1
|
Abramova O, Zorkina Y, Pavlov K, Ushakova V, Morozova A, Zubkov E, Pavlova O, Storozheva Z, Gurina O, Chekhonin V. Chronic Ultrasound Prenatal Stress Altered the Brain's Neurochemical Systems in Newborn Rats. Neural Plast 2024; 2024:3829941. [PMID: 39290524 PMCID: PMC11407898 DOI: 10.1155/2024/3829941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/25/2023] [Accepted: 01/27/2024] [Indexed: 09/19/2024] Open
Abstract
Prenatal stress (PS) affects the development and functioning of the central nervous system, but the exact mechanisms underpinning this effect have not been pinpointed yet. A promising model of PS is one based on chronic exposure of pregnant rodents to variable-frequency ultrasound (US PS), as it mimics the PS with a psychic nature that most adequately captures the human stressors in modern society. The aim of this study was to investigate the effects of US PS on the brain neurotransmitter, neuropeptide, and neurotrophic systems of newborn Wistar rats. We determined the concentration of neurotransmitters and their metabolites (serotonin, HIAA, dopamine, DOPAC, and norepinephrine), neuropeptides (α-MSH, β-endorphin, neurotensin, oxytocin, and substance P), and the neurotrophin brain-derived neurotrophic factor (BDNF) in rat brain tissues by HPLC-ED, ELISA, and multiplex ELISA. Correlation analysis and principal component analysis (PCA) were used to get a sense of the relationship between the biochemical parameters of the brain. The results demonstrated that US PS increases the concentration of serotonin (p=0.004) and DOPAC (p=0.04) in the hippocampus has no effect on the neurotransmitter systems of the frontal cortex, reduces the concentration of BDNF in the entirety of the brain of males (p=0.008), and increases the neuropeptides α-MSH (p=0.02), β-endorphin (p=0.01), oxytocin (p=0.008), and substance P (p < 0.001) in the entire brain. A degree of complexity in the neurotransmitter system network in the frontal cortex and network change in the hippocampus after exposure to US PS have been observed. PCA revealed a similar pattern of neurotransmitter system interactions in the frontal cortex and hippocampus in males and females after exposure to US PS. We suggest that US PS can alter neurodevelopment, which is mediated by changes in the studied neurochemical systems that thus affect the behavioral phenotype in animals.
Collapse
Affiliation(s)
- Olga Abramova
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Valeria Ushakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, Moscow 115191, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Zinaida Storozheva
- Laboratory of Functional Neurochemistry, P. K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Vladimir Chekhonin
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Zubkov E, Riabova O, Zorkina Y, Egorova A, Ushakova V, Lepioshkin A, Novoselova E, Abramova O, Morozova A, Chekhonin V, Makarov V. Antidepressant-like Effect of the Eburnamine-Type Molecule Vindeburnol in Rat and Mouse Models of Ultrasound-Induced Depression. ACS Chem Neurosci 2024; 15:560-571. [PMID: 38216514 DOI: 10.1021/acschemneuro.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Vindeburnol (VIND, RU24722, BC19), a synthetic molecule derived from the eburnamine-vincamine alkaloid group, has many neuropsychopharmacological effects, but its antidepressant-like effects are poorly understood and have only been described in a few patents. To reliably estimate this effect, vindeburnol was studied in a model of long-term variable-frequency ultrasound (US) exposure at 20-45 kHz in male Wistar rats and BALB/c mice. Vindeburnol was administered chronically for 21 days against a background of simultaneous ultrasound exposure at a dose of 20 mg/kg intraperitoneally (IP). Using four behavioral tests, the sucrose preference test (SPT), the social interaction test (SIT), the open field test (OFT), and the forced swimming test (FST), we found that the treatment with the compound diminished depression-like symptoms in mice and rats. The compound restored the ultrasound-related reduced sucrose consumption to control levels and increased social interaction time in mice and rats compared with those in ultrasound-exposed animals. Vindeburnol showed contraversive results of horizontal and vertical activity in both species and generally did not increase locomotor activity. At the same time, the compound showed a specific effect in the FST, significantly reducing the immobility time. Moreover, we found an increase in norepinephrine, dopamine, and its metabolite levels in the brainstem, as well as an increase in dopamine, 3-methoxytyramine, and 3,4-dihydroxyphenylacetic acid levels in the striatum. We also observed a statistically significant increase in tyrosine hydroxylase (TH) levels in the region containing the locus coeruleus (LC). We suggest that using its distinct chemical structure and pharmacological activity as a starting point could boost antidepressant drug discovery.
