1
|
Singh N, Jha NA, Kumar V. Urbanisation negatively impacts sleep health and mood in adolescents: a comparative study of female students from city and rural schools of North India. Sleep Biol Rhythms 2024; 22:279-289. [PMID: 38524164 PMCID: PMC10959891 DOI: 10.1007/s41105-023-00503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/15/2023] [Indexed: 03/26/2024]
Abstract
This study investigated the impact of social settings on sleep, physical and mental health in female adolescents of North India (latitude 29.5 oN; longitude 77.5 oE). Using a battery of questionnaires, we compared the chronotype, sleep-wake pattern, sleep health (e.g. sleep quality, daytime sleepiness and fatigue) and mood (via depression, anxiety and stress symptoms) in female students (age 14-18 years) from rural (N = 719) and urban (N = 1033) schools separated by about 35 km, but families had almost similar socio-demographic details. The morning type was prevalent amongst rural, whilst the evening type was prevalent amongst urban students who also had access to smart phones, suggesting a possible greater use of the internet. There were greater negative sleep effects, daytime sleepiness, overall poor sleep quality, higher fatigue and anxiety levels in urban than the rural cohort. Interestingly, these measures also differed between school days and free days, suggesting an impact of the conflict between internal biological and social timings (= social jet lag). We also found a significant relationship between chronotype, internet addiction, mood-related parameters and measures of sleep health. Overall, these results suggest a possible impact of social settings on sleep health and mood-related behaviours in female adolescents.
Collapse
Affiliation(s)
- Nisha Singh
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Neelu Anand Jha
- Jindal School of Environment and Sustainability, O.P. Jindal Global University, Sonipat, Haryana 131001 India
| | - Vinod Kumar
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
2
|
Liu S, Zhang S, Guo M, Lei Q, He L, Li Z. Acoustic stimulation during sleep improves cognition and ameliorates Alzheimer's disease pathology in APP/PS1 mice. Exp Gerontol 2023; 182:112299. [PMID: 37776987 DOI: 10.1016/j.exger.2023.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Nonpharmacological therapies for Alzheimer's disease (AD) have become a popular research topic, and acoustic stimulation during sleep is one such promising strategy for the clinical treatment of AD. Some animal experiments have illustrated that acoustic stimulation at a specific frequency can ameliorate AD-related pathology or improve cognition in mice, but these studies did not explore the effective time window of auditory stimulation. Here, we explored the effects of acoustic stimulation during wakefulness and acoustic stimulation during sleep on cognition and AD-related pathology in APP/PS1 mice and the underlying mechanisms. In this study, forty APP/PS1 mice were equally divided into the following 4 groups and treated for 28 days: the chronic sleep deprivation (CSD) group (exposed to sleep deprivation from zeitgeber time [ZT] 0 to ZT 12 each day), the normal sleep and stress exposure (NSS) group (exposed to a stressor from ZT 0 to ZT 12 each day), the acoustic stimulation during wakefulness (ASW) group (exposed to sleep deprivation and 40 Hz acoustic stimulation from ZT 0 to ZT 12 each day) and the acoustic stimulation during sleep (ASS) group (exposed to sleep deprivation from ZT 0 to ZT 12 and 40 Hz acoustic stimulation from ZT 12 to ZT 24 each day). After the intervention, cognition was assessed by behavioural experiments. The amyloid-β burden was analysed by Western blotting, immunofluorescence and enzyme-linked immunosorbent assay. Tau pathology was assessed by Western blotting. Mitochondrial function was evaluated by transmission electron microscopy, Western blotting and fluorescence intensity measurement. We found that the NSS and ASS groups had better cognitive functions than the CSD and ASW groups. The Aβ burden and tau phosphorylation were lower in the NSS and ASS groups than in the CSD and ASW groups. Mitochondrial function was better in the NSS and ASS groups than in the CSD and ASW groups. However, the differences in these parameters between the NSS and ASS groups and between the CSD and ASW groups were not significant. Our findings suggest that acoustic stimulation at a specific frequency during sleep, but not during wakefulness, reduces the amyloid-β burden by inhibiting amyloid beta precursor protein-binding protein 2, hinders tau phosphorylation by blocking glycogen synthase kinase 3 beta, and restores mitochondrial function by elevating mitophagy and promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Shenzhen Research Institute of Sun Yat-Sen University, Shenzhen 518000, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Su Zhang
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Mengxia Guo
