1
|
Mayol-Troncoso R, Gaspar PA, Verdugo R, Mariman JJ, Maldonado PE. Fixational eye movements and their associated evoked potentials during natural vision are altered in schizophrenia. Schizophr Res Cogn 2024; 38:100324. [PMID: 39238484 PMCID: PMC11375315 DOI: 10.1016/j.scog.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2023] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Background Visual exploration is abnormal in schizophrenia; however, few studies have investigated the physiological responses during selecting objectives in more ecological scenarios. This study aimed to demonstrate that people with schizophrenia have difficulties observing the prominent elements of an image due to a deficit mechanism of sensory modulation (active sensing) during natural vision. Methods An electroencephalogram recording with eye tracking data was collected on 18 healthy individuals and 18 people affected by schizophrenia while looking at natural images. These had a prominent color element and blinking produced by changes in image luminance. Results We found fewer fixations when all images were scanned, late focus on prominent image areas, decreased amplitude in the eye-fixation-related potential, and decreased intertrial coherence in the SCZ group. Conclusions The decrease in the visual attention response evoked by the prominence of visual stimuli in patients affected by schizophrenia is generated by a reduction in endogenous attention mechanisms to initiate and maintain visual exploration. Further work is required to explain the relationship of this decrease with clinical indicators.
Collapse
Affiliation(s)
- Rocío Mayol-Troncoso
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay, Chile
- Facultad de Psicología, Universidad Alberto Hurtado, Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Laboratorio Psiquiatría Traslacional
| | - Pablo A Gaspar
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay, Chile
- Clínica Alemana, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Laboratorio Psiquiatría Traslacional
| | - Roberto Verdugo
- Biomedical Neuroscience Institute (BNI)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Instituto Psiquiátrico Dr. José Horwitz Barak, Chile
| | - Juan J Mariman
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile
- Nucleus of wellbeing and human development, education research center (CIE-UMCE), Universidad Metropolitana de Ciencias de la educación
| | - Pedro E Maldonado
- Biomedical Neuroscience Institute (BNI)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Nacional Center for Artificial Intelligence (CENIA), Chile
| |
Collapse
|
2
|
Loyola-Navarro R, Moënne-Loccoz C, Vergara RC, Hyafil A, Aboitiz F, Maldonado PE. Voluntary self-initiation of the stimuli onset improves working memory and accelerates visual and attentional processing. Heliyon 2022; 8:e12215. [PMID: 36578387 PMCID: PMC9791366 DOI: 10.1016/j.heliyon.2022.e12215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The ability of an organism to voluntarily control the stimuli onset modulates perceptual and attentional functions. Since stimulus encoding is an essential component of working memory (WM), we conjectured that controlling the initiation of the perceptual process would positively modulate WM. To corroborate this proposition, we tested twenty-five healthy subjects in a modified-Sternberg WM task under three stimuli presentation conditions: an automatic presentation of the stimuli, a self-initiated presentation of the stimuli (through a button press), and a self-initiated presentation with random-delay stimuli onset. Concurrently, we recorded the subjects' electroencephalographic signals during WM encoding. We found that the self-initiated condition was associated with better WM accuracy, and earlier latencies of N1, P2 and P3 evoked potential components representing visual, attentional and mental review of the stimuli processes, respectively. Our work demonstrates that self-initiated stimuli enhance WM performance and accelerate early visual and attentional processes deployed during WM encoding. We also found that self-initiated stimuli correlate with an increased attentional state compared to the other two conditions, suggesting a role for temporal stimuli predictability. Our study remarks on the relevance of self-control of the stimuli onset in sensory, attentional and memory updating processing for WM.
Collapse
Affiliation(s)
- Rocio Loyola-Navarro
- Departamento de Neurociencia, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Departamento de Educación Diferencial, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Center for Advanced Research in Education, Institute of Education, Universidad de Chile, Santiago, Chile
| | - Cristóbal Moënne-Loccoz
- Departamento de Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Nacional de Inteligencia Artificial (CENIA), Santiago, Chile
| | - Rodrigo C. Vergara
- Departamento de Kinesiología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Centro Nacional de Inteligencia Artificial (CENIA), Santiago, Chile
- Centro de Investigación en Educación, Universidad Metropolitana de Ciencias de la Educación (CIE-UMCE), Santiago, Chile
| | | | - Francisco Aboitiz
- Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro E. Maldonado
- Departamento de Neurociencia, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Centro Nacional de Inteligencia Artificial (CENIA), Santiago, Chile
| |
Collapse
|
3
|
Katz CN, Schjetnan AGP, Patel K, Barkley V, Hoffman KL, Kalia SK, Duncan KD, Valiante TA. A corollary discharge mediates saccade-related inhibition of single units in mnemonic structures of the human brain. Curr Biol 2022; 32:3082-3094.e4. [PMID: 35779529 DOI: 10.1016/j.cub.2022.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2021] [Revised: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Despite the critical link between visual exploration and memory, little is known about how neuronal activity in the human mesial temporal lobe (MTL) is modulated by saccades. Here, we characterize saccade-associated neuronal modulations, unit-by-unit, and contrast them to image onset and to occipital lobe neurons. We reveal evidence for a corollary discharge (CD)-like modulatory signal that accompanies saccades, inhibiting/exciting a unique population of broad-/narrow-spiking units, respectively, before and during saccades and with directional selectivity. These findings comport well with the timing, directional nature, and inhibitory circuit implementation of a CD. Additionally, by linking neuronal activity to event-related potentials (ERPs), which are directionally modulated following saccades, we recontextualize the ERP associated with saccades as a proxy for both the strength of inhibition and saccade direction, providing a mechanistic underpinning for the more commonly recorded saccade-related ERP in the human brain.
