanol-induced pharmacological effects on social behaviour. Inconsistencies in ethanol-induced social consequences appear at least partly mediated by pharmacological interactions-not solely alcohol expectancies.
Collapse
Affiliation(s)
- Joel S Raymond
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Bianca B Wilson
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Oliver Tan
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Anand Gururajan
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Michael T Bowen
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia. .,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia.
| |
Collapse
|
12
|
SanMiguel N, López-Cruz L, Müller C, Salamone J, Correa M. Caffeine modulates voluntary alcohol intake in mice depending on the access conditions: Involvement of adenosine receptors and the role of individual differences. Pharmacol Biochem Behav 2019; 186:172789. [DOI: 10.1016/j.pbb.2019.172789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/17/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
|
13
|
Mahdi S, Almosawi S, Baksh H, Qareeballa A, Alsaleh B, Falamarzi F, Alrabaani M, Alkalbani A, Kamal A. Effect of chronic administration and withdrawal of caffeine on motor function, cognitive functions, anxiety, and the social behavior of BLC57 mice. Int J Health Sci (Qassim) 2019; 13:10-16. [PMID: 30983940 PMCID: PMC6436450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The cognitive functions, motor coordination, and social behavior were studied in rodents after adding different doses of caffeine in their drinking water. METHODOLOGY BLC57 mice were divided into four groups: Control (n = 8), chronic moderate dose (n = 8, Ch] MD), Ch high dose (n = 8, Ch HD), and withdrawal (n = 8, WD). Caffeine was administered for 1 month to all groups. Spatial memory was tested by Morris water maze, motor coordination by rotarod (RR), social behavior by (Crawley's test), and anxiety by elevated plus maze (EPM) test. RESULTS In water maze, the latency to reach the platform was significantly shorter in Ch MD group compared to the control and the Ch HD groups. WD group showed the worst performance. RR results showed that the groups treated with caffeine performed poor in comparison to the control group where their latency to fall was significantly less. In the three-chamber test, the Ch MD group showed enhanced sociability (session 1) and social novelty behavior (session 2). On the other hand, both Ch HD and WD showed a lack in sociability and a deficit in social novelty. In the EPM, results showed that all caffeine administrated mice where more anxious than the control group. CONCLUSION We concluded that chronic administration of caffeine in MD resulted in enhancement of spatial memory, motor functions, sociability, and social novelty. The anxiety in these animals was, however, increased. On the other hand, Ch HD caffeine had opposite effects on all the parameters except for anxiety.
Collapse
Affiliation(s)
- Sadiq Mahdi
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Sayed Almosawi
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Hasan Baksh
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Abdulrahman Qareeballa
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Bano Alsaleh
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Faisal Falamarzi
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Malak Alrabaani
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ali Alkalbani
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Amer Kamal
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
14
|
Salamone JD, Correa M, Ferrigno S, Yang JH, Rotolo RA, Presby RE. The Psychopharmacology of Effort-Related Decision Making: Dopamine, Adenosine, and Insights into the Neurochemistry of Motivation. Pharmacol Rev 2019; 70:747-762. [PMID: 30209181 DOI: 10.1124/pr.117.015107] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Effort-based decision making is studied using tasks that offer choices between high-effort options leading to more highly valued reinforcers versus low-effort/low-reward options. These tasks have been used to study the involvement of neural systems, including mesolimbic dopamine and related circuits, in effort-related aspects of motivation. Moreover, such tasks are useful as animal models of some of the motivational symptoms that are seen in people with depression, schizophrenia, Parkinson's disease, and other disorders. The present review will discuss the pharmacology of effort-related decision making and will focus on the use of these tasks for the development of drug treatments for motivational dysfunction. Research has identified pharmacological conditions that can alter effort-based choice and serve as models for depression-related symptoms (e.g., the vesicular monoamine transport-2 inhibitor tetrabenazine and proinflammatory cytokines). Furthermore, tests of effort-based choice have identified compounds that are particularly useful for stimulating high-effort work output and reversing the deficits induced by tetrabenazine and cytokines. These studies indicate that drugs that act by facilitating dopamine transmission, as well as adenosine A2A antagonists, are relatively effective at reversing effort-related impairments. Studies of effort-based choice may lead to the identification of drug targets that could be useful for treating motivational treatments that are resistant to commonly used antidepressants such as serotonin transport inhibitors.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Mercè Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Sarah Ferrigno
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Renee A Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Rose E Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| |
Collapse
|
15
|