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Qingfeng Lei
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Lu He
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Zhong Li
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Shenzhen Research Institute of Sun Yat-Sen University, Shenzhen 518000, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| |
Collapse
|
3
|
Li Y, Zhao L, Zhang K, Shen M, Li Y, Yu Y, Yu J, Feng J, Xie K, Yu Y. Neurometabolic and structural alterations of medial septum and hippocampal CA1 in a model of post-operative sleep fragmentation in aged mice: a study combining 1H-MRS and DTI. Front Cell Neurosci 2023; 17:1160761. [PMID: 37333891 PMCID: PMC10272368 DOI: 10.3389/fncel.2023.1160761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Post-operative sleep disturbance is a common feature of elderly surgical patients, and sleep fragmentation (SF) is closely related to post-operative cognitive dysfunction (POCD). SF is characterized by sleep interruption, increased number of awakenings and sleep structure destruction, similar to obstructive sleep apnea (OSA). Research shows that sleep interruption can change neurotransmitter metabolism and structural connectivity in sleep and cognitive brain regions, of which the medial septum and hippocampal CA1 are key brain regions connecting sleep and cognitive processes. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive method for the evaluation of neurometabolic abnormalities. Diffusion tensor imaging (DTI) realizes the observation of structural integrity and connectivity of brain regions of interest in vivo. However, it is unclear whether post-operative SF induces harmful changes in neurotransmitters and structures of the key brain regions and their contribution to POCD. In this study, we evaluated the effects of post-operative SF on neurotransmitter metabolism and structural integrity of medial septum and hippocampal CA1 in aged C57BL/6J male mice. The animals received a 24-h SF procedure after isoflurane anesthesia and right carotid artery exposure surgery. 1H-MRS results showed after post-operative SF, the glutamate (Glu)/creatine (Cr) and glutamate + glutamine (Glx)/Cr ratios increased in the medial septum and hippocampal CA1, while the NAA/Cr ratio decreased in the hippocampal CA1. DTI results showed post-operative SF decreased the fractional anisotropy (FA) of white matter fibers in the hippocampal CA1, while the medial septum was not affected. Moreover, post-operative SF aggravated subsequent Y-maze and novel object recognition performances accompanied by abnormal enhancement of glutamatergic metabolism signal. This study suggests that 24-h SF induces hyperglutamate metabolism level and microstructural connectivity damage in sleep and cognitive brain regions in aged mice, which may be involved in the pathophysiological process of POCD.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Mengxi Shen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Jiafeng Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Jingyu Feng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
4
|
Disturbance of REM sleep exacerbates microglial activation in APP/PS1 mice. Neurobiol Learn Mem 2023; 200:107737. [PMID: 36813079 DOI: 10.1016/j.nlm.2023.107737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Although both nonrapid eye movement (NREM) sleep loss and rapid eye movement (REM) sleep loss exacerbate Alzheimer's disease (AD) progression, they exert different effects. Microglial activation can be beneficial or detrimental to AD patients under different conditions. However, few studies have investigated which sleep stage is the main regulator of microglial activation or the downstream effects of this activation. We aimed to explore the roles of different sleep phases in microglial activation and to investigate the possible effect of microglial activation on AD pathology. In this study, thirty-six 6-month-old APP/PS1 mice were equally divided into 3 groups: the stress control (SC), total sleep deprivation (TSD), and REM deprivation (RD) groups. All mice underwent a 48-hour intervention before their spatial memory was assessed using a Morris water maze (MWM). Then, microglial morphology, activation- and synapse-related protein expression, and inflammatory cytokine and amyloid β (Aβ) levels in hippocampal tissues were measured. We found that the RD and TSD groups exhibited worse spatial memory in the MWM tests. In addition, the RD and TSD groups showed greater microglial activation, higher inflammatory cytokine levels, lower synapse-related protein expression and more severe Aβ accumulation than the SC group, but there were no significant differences between the RD and TSD groups. This study demonstrates that disturbance of REM sleep may activate microglia in APP/PS1 mice. These activated microglia may promote neuroinflammation and engulf synapses but show a weakened ability to clear plaques.