Collapse
Affiliation(s)
- Eugene Zubkov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Olga Riabova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Yana Zorkina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Anna Egorova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Valeriya Ushakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Alexander Lepioshkin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Elena Novoselova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Olga Abramova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Anna Morozova
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23 Kropotkinsky Pereulok, 119034 Moscow, Russia
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| |
Collapse
|
3
|
Abramova O, Morozova A, Zubkov E, Ushakova V, Zorkina Y, Proshin AT, Storozheva Z, Gurina O, Chekhonin V. Ultrasound-Induced Prenatal Stress: New Possibilities for Modeling Mental Disorders. Dev Neurosci 2023; 46:237-261. [PMID: 37857257 PMCID: PMC11251674 DOI: 10.1159/000534687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
The development of animal models of mental disorders is an important task since such models are useful for studying the neurobiological mechanisms of psychopathologies and for trial of new therapeutic drugs. One way to model pathologies of the nervous system is to impair fetal neurodevelopment through stress of the pregnant future mother, or prenatal stress (PS). The use of variable frequency ultrasound (US) in rodents is a promising method of imitating psychological stress, to which women in modern society are most often subjected. The aim of our study was to investigate the effect of PS induced by exposure to variable frequency ultrasound (US PS) throughout the gestational period on the adult rat offspring, namely, to identify features of behavioral alterations and neurochemical brain parameters that can be associated with certain mental disorders in humans, to determine the possibility of creating a new model of psychopathology. Our study included a study of some behavioral characteristics of male and female rats in the elevated plus maze, open-field test, object recognition test, social interaction test, sucrose preference test, latent inhibition test, Morris water maze, forced swimming test, acoustic startle reflex, and prepulse inhibition tests. We also determined the activity of the serotonergic, dopaminergic, and noradrenergic neurotransmitter systems in the hippocampus and frontal cortex by HPLC-ED. Concentration of norepinephrine, dopamine, DOPAC, serotonin, and HIAA, as well as DOPAC/dopamine and HIAA/serotonin ratios were determined. A correlation analysis of behavioral and neurochemical parameters in male and female rats was performed based on the data obtained. The results of the study showed that US PS altered the behavioral phenotype of the rat offspring. US PS increased the level of anxious behavior, impaired orientation-research behavior, increased grooming activity, decreased the desire for social contacts, shifted behavioral reactions from social interaction to interaction with inanimate objects, impaired latent inhibition, and decreased the startle reflex. US PS activated the serotonergic, dopaminergic, and noradrenergic neurotransmitter systems of the rat frontal cortex and hippocampus. A correlation between neurochemical and behavioral parameters was revealed. Our study showed that US PS leads to a certain dysfunction on behavioral and neurochemical levels in rats that is most closely associated with symptoms of schizophrenia or autism. We hypothesize that this could potentially be an indicator of face validity for a model of psychopathology based on neurodevelopmental impairment.