Ariyasiri K, Choi TI, Kim OH, Hong TI, Gerlai R, Kim CH. Pharmacological (ethanol) and mutation (sam2 KO) induced impairment of novelty preference in zebrafish quantified using a new three-chamber social choice task. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:53-65. [PMID: 29958859 DOI: 10.1016/j.pnpbp.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Social behavior is a fundamental aspect of our own species, a feature without which our society would not function. There are numerous human brain disorders associated with abnormal social behavior, among them are the autism spectrum disorders whose causal factors include a genetic component. Environmental factors, including drugs of abuse such as alcohol, also contribute to numerous abnormalities related to social behavior. Several such disorders have been modeled using laboratory animals. Perhaps one of the newest among them is the zebrafish. However, the paucity of standardized behavioral assays specifically developed for the zebrafish have hindered progress. Here, we present a newly developed zebrafish behavioral paradigm, the three-chamber social choice task. This task, which was adapted from a murine model, assesses sociality and social novelty preference in zebrafish in three phases: habituation, phase-I to evaluate sociality, and phase-II to quantify social novelty preference. Test fish are placed in the middle chamber, while conspecifics are introduced to the flanking chambers during phase-I and II. Both male and female zebrafish displayed sociality (preference for conspecifics) during phase-I and social novelty preference (preference for unfamiliar conspecifics) during phase-II. We found the paradigm to be able to detect both environmentally (alcohol) as well as genetically (targeted knock out of sam2) induced alterations of behavioral phenotypes. Although ethanol-treated fish displayed similar levels of sociality to those of control (not alcohol exposed) male and female zebrafish, they were found to exhibit significantly impaired social novelty preference, a finding compatible with altered motivational or perhaps mnemonic processes. Moreover, we found that knock out of sam2, previously shown to lead to emotional dysregulation, also disrupted social novelty preference, while leaving sociality relatively intact. We conclude that our novel behavioral paradigm is appropriate for the modeling and quantification of social behavior deficits in zebrafish.
Collapse
Affiliation(s)
- Krishan Ariyasiri
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Ted Inpyo Hong
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
16
|
Małkowska A, Bamburowicz-Klimkowska M, Łukasik M, Grucza K, Szutowski M, Kwiatkowska D. The influence of caffeine on ethyl glucuronide levels in rat serum and in rat hair. Pharmacol Rep 2018; 70:831-836. [PMID: 32002974 DOI: 10.1016/j.pharep.2018.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ethanol and caffeine are the most widely used psychoactive substances in the world, with an observed steady increase in the combined consumption of alcohol and caffeine. Specific signs of ethanol-caffeine interactions have been reported both in humans and in animals. The metabolic effects of these interactions have not been fully elucidated. There are no published reports on the influence of caffeine on ethyl glucuronide (EtG) formation. EtG is a direct metabolite of ethanol and is very often used as a biomarker of alcohol consumption. Here, we investigated the influence of caffeine on the formation of EtG in rat plasma and EtG incorporation into the hair. METHODS Studies were conducted on three male Wistar rat groups, each receiving either ethanol at 3 g/kg/day, ethanol (at the same dose) with caffeine at 3 mg/kg/day, or caffeine at 3 mg/kg/day for four weeks. EtG and caffeine levels were evaluated in hair and in blood after the last administration. RESULTS Blood EtG levels after the administration of ethanol together with caffeine were significantly higher than after the administration of ethanol alone. EtG levels in rat hair in the ethanol-and-caffeine group were also higher than in the ethanol-only group, but the difference was not statistically significant. CONCLUSION This study shows the possible effect of ethanol and caffeine co-administration on EtG formation. Caffeine stimulates EtG synthesis resulting in increased blood and, possibly, hair levels of this metabolite. However, the role of these changes in estimating alcohol consumption requires further studies.
Collapse
Affiliation(s)
- Anna Małkowska
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland.
| | | | - Marcin Łukasik
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Krzysztof Grucza
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland.,Department of Anti-Doping Research, Institute of Sport - National Research Institute, Warszawa, Poland
| | - Mirosław Szutowski
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Dorota Kwiatkowska
- Department of Anti-Doping Research, Institute of Sport - National Research Institute, Warszawa, Poland
| |
Collapse
|
17
|
Haab Lutte A, Huppes Majolo J, Reali Nazario L, Da Silva RS. Early exposure to ethanol is able to affect the memory of adult zebrafish: Possible role of adenosine. Neurotoxicology 2018; 69:17-22. [PMID: 30157450 DOI: 10.1016/j.neuro.2018.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Ethanol is one of the most widely consumed drugs in the world, and the effects of ethanol during early development include morphological and cognitive problems. The regulation of adenosine levels is essential for the proper function of major neurotransmitter systems in the brain, particularly glutamate and dopamine; thus, the investigation of the relation of adenosine and memory after early ethanol exposure becomes relevant. Embryos of zebrafish were exposed to 1% ethanol during two distinct developmental stages: gastrula/segmentation or pharyngula. The evaluation of memory, morphology, and locomotor parameters was performed when fish were 3 months old. The effect of ecto-5'-nucleotidase and adenosine deaminase inhibition on the consequences of ethanol exposure with regard to memory formation was observed. Morphological evaluation showed decreases in body length and the relative telencephalic and cerebellar areas in ethanol exposed animals. The locomotor parameters evaluated were not affected by ethanol. In the inhibitory avoidance paradigm, ethanol exposure during the gastrula/segmentation and pharyngula stages decreased zebrafish memory retention. When ethanol was given in the pharyngula stage, the inhibition of ecto-5'-nucleotidase in the acquisition phase of memory tests was able to revert the effects of ethanol on the memory of adults. These findings suggest that the increased adenosine levels caused by ethanol could alter the neuromodulation of important components of memory formation, such as neurotransmitters. The adjustment of adenosine levels through ecto-5'-nucleotidase inhibition appears to be effective at restoring normal adenosine levels and the acquisition of memory in animals exposed to ethanol during the pharyngula stage.
