1
|
Zhong Z, Liu J, Luo Y, Wu M, Qiu F, Zhao H, Liu Y, Wang Y, Long H, Zhao L, Wang Y, Han Y, Meng P. Jujuboside A Regulates Calcium Homeostasis and Structural Plasticity to Alleviate Depression-Like Behavior via Shh Signaling in Immature Neurons. Drug Des Devel Ther 2024; 18:4565-4584. [PMID: 39416424 PMCID: PMC11482263 DOI: 10.2147/dddt.s479055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background Depression, a leading cause of disability worldwide, is characterized by dysfunction of immature neurons, resulting in dysregulated calcium homeostasis and impaired structural plasticity. Jujuboside A (JuA), a biologically active compound derived from Semen Ziziphi Spinosae, has demonstrated anti-anxiety and anti-insomnia properties. Recent studies suggest that JuA may be a promising antidepressant, but its underlying mechanisms remain unclear. Methods Sprague-Dawley rats were subjected to chronic unpredictable mild stress (CUMS) to induce a depression model. JuA (12.5 mg/kg, 25 mg/kg, 50 mg/kg) was administered orally for 4 weeks. Emotional and cognitive function were assessed. Monoamine neurotransmitter levels were measured using enzyme-linked immunosorbent assay (ELISA). The number of immature neurons and calcium homeostasis were evaluated by immunofluorescence. Western blotting and immunofluorescence were employed to detect the expression of Sonic hedgehog (Shh) signaling proteins. Additionally, lentiviral vector expressing Shh shRNA (LV-Shh-RNAi) were infused intracerebrally to investigate the role of Shh in JuA's antidepressant effects. Results JuA significantly ameliorated depressive-like behavior and cognitive dysfunction in CUMS rats, increased monoamine neurotransmitter levels in serum and hippocampal tissue, reduced the number of BrdU/DCX (bromodeoxyuridine/doublecortin)-positive immature neurons, and attenuated calcium ion (Ca2+) concentration and Ca2+/calmodulin-dependent protein kinase II (CaMKII) levels in immature neurons. JuA also markedly elevated synaptic density and prominence complexity, upregulated Shh, Gli family zinc finger 1 and 2 (Gli1/2), synaptophysin (Syn) and postsynaptic density protein-95 (PSD-95) expression in the ventral dentate gyrus (vDG). However, knockdown of Shh in the vDG counteracted JuA's therapeutic effects. Conclusion These findings collectively suggest that JuA improves depressive-like behavior in CUMS rats by modulating calcium homeostasis and synaptic structural plasticity in immature neurons through the Shh signaling pathway.
Collapse
Affiliation(s)
- Ziyan Zhong
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yan Luo
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Mei Wu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Feng Qiu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yajing Wang
- Office of Science & Technology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hongping Long
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Lei Zhao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Pan Meng
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
2
|
Costa PA, Everett NA, Turner AJ, Umpierrez LS, Baracz SJ, Cornish JL. Adolescent alcohol binge drinking and withdrawal: behavioural, brain GFAP-positive astrocytes and acute methamphetamine effects in adult female rats. Psychopharmacology (Berl) 2024; 241:1539-1554. [PMID: 38705893 PMCID: PMC11269403 DOI: 10.1007/s00213-024-06580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
RATIONALE Alcopop beverages are generally the first alcoholic beverage that young females drink which contain high levels of sugar and alcohol. The over-consumption of these drinks may encourage alcohol co-administration with methamphetamine (METH) impacting on drinking behaviour and glial function. AIMS The aims of this study were to evaluate the effect of adolescent binge alcohol exposure on consumption level, anxiety-like behaviour, cross-sensitization with METH and on astrocyte expression in reward related brain regions. METHODS Adolescent female Sprague-Dawley rats had daily 1-hour oral alcohol consumption of alcopop (ALCP; with sucrose) or ethanol-only (ETOH; without sucrose), transitioned from 5 to 15% (v/v) ethanol content for 34 days. Water and sucrose groups act as controls. During alcohol withdrawal, rats were tested for anxiety on the elevated plus maze (EPM) and locomotor activity following saline or METH (1 mg/kg i.p) treatment. Brains were then collected to assess astrocyte immunofluorescence for glial fibrillary acidic protein (GFAP) in reward-related brain regions. RESULTS Rats pretreated with 5% ALCP consumed significantly more volume and ethanol intake when compared to 5% EtOH rats. Both ALCP and EtOH groups had a higher preference ratio for 5% than 15% alcohol solutions and ALCP rats had greater ethanol intake at 15% than EtOH rats. Alcohol withdrawal showed no significant differences between groups on anxiety, METH cross-sensitization effects or GFAP intensity in the regions studied. CONCLUSIONS Overall, the addition of sucrose to alcoholic solutions encouraged female rats to consume larger volumes and greater ethanol intake compared to ethanol-only solutions, yet did not have long lasting effects on behaviour and astrocytes.