Collapse
Affiliation(s)
- Olga Abramova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Mental-health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Mental-health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Valeria Ushakova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Mental-health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Mental-health Clinic No. 1 named after N.A. Alekseev, Moscow, Russia
| | - Andrey T. Proshin
- Laboratory of General Physiology of Functional Systems, P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Zinaida Storozheva
- Laboratory of Functional Neurochemistry, P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Chernukha I, Vasilevskaya E, Klimina K, Yunes R, Kupaeva N, Tolmacheva G, Kibitkina A, Danilenko V, Karabanov S, Fedulova L. Effects of ultrasound-induced stress on gut microbiota of mice. Vet World 2023; 16:929-938. [PMID: 37576770 PMCID: PMC10420703 DOI: 10.14202/vetworld.2023.929-938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Prolonged stress causes deleterious effects on both the organism and its microbiota. In this study, we examined the effects of exposure to variable frequency ultrasound (US) on the gut microbiota-liver-brain axis of mice. Materials and Methods This study was conducted on 20 mature clinically healthy sexually naive C57BL/6J male mice (42-45 days old). Group 1 (Normal) consisted of healthy intact mice (n = 10). Group 2 (Stress) consisted of mice subjected to US-induced stress (n = 10) for 20 days with alternating frequencies (20-45 kHz). Stool samples were collected on days 0, 10, and 20, and the corresponding DNA was later subjected to 16SrRNA sequencing. After mice were sacrificed on day 21, the leukocyte count, blood serum biochemical parameters, and liver and brain antioxidant status were measured. Behavioral testing was performed on days 17, 18, and 19. Results Ultrasound lead to higher stress and anxiety levels; increase in creatinine by 8.29% and gamma-glutamyltransferase activity by 5 times, a decrease in alkaline phosphatase activity by 38.23%, increase of de Ritis coefficient by 21.34%; increased liver and brain superoxide dismutase level by 20.8% and 21.5%, respectively; the stress-related changes in the gut microbiota composition - Bacteroidaceae and Firmicutes. Conclusion Subjecting mice to 20 days of US-induced stress leads to systemic disorders due to oxidative stress and a decrease in the diversity of the gut microbiota.
Collapse
Affiliation(s)
- Irina Chernukha
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Ekaterina Vasilevskaya
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Ksenia Klimina
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Roman Yunes
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda Kupaeva
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Galina Tolmacheva
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Anastasiya Kibitkina
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Valery Danilenko
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Karabanov
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Liliya Fedulova
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| |
Collapse
|
5
|
Salari M, Eftekhar-Vaghefi SH, Asadi-Shekaari M, Esmaeilpour K, Solhjou S, Amiri M, Ahmadi-Zeidabadi M. Impact of ketamine administration on chronic unpredictable stress-induced rat model of depression during extremely low-frequency electromagnetic field exposure: Behavioral, histological and molecular study. Brain Behav 2023; 13:e2986. [PMID: 37032465 PMCID: PMC10176018 DOI: 10.1002/brb3.2986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 04/11/2023] Open
Abstract
OBJECTIVES In the study, we examined the effects of ketamine and extremely low-frequency electromagnetic fields (ELF-EMF) on depression-like behavior, learning and memory, expression of GFAP, caspase-3, p53, BDNF, and NMDA receptor in animals subjected to chronic unpredictable stress (CUS). METHODS After applying 21 days of chronic unpredictable stress, male rats received intraperitoneal (IP) of ketamine (5 mg/kg) and then were exposed to ELF-EMF (10-Hz, 10-mT exposure conditions) for 3 days (3 h per day) and behavioral assessments were performed 24 h after the treatments. Instantly after the last behavioral test, the brain was extracted for Nissl staining, immunohistochemistry, and real-time PCR analyses. Immunohistochemistry (IHC) was conducted to assess the effect of ketamine and ELF-EMF on the expression of astrocyte marker (glial fibrillary acidic protein, GFAP) in the CA1 area of the hippocampus and medial prefrontal cortex (mPFC). Also, real-time PCR analyses were used to investigate the impacts of the combination of ketamine and ELF-EMF on the expression of caspase3, p53, BDNF, and NMDA receptors in the hippocampus in rats submitted to the CUS procedure. Results were considered statistically significant when p < .05. RESULTS Our results revealed that the combination of ketamine and ELF-EMF increased depression-like behavior, increased degenerated neurons and decreased the number of GFAP (+) cells in the CA1 area and mPFC, incremented the expression of caspase-3, and reduced the expression of BDNF in the hippocampus but showed no effect on the expression of p53 and NMDA-R. CONCLUSIONS These results reveal that combining ketamine and ELF-EMF has adverse effects on animals under chronic unpredictable stress (CUS).
