1
|
Wang SY, Xia ZX, Yang SW, Chen WK, Zhao YL, Li MD, Tian D, Pan Y, Lin XS, Zhu XQ, Huang Z, Liu JM, Lai ZM, Tao WC, Shen ZC. Regulation of depressive-like behaviours by palmitoylation: Role of AKAP150 in the basolateral amygdala. Br J Pharmacol 2024; 181:1897-1915. [PMID: 38413375 DOI: 10.1111/bph.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Protein palmitoylation is involved in learning and memory, and in emotional disorders. Yet, the underlying mechanisms in these processes remain unclear. Herein, we describe that A-kinase anchoring protein 150 (AKAP150) is essential and sufficient for depressive-like behaviours in mice via a palmitoylation-dependent mechanism. EXPERIMENTAL APPROACH Depressive-like behaviours in mice were induced by chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS). Palmitoylated proteins in the basolateral amygdala (BLA) were assessed by an acyl-biotin exchange assay. Genetic and pharmacological approaches were used to investigate the role of the DHHC2-mediated AKAP150 palmitoylation signalling pathway in depressive-like behaviours. Electrophysiological recording, western blotting and co-immunoprecipitation were performed to define the mechanistic pathway. KEY RESULTS Chronic stress successfully induced depressive-like behaviours in mice and enhanced AKAP150 palmitoylation in the BLA, and a palmitoylation inhibitor was enough to reverse these changes. Blocking the AKAP150-PKA interaction with the peptide Ht-31 abolished the CRS-induced AKAP150 palmitoylation signalling pathway. DHHC2 expression and palmitoylation levels were both increased after chronic stress. DHHC2 knockdown prevented CRS-induced depressive-like behaviours, as well as attenuating AKAP150 signalling and synaptic transmission in the BLA in CRS-treated mice. CONCLUSION AND IMPLICATIONS These results delineate that DHHC2 modulates chronic stress-induced depressive-like behaviours and synaptic transmission in the BLA via the AKAP150 palmitoylation signalling pathway, and this pathway may be considered as a promising novel therapeutic target for major depressive disorder.
Collapse
Affiliation(s)
- Si-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Shao-Wei Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei-Kai Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yue-Ling Zhao
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiao-Shan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiao-Qian Zhu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhen Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan, China
| | - Zhong-Meng Lai
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Wu-Cheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Peshev B, Ivanova P, Krushovlieva D, Kortenska L, Atanasova D, Rashev P, Lazarov N, Tchekalarova J. Predatory Odor Exposure as a Potential Paradigm for Studying Emotional Modulation of Memory Consolidation-The Role of the Noradrenergic Transmission in the Basolateral Amygdala. Int J Mol Sci 2024; 25:6576. [PMID: 38928281 PMCID: PMC11204360 DOI: 10.3390/ijms25126576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The pivotal role of the basolateral amygdala (BLA) in the emotional modulation of hippocampal plasticity and memory consolidation is well-established. Specifically, multiple studies have demonstrated that the activation of the noradrenergic (NA) system within the BLA governs these modulatory effects. However, most current evidence has been obtained by direct infusion of synthetic NA or beta-adrenergic agonists. In the present study, we aimed to investigate the effect of endogenous NA release in the BLA, induced by a natural aversive stimulus (coyote urine), on memory consolidation for a low-arousing, hippocampal-dependent task. Our experiments combined a weak object location task (OLT) version with subsequent mild predator odor exposure (POE). To investigate the role of endogenous NA in the BLA in memory modulation, a subset of the animals (Wistar rats) was treated with the non-selective beta-blocker propranolol at the end of the behavioral procedures. Hippocampal tissue was collected 90 min after drug infusion or after the OLT test, which was performed 24 h later. We used the obtained samples to estimate the levels of phosphorylated CREB (pCREB) and activity-regulated cytoskeleton-associated protein (Arc)-two molecular markers of experience-dependent changes in neuronal activity. The result suggests that POE has the potential to become a valuable behavioral paradigm for studying the interaction between BLA and the hippocampus in memory prioritization and selectivity.