Collapse
|
5
|
Kant D, Jha SK. Compensatory Contextual Fear Memory Pathways Develop in the Infralimbic Cortex within 3 Days after the First Test in the Absence of the Dorsal Hippocampus. ACS Chem Neurosci 2023; 14:619-627. [PMID: 36748948 DOI: 10.1021/acschemneuro.2c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The dorsal hippocampus (DH) is primarily involved in the formation of contextual fear-conditioned (CxFC) memory. However, CxFC memory can be formed even in the absence of the DH. In addition to the DH, the infralimbic cortex (IL), a sub-region of the medial prefrontal cortex (mPFC), also plays an important role in the consolidation of CxFC memory. However, role of IL in the development of compensatory CxFC memory is not known. Here, we have examined (a) the development of the compensatory circuitry of CxFC memory within 3 days after the first test in the absence of the DH and (b) the role of IL in the induction of compensatory CxFC memory in the absence of the DH. The DH-lesioned rats re-trained for CxFC 1 day after the first testing exhibited significantly less freezing compared to the control group. However, the DH-lesioned rats, re-trained for CxFC 3 days after the first testing, showed a robust freezing response. It suggests that the fully functional compensatory circuitry of contextual fear memory develops after multiple training separated by 3 days. Furthermore, we observed that reversible inactivation of the IL of the DH-lesioned rats during the first training waned the formation of compensatory CxFC. It suggests that (a) the IL receives contextual fear memory information during the first trial in the absence of the DH and (b) perturbation in fear memory information encoding in the IL during the first trial impairs the development of the compensatory network in the absence of the DH.
Collapse
Affiliation(s)
- Deepika Kant
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Kanishka, Jha SK. Compensatory cognition in neurological diseases and aging: A review of animal and human studies. AGING BRAIN 2023; 3:100061. [PMID: 36911258 PMCID: PMC9997140 DOI: 10.1016/j.nbas.2022.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022] Open
Abstract
Specialized individual circuits in the brain are recruited for specific functions. Interestingly, multiple neural circuitries continuously compete with each other to acquire the specialized function. However, the dominant among them compete and become the central neural network for that particular function. For example, the hippocampal principal neural circuitries are the dominant networks among many which are involved in learning processes. But, in the event of damage to the principal circuitry, many times, less dominant networks compensate for the primary network. This review highlights the psychopathologies of functional loss and the aspects of functional recuperation in the absence of the hippocampus.
Collapse
Affiliation(s)
- Kanishka
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
7
|
Song T, Du F, Xu L, Peng Z, Wang L, Dai C, Xu M, Zhang Y, Shao Y, Weng X, Li S. Total sleep deprivation selectively impairs motor preparation sub-stages in visual search task: Evidence from lateralized readiness potentials. Front Neurosci 2023; 17:989512. [PMID: 36925740 PMCID: PMC10011076 DOI: 10.3389/fnins.2023.989512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Many studies have provided evidence of a damage effect triggered by total sleep deprivation (TSD). However, it remains unclear whether the motor preparation processing is affected by TSD. Methods In the current study, 23 volunteers performed a stimulus-response compatibility visual search task before and after TSD while undergoing spontaneous electroencephalography (EEG). Results Repeated-measures analysis of variance revealed that: Compared with that at baseline, the visual search task's accuracy decreased after TSD, while the response time variance increased significantly. The peak amplitude of the stimulus-locked lateralized readiness potential (LRP) induced by a compatible stimulus was significantly more negative than that induced by an incompatible stimulus before TSD, whereas this difference was not significant after TSD. However, when taking sleep status into consideration, there were no significant main or interaction effects on response-locked LRPs. Discussion Our findings suggest that TSD damages visual search behavior, selectively impairs the earlier sub-stages of motor preparation (sensory integration). These findings will provide a new perspective for understanding the effects of sleep loss.
Collapse
Affiliation(s)
- Tao Song
- School of Psychology, Beijing Sport University, Beijing, China
| | - Fangchong Du
- Department of Xiangshan Road Outpatient General Clinic, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Cimin Dai
- School of Psychology, Beijing Sport University, Beijing, China
| | - Mengmeng Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Ying Zhang
- Department of Xiangshan Road Outpatient General Clinic, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shijun Li
- Department of Radiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
The prevalence of sleep loss and sleep disorders in young and old adults. AGING BRAIN 2023; 3:100057. [PMID: 36911264 PMCID: PMC9997161 DOI: 10.1016/j.nbas.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
The ability to sleep declines with age. The National Sleep Foundation, USA has recommended a minimum sleep amount for all ages. Individuals who experience sleep lesser than the recommended amount could be sleep-deprived. Several factors like stress, altered circadian cycle, medical conditions, etc. cause sleep deficiency. Almost 50-60 % of elderly population suffer from sleep disorders such as sleep apnea, restless legs syndrome, REM sleep behavior disorder, etc. Chronic sleep deprivation may further lead to the development of diseases such as Alzheimer's and Parkinson's. This paper reviews the prevalence of sleep disorders and consequences of sleep loss in young and old adults.