Collapse
Affiliation(s)
- Moein Salari
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Hassan Eftekhar-Vaghefi
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Solhjou
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Amiri
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Ahmadi-Zeidabadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Menshutina N, Majouga A, Uvarova A, Lovskaya D, Tsygankov P, Mochalova M, Abramova O, Ushakova V, Morozova A, Silantyev A. Chitosan Aerogel Particles as Nasal Drug Delivery Systems. Gels 2022; 8:gels8120796. [PMID: 36547320 PMCID: PMC9778004 DOI: 10.3390/gels8120796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The nasal drug delivery route has distinct advantages, such as high bioavailability, a rapid therapeutic effect, non-invasiveness, and ease of administration. This article presents the results of a study of the processes for obtaining chitosan aerogel particles that are promising as nasal or inhalation drug delivery systems. Obtaining chitosan aerogel particles includes the following steps: the preparation of a chitosan solution, gelation, solvent replacement, and supercritical drying. Particles of chitosan gels were obtained by spraying and homogenization. The produced chitosan aerogel particles had specific surface areas of up to 254 m2/g, pore volumes of up to 1.53 cm3/g, and porosities of up to 99%. The aerodynamic diameters of the obtained chitosan aerogel particles were calculated, the values of which ranged from 13 to 59 µm. According to the calculation results, a CS1 sample was used as a matrix for obtaining the pharmaceutical composition "chitosan aerogel-clomipramine". X-ray diffraction (XRD) analysis of the pharmaceutical composition determined the presence of clomipramine, predominantly in an amorphous form. Analysis of the high-performance liquid chromatography (HPLC) data showed that the mass loading of clomipramine was 35%. Experiments in vivo demonstrated the effectiveness of the pharmaceutical composition "chitosan aerogel-clomipramine" as carrier matrices for the targeted delivery of clomipramine by the "Nose-to-brain" mechanism of nasal administration. The maximum concentration of clomipramine in the frontal cortex and hippocampus was reached 30 min after administration.
Collapse
Affiliation(s)
- Natalia Menshutina
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Alexander Majouga
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Anastasia Uvarova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Daria Lovskaya
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Pavel Tsygankov
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology, Moscow 125047, Russia
- Correspondence: ; Tel.: +7-(967)-2689739
| | - Maria Mochalova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Olga Abramova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, Moscow 119034, Russia
| | - Valeria Ushakova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, Moscow 119034, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, Moscow 119034, Russia
| | - Artemiy Silantyev
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, Moscow 119034, Russia
| |
Collapse
|
7
|
Preparation of Protein Aerogel Particles for the Development of Innovative Drug Delivery Systems. Gels 2022; 8:gels8120765. [PMID: 36547289 PMCID: PMC9777701 DOI: 10.3390/gels8120765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The research was oriented towards the preparation of aerogel particles based on egg white and whey protein isolate using various dispersion methods: dripping, spraying, and homogenization. Based on the results of analytical studies, the most appropriate samples were selected to obtain aerogels loaded with the drug. The results of the experimental research were used to study methods for obtaining nasal drug delivery systems based on aerogels. Protein aerogels were obtained by thermal gelation followed by supercritical drying. The obtained particles of protein aerogels have a specific surface area of up to 350 m2/g with a pore volume of up to 2.9 cm3/g, as well as a porosity of up to 95%. The results of experimental studies have shown that changing the dispersion method makes it possible to control the structural characteristics of protein aerogel particles. The results of the studies were applied to obtain innovative nasal drug delivery systems for the treatment of socially significant diseases. Analytical studies were conducted to determine the amount and state of adsorbed drugs in protein aerogel particles, as well as in vivo experiments on the distribution of clomipramine in blood plasma and brain tissue of rats to study the pharmacokinetics and bioavailability of the resulting drug-loaded protein aerogel.