Collapse
Affiliation(s)
- Bogomil Peshev
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
| | - Petya Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
| | - Desislava Krushovlieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
- Department of Anatomy, Faculty of Medicine, Trakia University, 6003 Stara Zagora, Bulgaria
| | - Pavel Rashev
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nikolai Lazarov
- Department of Anatomy and Histology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
| |
Collapse
|
3
|
dos-Santos RC, Sweeten BLW, Stelly CE, Tasker JG. The Neuroendocrine Impact of Acute Stress on Synaptic Plasticity. Endocrinology 2023; 164:bqad149. [PMID: 37788632 PMCID: PMC11046011 DOI: 10.1210/endocr/bqad149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Stress induces changes in nervous system function on different signaling levels, from molecular signaling to synaptic transmission to neural circuits to behavior-and on different time scales, from rapid onset and transient to delayed and long-lasting. The principal effectors of stress plasticity are glucocorticoids, steroid hormones that act with a broad range of signaling competency due to the expression of multiple nuclear and membrane receptor subtypes in virtually every tissue of the organism. Glucocorticoid and mineralocorticoid receptors are localized to each of the cellular compartments of the receptor-expressing cells-the membrane, cytosol, and nucleus. In this review, we cover the neuroendocrine effects of stress, focusing mainly on the rapid actions of acute stress-induced glucocorticoids that effect changes in synaptic transmission and neuronal excitability by modulating synaptic and intrinsic neuronal properties via activation of presumed membrane glucocorticoid and mineralocorticoid receptors. We describe the synaptic plasticity that occurs in 4 stress-associated brain structures, the hypothalamus, hippocampus, amygdala, and prefrontal cortex, in response to single or short-term stress exposure. The rapid transformative impact of glucocorticoids makes this stress signal a particularly potent effector of acute neuronal plasticity.
Collapse
Affiliation(s)
- Raoni Conceição dos-Santos
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Brook L W Sweeten
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E Stelly
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
4
|
Let's get wild: A review of free-ranging rat assays as context-enriched supplements to traditional laboratory models. J Neurosci Methods 2021; 362:109303. [PMID: 34352335 DOI: 10.1016/j.jneumeth.2021.109303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/30/2023]
Abstract
More than 24,000 rodent studies are published annually, with the vast majority of these studies focused on genetically undiverse animals in highly-controlled laboratory settings. However, findings from the laboratory have become increasingly unreliable for predicting outcomes in field and clinical settings, leading to a perceived crisis in translational research. One cause of this disparity might be that most human societies, in contrast to laboratory rodents, are genetically diverse and live in super-enriched environments. Methods for importing wild rats into the laboratory, and also exporting laboratory-style chambers into natural environments are not well-known outside their respective disciplines. Therefore, we have reviewed the current status of supplements to the laboratory rodent assay. We progress logically from highly-controlled experiments with natural breeding colonies to purely naturalistic approaches with free-ranging rats. We then highlight a number of approaches that allow genetically-diverse wild rats to be utilized in context-enriched paradigms. While considering the benefits and shortcomings of each available approach, we detail protocols for random sampling, remote-sensing, and deployment of laboratory chambers in the field. As supplements to standardized laboratory trials, some of these assays could offer key insights to help unify outcomes between laboratory and field studies. However, we note several outstanding questions that must be addressed such as: the trade-off between control and context, possible reductions in sample size, ramifications for the 'standardization fallacy', and ethical dilemmas of working with wild animals. Given these challenges, further innovation will be required before supplemental assays can be made broadly-accessible and thus, transferrable across disciplines.
Collapse
|
5
|
Pang TY, Yaeger JDW, Summers CH, Mitra R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci Biobehav Rev 2021; 124:137-150. [PMID: 33549740 PMCID: PMC9286069 DOI: 10.1016/j.neubiorev.2021.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time. Collectively, these studies testify that environmental variation at an earlier time point modifies the relationship between stressor and stress response at a later stage. The metaplastic effects of the environment on the stress response remain possible across various endpoints, including behavior, neuroendocrine regulation, region-specific neural plasticity, and regulation of receptors. The timescale of such variation spans adulthood, across stages of life history and generational boundaries. Thus, environmental variables are powerful determinants of the observed diversity in stress response. The predominant role of the environment suggests that it is possible to promote stress resilience through purposeful modification of the environment.
Collapse
Affiliation(s)
- Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, 3010, VIC, Australia
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
6
|
Zanette LY, Clinchy M. Ecology and Neurobiology of Fear in Free-Living Wildlife. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-124613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ecology of fear concerns the population-, community-, and ecosystem-level consequences of the behavioral interactions between predators and prey, i.e., the aggregate impacts of individual responses to life-threatening events. We review new experiments demonstrating that fear itself is powerful enough to affect the population growth rate in free-living wild birds and mammals, and fear of large carnivores—or the human super predator—can cause trophic cascades affecting plant and invertebrate abundance. Life-threatening events like escaping a predator can have enduring, even lifelong, effects on the brain, and new interdisciplinary research on the neurobiology of fear in wild animals is both providing insights into post-traumatic stress (PTSD) and reinforcing the likely commonality of population- and community-level effects of fear in nature. Failing to consider fear thus risks dramatically underestimating the total impact predators can have on prey populations and the critical role predator-prey interactions can play in shaping ecosystems.
Collapse
Affiliation(s)
- Liana Y. Zanette
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada;,
| | - Michael Clinchy
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada;,
| |
Collapse
|