Collapse
|
9
|
Li TJ, Lee TY, Lo Y, Lee LY, Li IC, Chen CC, Chang FC. Hericium erinaceus mycelium ameliorate anxiety induced by continuous sleep disturbance in vivo. BMC Complement Med Ther 2021; 21:295. [PMID: 34865649 PMCID: PMC8643634 DOI: 10.1186/s12906-021-03463-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Sleep disruption is a major public health issue and may increase the risk of mortality by ten-folds if an individual is sleeping less than 6 h per night. Sleep has changed dramatically during to the COVID-19 pandemic because COVID symptoms can lead to psychological distress including anxiety. Hericium erinaceus mycelium has been widely investigated in both the in vivo studies and clinical trials for its neuroprotective functions because the mycelium contains hericenones and erinacines, which synthesize the nerve growth factor and brain-derived neurotrophic factor (BDNF). Recent in vivo reports have shown showed that erinacine A-enriched Hericium erinaceus mycelium can modulate BDNF/TrkB/PI3K/Akt/GSK-3β pathways to induce an antidepressant-like effect. A large body of evidence indicates that erinacine can pass the blood-brain barrier and suggests its neuroprotective function in both peripheral and central nervous systems. Thus, Hericium erinaceus mycelium may be a dual-function supplement for sleep disruption improvement while sustaining anxiolytic effects. METHOD To simulate the condition of sleep disruption, the mice were subjected to the tail suspension test (TST) for 15 min every day during the same period for nine consecutive days. Two different doses (75 and 150 mg/kg) of Hericium erinaceus mycelium were administered orally 20 min prior to the TSTs before entering the light period of 12:12 h L:D cycle. All sleep-wake recording was recorded for 24 h using electroencephalogram and electromyogram. The elevated-plus-maze and open-field tests were conducted to record the behavior activities. RESULTS Consecutive TSTs prior to the light period could cause significant sleep disturbance and anxiety behavior in the elevated-plus-maze experiments. Results showed that administration with Hericium erinaceus mycelium at 150 mg/kg ameliorated the rodent anxiety (p < 0.05) and reversed the TST-induced NREM sleep disturbance in the dark period. CONCLUSION This is the first in vivo study suggesting that Hericium erinaceus mycelium has a dual potential role for anxiety relief through improving sleep disruptions.
Collapse
Affiliation(s)
- Tsung-Ju Li
- Biotech Research Institute, Grape King Bio, Taoyuan, 32542, Taiwan
| | - Tung-Yen Lee
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun Lo
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ya Lee
- Biotech Research Institute, Grape King Bio, Taoyuan, 32542, Taiwan
| | - I-Chen Li
- Biotech Research Institute, Grape King Bio, Taoyuan, 32542, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio, Taoyuan, 32542, Taiwan.
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan.
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Fang-Chia Chang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung City, Taiwan.