Collapse
|
8
|
Antidepressant Effect of Neuropeptide Y in Models of Acute and Chronic Stress. Sci Pharm 2022. [DOI: 10.3390/scipharm90030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The search for potential effective antidepressants with minimal side effects is necessary. Peptides are possible applicants for this role. We investigated the antidepressant effect of neuropeptide Y (NY), alone and in combination with clomipramine, in models of acute and chronic stress induced by ultrasound of variable frequencies. Rats were divided into the following groups: the control group, stress group, and stress groups with intranasal administration of NY (100 μg/kg) or clomipramine (7.5 mg/kg), or their combination. Rat behavior was evaluated using a sucrose preference test and forced swimming test in an acute stress model, and a sucrose preference test, forced swimming test, social interaction test, open field test, and Morris water maze test in a chronic stress model. The results of our experiment demonstrated a protective effect of intranasal NY in a model of acute stress, which was comparable to the antidepressant effect of clomipramine. When the same dose was chronically administered, NY also demonstrated an antidepressant action, although expressed in a lesser degree than clomipramine. The combination of NY and clomipramine was much less effective in the chronic stress paradigm compared to the separated drug administration, but was just as effective in the acute stress paradigm. Until now, there was no convincing evidence for the efficacy of the chronic administration of neuropeptide Y; we demonstrated its effectiveness in the animal model of depressive-like behavior. However, our hypothesis that neuropeptide Y can enhance the effect of a classical antidepressant was not confirmed.
Collapse
|
9
|
Peptide LCGA-17 Attenuates Behavioral and Neurochemical Deficits in Rodent Models of PTSD and Depression. Pharmaceuticals (Basel) 2022; 15:ph15040462. [PMID: 35455459 PMCID: PMC9029485 DOI: 10.3390/ph15040462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
We have previously described the LCGA-17 peptide as a novel anxiolytic and antidepressant candidate that acts through the α2δ VGCC (voltage-gated calcium channel) subunit with putative synergism with GABA-A receptors. The current study tested the potential efficacy of acute and chronic intranasal (i.n.) LCGA-17 (0.05 mg/kg and 0.5 mg/kg) in rats on predator odor-induced conditioned place aversion (POCPA), a model of post-traumatic stress disorder (PTSD), and chronic unpredictable stress (CUS) that produce a range of behavioral and physiological changes that parallel symptoms of depression in humans. CUS and LCGA-17 treatment effects were tested in the sucrose preference (SPT) social interaction (SI), female urine sniffing (FUST), novelty-suppressed feeding (NSFT), and forced swim (FST) tests. Analysis of the catecholamines content in brain structures after CUS was carried out using HPLC. The efficacy of i.n. LCGA-17 was also assessed using the Elevated plus-maze (EPM) and FST. Acute LCGA-17 administration showed anxiolytic and antidepressant effects in EPM and FST, similar to diazepam and ketamine, respectively. In the POCPA study, LCGA-17 significantly reduced place aversion, with efficacy greater than doxazosin. After CUS, chronic LCGA-17 administration reversed stress-induced alterations in numerous behavioral tests (SI, FUST, SPT, and FST), producing significant anxiolytic and antidepressant effects. Finally, LCGA-17 restored the norepinephrine levels in the hippocampus following stress. Together, these results support the further development of the LCGA-17 peptide as a rapid-acting anxiolytic and antidepressant.