Collapse
Affiliation(s)
- Priscila A Costa
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | - Nicholas A Everett
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Anita J Turner
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Laísa S Umpierrez
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Sarah J Baracz
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Jennifer L Cornish
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| |
Collapse
|
3
|
Adekomi DA, Olajide OJ, Adewale OO, Okesina AA, Fatoki JO, Falana BA, Adeniyi TD, Adegoke AA, Ojo WA, Alabi SO. D-ribose-L-cysteine exhibits neuroprotective activity through inhibition of oxido-behavioral dysfunctions and modulated activities of neurotransmitters in the cerebellum of Juvenile mice exposed to ethanol. Drug Chem Toxicol 2023; 46:746-756. [PMID: 35723231 DOI: 10.1080/01480545.2022.2088783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022]
Abstract
Alcohol exposure to the cerebellum has been known to trigger cerebellar dysfunctions through several mechanisms. This present study was designed to evaluate the repealing effect of D-ribose-L-cysteine (DRLC) on alcohol-induced cerebellar dysfunctions in juvenile BALB/c mice. The animals were randomly divided into 4 groups (n = 10 per group). Mice were given oral administration of normal saline (control), DRLC (100 mg/kg, p.o), ethanol (0.2 mL of 10% w/v), or DRLC (100 mg/kg, p.o) + ethanol (0.2 mL of 10% w/v). On day 29 of the study (i.e., 24 h after the administration of the last respective doses), neurochemical quantification of the respective levels of serotonin and dopamine, lipid peroxidation, total antioxidant, superoxide dismutase, and glutathione peroxidase in the cerebellar tissues of the mice were analyzed. Compared with the saline-treated group, the studied neurochemical indices were modulated across the various experimental groups. The administration of ethanol significantly modulates the levels of monoamine neurotransmitters (serotonin and dopamine) as well as contents of total antioxidants, activities of superoxide dismutase, and glutathione peroxidase, with a concurrently increased level of lipid peroxidase in the cerebellar tissue of the mice. DRLC significantly reverses these effects in the DRLC + ethanol co-treated group. Combined exposure to DRLC + ethanol counteracts the deleterious effect of ethanol in the cerebellum of juvenile BALB/c mice via monoamine neurotransmitter, lipid peroxidation, total antioxidant status, superoxide dismutase, and glutathione peroxidase action pathways. Therefore, DRLC could be a pharmacologic or therapeutic agent in attenuating the deleterious effects of alcohol on the cerebellum.
Collapse
Affiliation(s)
- Damilare Adedayo Adekomi
- Department of Anatomy, Neuroscience and Cell Biology Unit, Osun State University, Osogbo, Nigeria
| | - Olamide Janet Olajide
- Department of Anatomy, Neuroscience and Cell Biology Unit, Osun State University, Osogbo, Nigeria
| | - Omowumi Oyeronke Adewale
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | | | - John Olabode Fatoki
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Osun State University, Osogbo, Nigeria
| | - Benedict Abiola Falana
- Department of Anatomy, Neuroscience and Cell Biology Unit, Osun State University, Osogbo, Nigeria
| | - Temidayo Daniel Adeniyi
- Department of Medical Laboratory Science, Faculty of Allied Health Science, University of Medical Sciences, Ondo State, Nigeria
| | | | - Waliu Adetunji Ojo
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | | |
Collapse
|
4
|
Beecher K, Wang J, Chehrehasa F, Depoortere R, Varney MA, Newman-Tancredi A, Bartlett SE, Belmer A. Dissecting the contribution of 5-HT1A auto- and heteroreceptors in sucrose overconsumption in mice. Biomed Pharmacother 2022; 148:112699. [DOI: 10.1016/j.biopha.2022.112699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
|
5
|
Neural serotonergic circuits for controlling long-term voluntary alcohol consumption in mice. Mol Psychiatry 2022; 27:4599-4610. [PMID: 36195637 PMCID: PMC9531213 DOI: 10.1038/s41380-022-01789-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Alcohol-use-disorders are chronic relapsing illnesses, often co-morbid with anxiety. We have previously shown using the "drinking-in-the-dark" model in mice that the stimulation of the serotonin receptor 1A (5-HT1A) reduces ethanol binge-drinking behaviour and withdrawal-induced anxiety. The 5-HT1A receptor is located either on Raphe neurons as autoreceptors, or on target neurons as heteroreceptors. By combining a pharmacological approach with biased agonists targeting the 5-HT1A auto- or heteroreceptor and a chemogenetic approach (DREADDs), here we identified that ethanol-binge drinking behaviour is dependent on 5-HT1A autoreceptors and 5-HT neuronal function, with a transition from DRN-dependent regulation of short-term (6 weeks) ethanol intake, to MRN-dependent regulation after longer ethanol exposure (12 weeks). We further identified a serotonergic microcircuit (5-HTMRN→DG) originating from the MRN and projecting to the dentate gyrus (DG) of the hippocampus, that is specifically affected by, and modulates long-term ethanol consumption. The present study indicates that targeting Raphe nuclei 5-HT1A autoreceptors with agonists might represent an innovative pharmacotherapeutic strategy to combat alcohol abuse.