- Department of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
10
|
Hippocampal neurons' cytosolic and membrane-bound ribosomal transcript profiles are differentially regulated by learning and subsequent sleep. Proc Natl Acad Sci U S A 2021; 118:2108534118. [PMID: 34819370 PMCID: PMC8640746 DOI: 10.1073/pnas.2108534118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep loss disrupts consolidation of hippocampus-dependent memory. To understand the cellular basis for this effect, we quantified RNAs associated with translating ribosomes in cytosol and on cellular membranes of different hippocampal neuron populations. Our analysis suggests that while sleep loss (but not learning) alters numerous ribosomal transcripts in cytosol, learning has dramatic effects on transcript profiles for less–well-characterized membrane-bound ribosomes. We demonstrate that postlearning sleep deprivation occludes already minimal learning-driven changes on cytosolic ribosomes. It simultaneously alters transcripts associated with metabolic and biosynthetic processes in membrane-bound ribosomes in excitatory hippocampal neurons and highly active, putative “engram” neurons, respectively. Together, these findings provide insights into the cellular mechanisms altered by learning and their disruption by subsequent sleep loss. The hippocampus is essential for consolidating transient experiences into long-lasting memories. Memory consolidation is facilitated by postlearning sleep, although the underlying cellular mechanisms are largely unknown. We took an unbiased approach to this question by using a mouse model of hippocampally mediated, sleep-dependent memory consolidation (contextual fear memory). Because synaptic plasticity is associated with changes to both neuronal cell membranes (e.g., receptors) and cytosol (e.g., cytoskeletal elements), we characterized how these cell compartments are affected by learning and subsequent sleep or sleep deprivation (SD). Translating ribosome affinity purification was used to profile ribosome-associated RNAs in different subcellular compartments (cytosol and membrane) and in different cell populations (whole hippocampus, Camk2a+ neurons, or highly active neurons with phosphorylated ribosomal subunit S6 [pS6+]). We examined how transcript profiles change as a function of sleep versus SD and prior learning (contextual fear conditioning; CFC). While sleep loss altered many cytosolic ribosomal transcripts, CFC altered almost none, and CFC-driven changes were occluded by subsequent SD. In striking contrast, SD altered few transcripts on membrane-bound (MB) ribosomes, while learning altered many more (including long non-coding RNAs [lncRNAs]). The cellular pathways most affected by CFC were involved in structural remodeling. Comparisons of post-CFC MB transcript profiles between sleeping and SD mice implicated changes in cellular metabolism in Camk2a+ neurons and protein synthesis in highly active pS6+ (putative “engram”) neurons as biological processes disrupted by SD. These findings provide insights into how learning affects hippocampal neurons and suggest that the effects of SD on memory consolidation are cell type and subcellular compartment specific.
Collapse
|
11
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Jung T, Noh J. Alteration of fear behaviors in sleep-deprived adolescent rats: increased fear expression and delayed fear extinction. Anim Cells Syst (Seoul) 2021; 25:83-92. [PMID: 34234889 PMCID: PMC8118405 DOI: 10.1080/19768354.2021.1902854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Disruption of sleep due to acute or chronic stress can lead to changes in emotional memory processing. Sleep disturbances are highly prevalent in post-traumatic stress disorder (PTSD), but still, the contribution of sleep deprivation on the susceptibility to PTSD has received little attention. To determine whether rapid eye movement sleep deprivation (SD) alters the development of fear expression or fear-associated memory impairment in adolescent rats, we performed animal emotional behavior tests using an SD animal model with the flowerpot technique. SD rats showed an increase in locomotor activity frequency and a decrease in sucrose consumption compared to control rats. An increase in freezing behavior during shock trials was observed in SD rats. Noticeably, it was observed that when applying the SD condition after fear stimuli exposure, fear extinction was delayed more in SD rats than in control rats. Overall, these results indicate that SD in adolescent rats leads to increased locomotor activity and anhedonic behavior, as well as increased fear expression and delayed fear extinction, suggesting that SD would lead to increased severity of PTSD-like phenotype.
Collapse
Affiliation(s)
- Taesub Jung
- Department of Science Education, Dankook University, Yongin-si, Republic of Korea
| | - Jihyun Noh
- Department of Science Education, Dankook University, Yongin-si, Republic of Korea
| |
Collapse
|
13
|
Xu S, Zhang Y, Xu Z, Song L. Effect of the cPKCγ-Ng Signaling System on Rapid Eye Movement Sleep Deprivation-Induced Learning and Memory Impairment in Rats. Front Psychiatry 2021; 12:763032. [PMID: 34777065 PMCID: PMC8586205 DOI: 10.3389/fpsyt.2021.763032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Rapid eye movement sleep deprivation (REM-SD) can cause a decline in learning and memory and lead to changes in behavior. Therefore, REM sleep plays a key role in processes that govern learning and memory. However, the mechanism underlying REM-SD-induced learning and memory impairment is unclear and the underlying molecular signaling still needs to be identified. In the present study, we investigated the role of the cPKCγ-Ng signaling pathway in REM-SD-induced learning and memory impairment. Method: Sixty male rats were divided into Control, REM-SD, REM-SD+cPKCγ activator PMA, REM-SD+cPKCγ inhibitor H-7, and sleep revival (SR) groups. The Morris water maze was used to assess spatial learning and memory. Western blot analysis was used to detect cPKCγ total protein expression and membrane translocation levels, and Ng total protein expression and phosphorylation levels. Results: The REM-SD group performed worse on the Morris water maze test than the control group. Western blot analysis showed that cPKCγ membrane translocation and Ng phosphorylation levels were significantly lower in the REM-SD group. SR following REM-SD restored learning and memory ability, cPKCγ transmembrane translocation, and Ng phosphorylation levels, but not to levels observed before REM-SD. PMA and H-7 significantly improved/disrupted task ability as well as cPKCγ transmembrane translocation and Ng phosphorylation levels in REM-SD rats. Conclusion: The REM-SD induced learning and memory impairment in rats and may be associated with the cPKCγ-Ng signaling pathway. Specifically, activation of the cPKCγ-Ng signaling pathway may protect against REM-SD.