Collapse
|
10
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
11
|
Abramova O, Zorkina Y, Syunyakov T, Zubkov E, Ushakova V, Silantyev A, Soloveva K, Gurina O, Majouga A, Morozova A, Chekhonin V. Brain Metabolic Profile after Intranasal vs. Intraperitoneal Clomipramine Treatment in Rats with Ultrasound Model of Depression. Int J Mol Sci 2021; 22:ijms22179598. [PMID: 34502505 PMCID: PMC8431753 DOI: 10.3390/ijms22179598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Molecular mechanisms of depression remain unclear. The brain metabolome after antidepressant therapy is poorly understood and had not been performed for different routes of drug administration before the present study. Rats were exposed to chronic ultrasound stress and treated with intranasal and intraperitoneal clomipramine. We then analyzed 28 metabolites in the frontal cortex and hippocampus. METHODS Rats' behavior was identified in such tests: social interaction, sucrose preference, forced swim, and Morris water maze. Metabolic analysis was performed with liquid chromatography. RESULTS After ultrasound stress pronounced depressive-like behavior, clomipramine had an equally antidepressant effect after intranasal and intraperitoneal administration on behavior. Ultrasound stress contributed to changes of the metabolomic pathways associated with pathophysiology of depression. Clomipramine affected global metabolome in frontal cortex and hippocampus in a different way that depended on the route of administration. Intranasal route was associated with more significant changes of metabolites composition in the frontal cortex compared to the control and ultrasound groups while the intraperitoneal route corresponded with more profound changes in hippocampal metabolome compared to other groups. Since far metabolic processes in the brain can change in many ways depending on different routes of administration, the antidepressant therapy should also be evaluated from this point of view.
Collapse
Affiliation(s)
- Olga Abramova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (E.Z.); (V.U.); (A.S.); (O.G.); (A.M.); (V.C.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (T.S.); (K.S.)
| | - Yana Zorkina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (E.Z.); (V.U.); (A.S.); (O.G.); (A.M.); (V.C.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (T.S.); (K.S.)
- Correspondence: ; Tel.: +7-916-588-4851
| | - Timur Syunyakov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (T.S.); (K.S.)
- Federal State Budgetary Institution Research Zakusov Institute of Pharmacology, 125315 Moscow, Russia
| | - Eugene Zubkov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (E.Z.); (V.U.); (A.S.); (O.G.); (A.M.); (V.C.)
| | - Valeria Ushakova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (E.Z.); (V.U.); (A.S.); (O.G.); (A.M.); (V.C.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (T.S.); (K.S.)
| | - Artemiy Silantyev
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (E.Z.); (V.U.); (A.S.); (O.G.); (A.M.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (T.S.); (K.S.)
| | - Olga Gurina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (E.Z.); (V.U.); (A.S.); (O.G.); (A.M.); (V.C.)
| | - Alexander Majouga
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia;
| | - Anna Morozova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (E.Z.); (V.U.); (A.S.); (O.G.); (A.M.); (V.C.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (T.S.); (K.S.)
| | - Vladimir Chekhonin
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (E.Z.); (V.U.); (A.S.); (O.G.); (A.M.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
12
|
Abramova O, Ushakova V, Zorkina Y, Zubkov E, Storozheva Z, Morozova A, Chekhonin V. The Behavior and Postnatal Development in Infant and Juvenile Rats After Ultrasound-Induced Chronic Prenatal Stress. Front Physiol 2021; 12:659366. [PMID: 33935805 PMCID: PMC8082110 DOI: 10.3389/fphys.2021.659366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/23/2021] [Indexed: 01/30/2023] Open
Abstract
Fetal development is susceptible to environmental factors. One such factor is exposure to stress during pregnancy. The present study aimed to investigate the effects of chronic prenatal stress (PS) on the development and behavior of rat offspring during infancy and juvenile ages. Existing approaches to modeling prenatal stress on animals do not correlate with the main type of stress in pregnant women, namely psychological stress. We used a new stress paradigm in the experiment, namely, stress induced by exposure to variable frequency ultrasound (US), which acted on pregnant Wistar rats on gestational days 1–21. This type of stress in rodents can be comparable to psychological stress in humans. We assessed physical development, reflex maturation, motor ability development, anxious behavior, response to social novelty, and social play behavior in male and female offspring. Additionally, we investigated maternal behavior and the effect of neonatal handling (NH) on behavior. Prenatal stress did not affect postnatal developmental characteristics in rat pups, but prenatally stressed rats had higher body weight in early and adult age than controls. Prenatal exposure to a stressor increased anxiety in the open-field test (OF), changed social preferences in the social novelty test (SN), and impaired social play behavior in males. Neonatal handling reduced anxiety and restored social behavior, but evoked hyperactive behavior in rat pups. Maternal behavior did not change. Our study demonstrated for the first time that exposure to variable frequency ultrasound during pregnancy influences offspring development and impairs behavior, correlating with the effects of other types of stress during pregnancy in rodents. This supports the idea of using this exposure to model prenatal stress.