Collapse
Affiliation(s)
- Chaim N Katz
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada; Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Andrea G P Schjetnan
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada
| | - Kramay Patel
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada
| | - Victoria Barkley
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada
| | - Kari L Hoffman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Suneil K Kalia
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada; The KITE Research Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Katherine D Duncan
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada; The KITE Research Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, ON, Canada.
| |
Collapse
|
4
|
Latency shortening with enhanced sparseness and responsiveness in V1 during active visual sensing. Sci Rep 2022; 12:6021. [PMID: 35410997 PMCID: PMC9001710 DOI: 10.1038/s41598-022-09405-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
In natural vision, neuronal responses to visual stimuli occur due to self-initiated eye movements. Here, we compare single-unit activity in the primary visual cortex (V1) of non-human primates to flashed natural scenes (passive vision condition) to when they freely explore the images by self-initiated eye movements (active vision condition). Active vision enhances the number of neurons responding, and the response latencies become shorter and less variable across neurons. The increased responsiveness and shortened latency during active vision were not explained by increased visual contrast. While the neuronal activities in all layers of V1 show enhanced responsiveness and shortened latency, a significant increase in lifetime sparseness during active vision is observed only in the supragranular layer. These findings demonstrate that the neuronal responses become more distinct in active vision than passive vision, interpreted as consequences of top-down predictive mechanisms.
Collapse
|
5
|
Dias EC, Van Voorhis AC, Braga F, Todd J, Lopez-Calderon J, Martinez A, Javitt DC. Impaired Fixation-Related Theta Modulation Predicts Reduced Visual Span and Guided Search Deficits in Schizophrenia. Cereb Cortex 2021; 30:2823-2833. [PMID: 32030407 DOI: 10.1093/cercor/bhz277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
During normal visual behavior, individuals scan the environment through a series of saccades and fixations. At each fixation, the phase of ongoing rhythmic neural oscillations is reset, thereby increasing efficiency of subsequent visual processing. This phase-reset is reflected in the generation of a fixation-related potential (FRP). Here, we evaluate the integrity of theta phase-reset/FRP generation and Guided Visual Search task in schizophrenia. Subjects performed serial and parallel versions of the task. An initial study (15 healthy controls (HC)/15 schizophrenia patients (SCZ)) investigated behavioral performance parametrically across stimulus features and set-sizes. A subsequent study (25-HC/25-SCZ) evaluated integrity of search-related FRP generation relative to search performance and evaluated visual span size as an index of parafoveal processing. Search times were significantly increased for patients versus controls across all conditions. Furthermore, significantly, deficits were observed for fixation-related theta phase-reset across conditions, that fully predicted impaired reduced visual span and search performance and correlated with impaired visual components of neurocognitive processing. By contrast, overall search strategy was similar between groups. Deficits in theta phase-reset mechanisms are increasingly documented across sensory modalities in schizophrenia. Here, we demonstrate that deficits in fixation-related theta phase-reset during naturalistic visual processing underlie impaired efficiency of early visual function in schizophrenia.
Collapse
Affiliation(s)
- Elisa C Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA.,Department of Psychiatry, New York University School of Medicine, New York, NY 10016 USA
| | - Abraham C Van Voorhis
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA
| | - Filipe Braga
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA
| | - Julianne Todd
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA
| | - Javier Lopez-Calderon
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA
| | - Antigona Martinez
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA.,Department of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032 USA
| | - Daniel C Javitt
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10920 USA.,Department of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032 USA
| |
Collapse
|
6
|
Zweifel NO, Hartmann MJZ. Defining "active sensing" through an analysis of sensing energetics: homeoactive and alloactive sensing. J Neurophysiol 2020; 124:40-48. [PMID: 32432502 DOI: 10.1152/jn.00608.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The term "active sensing" has been defined in multiple ways. Most strictly, the term refers to sensing that uses self-generated energy to sample the environment (e.g., echolocation). More broadly, the definition includes all sensing that occurs when the sensor is moving (e.g., tactile stimuli obtained by an immobile versus moving fingertip) and, broader still, includes all sensing guided by attention or intent (e.g., purposeful eye movements). The present work offers a framework to help disambiguate aspects of the "active sensing" terminology and reveals properties of tactile sensing unique among all modalities. The framework begins with the well-described "sensorimotor loop," which expresses the perceptual process as a cycle involving four subsystems: environment, sensor, nervous system, and actuator. Using system dynamics, we examine how information flows through the loop. This "sensory-energetic loop" reveals two distinct sensing mechanisms that subdivide active sensing into homeoactive and alloactive sensing. In homeoactive sensing, the animal can change the state of the environment, while in alloactive sensing the animal can alter only the sensor's configurational parameters and thus the mapping between input and output. Given these new definitions, examination of the sensory-energetic loop helps identify two unique characteristics of tactile sensing: 1) in tactile systems, alloactive and homeoactive sensing merge to a mutually controlled sensing mechanism, and 2) tactile sensing may require fundamentally different predictions to anticipate reafferent input. We expect this framework may help resolve ambiguities in the active sensing community and form a basis for future theoretical and experimental work regarding alloactive and homeoactive sensing.
Collapse
Affiliation(s)
- Nadina O Zweifel
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Mitra J Z Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois
| |
Collapse
|