Collapse
Affiliation(s)
- Shu Xu
- Neurorehabilitation Center, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yanbo Zhang
- Department of Neurobiology, The Second Affiliation Hospital of Shandong First Medical University, Tai'an, China
| | - Zhiqing Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Luping Song
- Neurorehabilitation Center, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing, China.,Department of Rehabilitation Medicine, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
14
|
Mahdavi MS, Nasehi M, Vaseghi S, Mousavi Z, Zarrindast MR. The effect of alpha lipoic acid on passive avoidance and social interaction memory, pain perception, and locomotor activity in REM sleep-deprived rats. Pharmacol Rep 2020; 73:102-110. [PMID: 33000413 DOI: 10.1007/s43440-020-00161-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Evidence shows the vital role of sleep in the modulation of cognitive functions. Sleep deprivation (SD) can disrupt learning and memory processes. SD also affects pain perception and locomotor activity. Furthermore, alpha lipoic acid (ALA) may induce antioxidant and neuroprotective effects. ALA affects memory processes, pain subthreshold, and locomotor activity. The goal of the present study was to investigate the effect of REM (rapid-eye movement) SD and ALA on social and passive avoidance memory, locomotor activity, and pain perception. METHODS Multiple-platform apparatus was used to induce REM SD for 24 h. Three-chamber paradigm test, the shuttle box, locomotion apparatus, and hot plate were used to assess social interaction memory, passive avoidance memory, locomotor activity, and pain perception, respectively. ALA was injected intraperitoneally at the doses of 35 and 70 mg/kg. RESULTS 24 h REM SD impaired both types of memory. In addition, ALA (35 mg/kg) reversed REM SD-induced memory impairments. However, ALA (70 mg/kg) impaired social memory with no effect on REM SD-induced memory impairments. ALA (70 mg/kg) also decreased pain subthreshold in REM SD rats. CONCLUSION REM SD impairs social interaction and passive avoidance memory. Furthermore, ALA may exhibit a dose-dependent manner in some cognitive tasks. ALA can induce a therapeutic effect at one dose, and an impairment effect at another dose (lower or higher), while the cognitive task and the conditions are equal.
Collapse
Affiliation(s)
- Mohadese Sadat Mahdavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box: 13145-784, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box: 13145-784, Tehran, Iran
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Rezaie M, Nasehi M, Vaseghi S, Alimohammadzadeh K, Islami Vaghar M, Mohammadi-Mahdiabadi-Hasani MH, Zarrindast MR. The interaction effect of sleep deprivation and cannabinoid type 1 receptor in the CA1 hippocampal region on passive avoidance memory, depressive-like behavior and locomotor activity in rats. Behav Brain Res 2020; 396:112901. [PMID: 32920013 DOI: 10.1016/j.bbr.2020.112901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence shows the interaction effect of cannabinoids and sleep on cognitive functions. In the present study, we aimed to investigate the interaction effect of cannabinoids type 1 receptor (CB1r) in the CA1 hippocampal region and sleep deprivation (SD) on passive avoidance memory and depressive-like behavior in male Wistar rats. We used water box apparatus to induce total SD (TSD) for 24 h. The shuttle-box was applied to assess passive avoidance memory and locomotion apparatus was applied to assess locomotor activity. Forced swim test (FST) was used to evaluate rat's behavior. ACPA (CB1r agonist) at the doses of 0.01, 0.001 and 0.0001 μg/rat, and AM251 (CB1r antagonist) at the doses of 100, 10 and 1 ng/rat were injected intra-CA1, five minutes after training via stereotaxic surgery. Results showed SD impaired memory. ACPA at the doses of 0.01 and 0.001 μg/rat impaired memory and at all doses did not alter the effect of SD on memory. AM251 by itself did not alter memory, while at lowest dose (1 ng/rat) restored SD-induced memory deficit. Both drugs induced depressive-like behavior in a dose-dependent manner. Furthermore, both drugs decreased swimming at some doses (ACPA at 0.0001 μg/rat, AM251 at 0.001 and 0.01 ng/rat). Also, ACPA at the highest dose increased climbing of SD rats. In conclusion, we suggest CB1r may interact with the effect of SD on memory. Additionally, cannabinoids may show a dose-dependent manner in modulating mood and behavior. Interestingly, CB1r agonists and antagonists may exhibit a similar effect in some behavioral assessments.