Collapse
Affiliation(s)
- Olga Abramova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Mental-health Clinic No. 1 Named After N.A. Alexeev of Moscow Healthcare Department, Moscow, Russia
| | - Valeria Ushakova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Mental-health Clinic No. 1 Named After N.A. Alexeev of Moscow Healthcare Department, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Mental-health Clinic No. 1 Named After N.A. Alexeev of Moscow Healthcare Department, Moscow, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Zinaida Storozheva
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Mental-health Clinic No. 1 Named After N.A. Alexeev of Moscow Healthcare Department, Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
13
|
The effectiveness of continuous and interval exercise preconditioning against chronic unpredictable stress: Involvement of hippocampal PGC-1α/FNDC5/BDNF pathway. J Psychiatr Res 2021; 136:173-183. [PMID: 33607579 DOI: 10.1016/j.jpsychires.2021.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
Various exercise-training types are known to prevent depression, but mechanisms underlying their beneficial effects remain unknown. In the present study, the preconditioning effect of continuous and interval exercise on stress-induced depression was evaluated. Adult male Wistar rats in the exercise groups were made to run on a motorized treadmill, five sessions per week for six weeks. After that, to induce the depression model, the rats were exposed to chronic unpredictable stress for three weeks. Behavioral tests were assessed by open field, elevated plus maze, and forced swim tests. Hippocampal PGC-1α, FNDC5, and BDNF protein expression by Western blot and serum corticosterone by ELISA were detected. In the present results, after continuous and interval exercise periods, locomotor activity, the number of entries and time spent in the open arms were increased, and immobility time was significantly reduced. PGC-1α, FNDC5, and BDNF protein levels had a significant increase, and serum corticosterone did not change. Also, interval exercise training increased PGC-1α and FNDC5 more than continuous. Chronic unpredictable stress reduced the positive changes caused by exercise training, although, except FNDC5, exercise preconditioned groups experienced less significant adverse changes in most variables. These findings showed that both continuous and interval exercise preconditioning with increasing hippocampal PGC-1α, FNDC5, and BDNF proteins and improve the anxiety- and depression-like behaviors have a protective effect against chronic unpredictable stress.
Collapse
|
14
|
Ushakova VM, Morozova AY, Reznik AM, Kostyuk GP, Chekhonin VP. Molecular Biological Aspects of Depressive Disorders: A Modern View. Mol Biol 2020. [DOI: 10.1134/s0026893320050118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Abramova OV, Zubkov EA, Zorkina YA, Morozova AY, Pavlov KA, Chekhonin VP. Social and Cognitive Impairments in Rat Offspring after Ultrasound-Induced Prenatal Stress. Bull Exp Biol Med 2020; 168:730-733. [PMID: 32333307 DOI: 10.1007/s10517-020-04790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 10/24/2022]
Abstract
We studied the possibility of developing an autism model based on chronic prenatal psychological stress caused by variable frequency ultrasound 20-45 kHz. The offspring of female rats stressed during pregnancy demonstrated reduced time of social contacts in the social interaction test, increased anxiety in the open-field test, and memory impairment in the Morris water maze test in comparison with the control (intact) rat offspring. We also found a reducing trend in the BDNF gene expression in the amygdala in males of the experimental group. The results showed the possibility of developing the animal autism model based on prenatal stress.