Collapse
Affiliation(s)
- Aline Haab Lutte
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Huppes Majolo
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Reali Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Pradhan G, Melugin PR, Wu F, Fang HM, Weber R, Kroener S. Calcium chloride mimics the effects of acamprosate on cognitive deficits in chronic alcohol-exposed mice. Psychopharmacology (Berl) 2018; 235:2027-2040. [PMID: 29679288 PMCID: PMC10766324 DOI: 10.1007/s00213-018-4900-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE Acamprosate (calcium-bis N-acetylhomotaurinate) is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Acamprosate can improve executive functions that are impaired by chronic intermittent ethanol (CIE) exposure. Recent work has suggested that acamprosate's effects on relapse prevention are due to its calcium component, which raises the question whether its pro-cognitive effects are similarly mediated by calcium. OBJECTIVES This study examined the effects of acamprosate on alcohol-induced behavioral deficits and compared them with the effects of the sodium salt version of N-acetylhomotaurinate or calcium chloride, respectively. METHODS We exposed mice to alcohol via three cycles of CIE and measured changes in alcohol consumption in a limited-access paradigm. We then compared the effects of acamprosate and calcium chloride (applied subchronically for 3 days during withdrawal) in a battery of cognitive tasks that have been shown to be affected by chronic alcohol exposure. RESULTS CIE-treated animals showed deficits in attentional set-shifting and deficits in novel object recognition. Alcohol-treated animals showed no impairments in social novelty detection and interaction, or delayed spontaneous alternation. Both acamprosate and calcium chloride ameliorated alcohol-induced cognitive deficits to comparable extents. In contrast, the sodium salt version of N-acetylhomotaurinate did not reverse the cognitive deficits. CONCLUSIONS These results add evidence to the notion that acamprosate produces its anti-relapse effects through its calcium moiety. Our results also suggest that improved regulation of drug intake by acamprosate after withdrawal might at least in part be related to improved cognitive function.
Collapse
Affiliation(s)
- Grishma Pradhan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Patrick R Melugin
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Fei Wu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Hannah M Fang
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Rachel Weber
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd, BSB14, Richardson, TX, 75080, USA.
| |
Collapse
|
19
|
Gonçalves DF, de Carvalho NR, Leite MB, Courtes AA, Hartmann DD, Stefanello ST, da Silva IK, Franco JL, Soares FA, Dalla Corte CL. Caffeine and acetaminophen association: Effects on mitochondrial bioenergetics. Life Sci 2018; 193:234-241. [DOI: 10.1016/j.lfs.2017.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
|
20
|
Abstract
The positive effects of the ketogenic diet (KD) on social behavior have been recently reported in patients and rodent models of autism spectrum disorder (ASD). Given the beneficial effects of the KD on epilepsy, mitochondrial function, carbohydrate metabolism, and inflammation, treatment based on the KD has the potential to reduce some of the ASD-associated symptoms, including abnormal social interactions. It is not known whether the KD influences sociability by reducing the pathological processes underlying ASD or through some independent mechanism. The aim of the present study was to evaluate the influence of the KD on the social behavior of rats. Four-week-old Long-Evans males were treated with the KD for 4 subsequent weeks. Afterwards, behavioral tests were performed in order to evaluate sociability, locomotor activity, working memory, and anxiety-related behaviors. Additionally we performed the social interaction test in animals that were receiving β-hydroxybutyrate or acetone. We have observed that rats fed with the KD showed increased social exploration in three different experimental settings. We did not observe any changes in the level of social interactions in animals treated with exogenous ketone bodies. The results did not show any difference in mobility or anxiety-related behaviors or working memory between the animals fed with the KD or standard rodent chow. In conclusion, we showed that the KD affects the social behavior of wild-type young adult male rats, which was not associated with other behavioral changes.
Collapse
|
21
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2017. [DOI: 10.1089/jcr.2017.29004.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
López-Cruz L, Carbó-Gas M, Pardo M, Bayarri P, Valverde O, Ledent C, Salamone JD, Correa M. Adenosine A 2A receptor deletion affects social behaviors and anxiety in mice: Involvement of anterior cingulate cortex and amygdala. Behav Brain Res 2017; 321:8-17. [DOI: 10.1016/j.bbr.2016.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/10/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
|