Collapse
Affiliation(s)
- Maede Rezaie
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| | - Khalil Alimohammadzadeh
- Department of Health Services Management, North Tehran Branch, Islamic Azad University, Tehran, Iran; Health Economics Policy Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Islami Vaghar
- Department of Nursing, Faculity of Nursing and Midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Kordestani-Moghadam P, Nasehi M, Vaseghi S, Khodagholi F, Zarrindast MR. The role of sleep disturbances in depressive-like behavior with emphasis on α-ketoglutarate dehydrogenase activity in rats. Physiol Behav 2020; 224:113023. [PMID: 32574661 DOI: 10.1016/j.physbeh.2020.113023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Sleep disorders may induce anxiety- and depressive-like behaviors. Furthermore, sleep disorders can alter the function of α-KGDH (α-ketoglutarate dehydrogenase), which is involved in the citric acid cycle. In this study, we evaluated the effect of two models of sleep deprivation (SD) including total SD (TSD) and partial SD (PSD), and two models of napping combined with each models of SD on rats' performance in Forced Swim Test (FST) and α-KGDH activity in both hemispheres of the amygdala. 64 male Wistar rats were used in this study. A modified water box was also used to induce SD. The results showed that, immobility was increased in 48-hour PSD group, indicating a possible depressive-like behavior. Swimming time was also increased following 48-hour TSD. However, climbing time was decreased in 48-hour PSD/TSD groups. Additionally, α-KGDH activity was increased in the left amygdala in 48-hour TSD and PSD groups. In conclusion, PSD may increase depressive-like behavior. TSD and PSD can decrease swimming time but increase climbing time, and these effects may be related to serotonergic and noradrenergic transmissions, respectively. Increase in α-KGDH activity in the left amygdala may be related to the brain's need for more energy during prolonged wakefulness. α-KGDH activity in the right amygdala was unaffected probably due to a decrease in alertness following SD.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Kordestani-Moghadam P, Nasehi M, Khodagholi F, Vaseghi S, Zarrindast MR, Khani M. The fluctuations of metabotropic glutamate receptor subtype 5 (mGluR5) in the amygdala in fear conditioning model of male Wistar rats following sleep deprivation, reverse circadian and napping. Brain Res 2020; 1734:146739. [PMID: 32087111 DOI: 10.1016/j.brainres.2020.146739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Sleep is involved in metabolic system, mental health and cognitive functions. Evidence shows that sleep deprivation (SD) negatively affects mental health and impairs cognitive functions, including learning and memory. Furthermore, the metabotropic glutamate receptor subtype 5 (mGluR5) is a metabolic biomarker, which is affected by various conditions, including stress, sleep deprivation, and cognitive and psychiatric disorders. In this research, we investigated the effect of SD and reverse circadian (RC), and two models of napping (continuous and non-continuous) combined with SD or RC on fear-conditioning memory, anxiety-like behavior and mGluR5 fluctuations in the amygdala. 64 male Wistar rats were used in this study. The water box apparatus was used to induce SD/RC for 48 h, and fear-conditioning memory apparatus was used to assess fear memory. The results showed, fear-conditioning memory was impaired following SD and RC, especially in contextual stage. However, anxiety-like behavior was increased. Furthermore, mGluR5 was increased in the left amygdala more than the right amygdala. Additionally, continuous napping significantly improved fear-conditioning memory, especially freezing behavior. In conclusion, following SD and RC, fear-conditioning memory in contextual stage is more vulnerable than in auditory stage. Furthermore, increase in anxiety-like behavior is related to increase in the activity of left amygdala and mGluR5 receptors.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mojgan Khani
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Shao XC. Effect of dexmedetomidine and sufentanil on sleep quality and incidence of nausea and vomiting in patients with analgesia after laparoscopic surgery. Shijie Huaren Xiaohua Zazhi 2019; 27:1290-1294. [DOI: 10.11569/wcjd.v27.i20.1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Due to the advantages of minimal invasion, quick recovery, and fewer complications, laparoscopic technique has been widely used in clinical practice, especially in gynecological surgery. Opioid analgesics are commonly used for postoperative analgesia. However, despite good effects, opioid analgesics can result in sleep disorder and neuroendocrine and cardiovascular complications. Therefore, it is essential to find analgesics with good analgesia effects and few side effects.