Collapse
Affiliation(s)
- O V Abramova
- Department of the Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - E A Zubkov
- Department of the Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ya A Zorkina
- Department of the Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Yu Morozova
- Department of the Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K A Pavlov
- Department of the Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- Department of the Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.,N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
16
|
Shui L, Yi RN, Wu YJ, Bai SM, Si Q, Bo AG, Wuyun GR, Si LG, Chen YS, Lu J. Effects of Mongolian Warm Acupuncture on iNOS/NO and Inflammatory Cytokines in the Hippocampus of Chronic Fatigue Rats. Front Integr Neurosci 2020; 13:78. [PMID: 32082125 PMCID: PMC7006054 DOI: 10.3389/fnint.2019.00078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
The inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling pathway and inflammatory cytokines play important roles in the pathogenesis of exercise-induced fatigue. Studies have found that Mongolian warm acupuncture (WA) could alleviate exercise-induced fatigue. However, the exact mechanisms underlying its effects remain unclear. In the present study, we investigated the effects of Mongolian WA on iNOS/NO signaling pathway and proinflammatory cytokines in a chronic exhaustive swimming-induced fatigue rat model. Animals were randomly divided into Control group, Ctrl + WA group, Model group, and Model + WA group. The body weight, exhaustive swimming time test, and Morris water maze test were performed before and after the chronic exhaustive swimming. The serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and iNOS were detected by enzyme linked immunosorbent assay (ELISA). The mRNA expressions of IL-1β, IL-6, TNF-α, IFN-γ, and iNOS in the hippocampus were measured by real-time polymerase chain reaction (RT-PCR). Moreover, the protein expression of iNOS in the hippocampus was measured by western blot, and the NO productions in the serum and hippocampus were detected by Griess reaction system. Chronic exhaustive exercise significantly reduced the body weight and exhaustive swimming time, and induced impairment in learning and memory, and which were reversed by WA treatment. Chronic exhaustive exercise also increased the expressions of iNOS and proinflammatory cytokines, while WA treatment significantly decreased the level of iNOS and proinflammatory cytokines. However, chronic exhaustive exercise did not affect the NO production. These findings demonstrated that WA could alleviate the chronic exhaustive swimming-induced fatigue and improve the learning and memory ability, and the actions might be related to the reduction of inflammatory response and iNOS expression.
Collapse
Affiliation(s)
- Ling Shui
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ru-Na Yi
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yong-Jie Wu
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Shu-Mei Bai
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Qin Si
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - A-gula Bo
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ge-Rile Wuyun
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Leng-Ge Si
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ying-Song Chen
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jun Lu
- School of Acupuncture-Moxibustion and Tui Na, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Leopold AV, Shcherbakova DM, Verkhusha VV. Fluorescent Biosensors for Neurotransmission and Neuromodulation: Engineering and Applications. Front Cell Neurosci 2019; 13:474. [PMID: 31708747 PMCID: PMC6819510 DOI: 10.3389/fncel.2019.00474] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
Understanding how neuronal activity patterns in the brain correlate with complex behavior is one of the primary goals of modern neuroscience. Chemical transmission is the major way of communication between neurons, however, traditional methods of detection of neurotransmitter and neuromodulator transients in mammalian brain lack spatiotemporal precision. Modern fluorescent biosensors for neurotransmitters and neuromodulators allow monitoring chemical transmission in vivo with millisecond precision and single cell resolution. Changes in the fluorescent biosensor brightness occur upon neurotransmitter binding and can be detected using fiber photometry, stationary microscopy and miniaturized head-mounted microscopes. Biosensors can be expressed in the animal brain using adeno-associated viral vectors, and their cell-specific expression can be achieved with Cre-recombinase expressing animals. Although initially fluorescent biosensors for chemical transmission were represented by glutamate biosensors, nowadays biosensors for GABA, acetylcholine, glycine, norepinephrine, and dopamine are available as well. In this review, we overview functioning principles of existing intensiometric and ratiometric biosensors and provide brief insight into the variety of neurotransmitter-binding proteins from bacteria, plants, and eukaryotes including G-protein coupled receptors, which may serve as neurotransmitter-binding scaffolds. We next describe a workflow for development of neurotransmitter and neuromodulator biosensors. We then discuss advanced setups for functional imaging of neurotransmitter transients in the brain of awake freely moving animals. We conclude by providing application examples of biosensors for the studies of complex behavior with the single-neuron precision.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|