Collapse
|
6
|
Beecher K, Wang J, Jacques A, Chaaya N, Chehrehasa F, Belmer A, Bartlett SE. Sucrose Consumption Alters Serotonin/Glutamate Co-localisation Within the Prefrontal Cortex and Hippocampus of Mice. Front Mol Neurosci 2021; 14:678267. [PMID: 34262435 PMCID: PMC8273284 DOI: 10.3389/fnmol.2021.678267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
The overconsumption of sugar-sweetened food and beverages underpins the current rise in obesity rates. Sugar overconsumption induces maladaptive neuroplasticity to decrease dietary control. Although serotonin and glutamate co-localisation has been implicated in reward processing, it is still unknown how chronic sucrose consumption changes this transmission in regions associated with executive control over feeding—such as the prefrontal cortex (PFC) and dentate gyrus (DG) of the hippocampus. To address this, a total of 16 C57Bl6 mice received either 5% w/v sucrose or water as a control for 12 weeks using the Drinking-In-The-Dark paradigm (n = 8 mice per group). We then examined the effects of chronic sucrose consumption on the immunological distribution of serotonin (5-HT), vesicular glutamate transporter 3 (VGLUT3) and 5-HT+/VGLUT3+ co-localised axonal varicosities. Sucrose consumption over 12 weeks decreased the number of 5-HT–/VGLUT3+ and 5-HT+/VGLUT3+ varicosities within the PFC and DG. The number of 5-HT+/VGLUT3– varicosities remained unchanged within the PFC but decreased in the DG following sucrose consumption. Given that serotonin mediates DG neurogenesis through microglial migration, the number of microglia within the DG was also assessed in both experimental groups. Sucrose consumption decreased the number of DG microglia. Although the DG and PFC are associated with executive control over rewarding activities and emotional memory formation, we did not detect a subsequent change in DG neurogenesis or anxiety-like behaviour or depressive-like behaviour. Overall, these findings suggest that the chronic consumption of sugar alters serotonergic neuroplasticity within neural circuits responsible for feeding control. Although these alterations alone were not sufficient to induce changes in neurogenesis or behaviour, it is proposed that the sucrose consumption may predispose individuals to these cognitive deficits which ultimately promote further sugar intake.
Collapse
Affiliation(s)
- Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Chaaya
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Beecher K, Alvarez Cooper I, Wang J, Walters SB, Chehrehasa F, Bartlett SE, Belmer A. Long-Term Overconsumption of Sugar Starting at Adolescence Produces Persistent Hyperactivity and Neurocognitive Deficits in Adulthood. Front Neurosci 2021; 15:670430. [PMID: 34163325 PMCID: PMC8215656 DOI: 10.3389/fnins.2021.670430] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Sugar has become embedded in modern food and beverages. This has led to overconsumption of sugar in children, adolescents, and adults, with more than 60 countries consuming more than four times (>100 g/person/day) the WHO recommendations (25 g/person/day). Recent evidence suggests that obesity and impulsivity from poor dietary habits leads to further overconsumption of processed food and beverages. The long-term effects on cognitive processes and hyperactivity from sugar overconsumption, beginning at adolescence are not known. Using a well-validated mouse model of sugar consumption, we found that long-term sugar consumption, at a level that significantly augments weight gain, elicits an abnormal hyperlocomotor response to novelty and alters both episodic and spatial memory. Our results are similar to those reported in attention deficit and hyperactivity disorders. The deficits in hippocampal-dependent learning and memory were accompanied by altered hippocampal neurogenesis, with an overall decrease in the proliferation and differentiation of newborn neurons within the dentate gyrus. This suggests that long-term overconsumption of sugar, as that which occurs in the Western Diet might contribute to an increased risk of developing persistent hyperactivity and neurocognitive deficits in adulthood.
Collapse
Affiliation(s)
- Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ignatius Alvarez Cooper
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Shaun B Walters
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|