AIM To observe the effect of dexmedetomidine and sufentanil on sleep quality and incidence of nausea and vomiting in patients with analgesia after laparoscopic surgery.
METHODS From June 2017 to June 2019, 60 patients who underwent gynecological laparoscopic surgery at our hospital were selected and randomly divided into either a control group or an observation group, with 30 cases in each group. Anesthesia induction was adopted in both groups of patients, and a vein analgesia pump was applied 30 min before the completion of surgery. Both groups were given sufentanil 2.0 μg/kg, and the observation group was additionally given dexmedetomidine 200 μg/kg. The pain degree, sedation degree, sufentanil cumulative consumption, subjective score of sleep quality, average daily sleep time, sleep problem index (SPI), and postoperative incidence of nausea and vomiting in the two groups were compared.
RESULTS Compared with the control group, postoperative vision algetic standard scores at different time points significantly decreased (P < 0.05), Ramsay sedation scale scores increased significantly (P < 0.05), and sufentanil cumulative consumption decreased significantly (P < 0.05); postoperative subjective sleep quality scores on the first and second nights as well as average daily sleep time in the first week after surgery significantly increased (P < 0.05), and SPI significantly decreased (P < 0.05); and the incidence of nausea and vomiting at different postoperative points was significantly reduced (P < 0.05) in the observation group.
CONCLUSION Dexmedetomidine and sufentanil can improve the analgesic effect after gynecological laparoscopic surgery, significantly improve the sleep quality of patients and reduce the incidence of adverse reactions of nausea and vomiting, which is conducive to the rapid recovery of patients.
Collapse
Affiliation(s)
- Xue-Cheng Shao
- Department of Anesthesiology, Maternal and Child Health Hospital of Dongyang, Zhejiang Province, Dongyang 322100, Zhejiang Province, China
| |
Collapse
|
19
|
Kant D, Jha SK. The formation of compensatory contextual fear memory in the absence of dorsal hippocampus does not change sleep architecture. Behav Brain Res 2019; 370:111944. [PMID: 31100300 DOI: 10.1016/j.bbr.2019.111944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
Although the dorsal hippocampus (DH) plays an essential role in the consolidation of contextual fear-conditioned (CxFC) memory, this consolidation may also occur in the absence of DH. It is, however, not known if the development of a compensatory circuit for CxFC memory is time-dependent. The DH-dependent contextual fear memory influences sleep architecture, but whether the compensatory fear memory can influence sleep, is not known. Here, we have studied (a) the temporal progression of compensatory contextual fear memory in the absence of DH and (b) the influence of compensatory contextual fear memory on sleep architecture. Rats were surgically prepared for chronic polysomnographic recordings and drug injections in the DH. They were divided into four groups: DH-non-lesioned and fear-conditioned, DH-non-lesioned and non-fear-conditioned, DH-lesioned and fear-conditioned and DH-lesioned and non-fear-conditioned groups. The DH was lesioned with ibotenic acid. The animals were conditioned to contextual fear twice: 1st training on Day 5 and testing on Day 6; 2nd training on Day 10 and testing on Day 11. The DH-lesioned and fear-conditioned animals did not exhibit freezing response during the first testing but showed a robust freezing response when re-trained after a gap of three days. In addition, wakefulness and NREM sleep amount did not change, but REM sleep significantly decreased in the DH-dependent CxFC memory group. Interestingly, REM sleep did not decrease in the DH-independent CxFC memory group. Our findings suggest that the development of compensatory CxFC memory is a time-dependent process and the compensatory CxFC memory may not influence sleep architecture.
Collapse
Affiliation(s)
- Deepika Kant
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|