1
|
Downie AE, Barre RS, Robinson A, Yang J, Chen YH, Lin JD, Oyesola O, Yeung F, Cadwell K, Loke P, Graham AL. Assessing immune phenotypes using simple proxy measures: promise and limitations. DISCOVERY IMMUNOLOGY 2024; 3:kyae010. [PMID: 39045514 PMCID: PMC11264049 DOI: 10.1093/discim/kyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/25/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
The study of immune phenotypes in wild animals is beset by numerous methodological challenges, with assessment of detailed aspects of phenotype difficult to impossible. This constrains the ability of disease ecologists and ecoimmunologists to describe immune variation and evaluate hypotheses explaining said variation. The development of simple approaches that allow characterization of immune variation across many populations and species would be a significant advance. Here we explore whether serum protein concentrations and coarse-grained white blood cell profiles, immune quantities that can easily be assayed in many species, can predict, and therefore serve as proxies for, lymphocyte composition properties. We do this in rewilded laboratory mice, which combine the benefits of immune phenotyping of lab mice with the natural context and immune variation found in the wild. We find that easily assayed immune quantities are largely ineffective as predictors of lymphocyte composition, either on their own or with other covariates. Immunoglobulin G (IgG) concentration and neutrophil-lymphocyte ratio show the most promise as indicators of other immune traits, but their explanatory power is limited. Our results prescribe caution in inferring immune phenotypes beyond what is directly measured, but they do also highlight some potential paths forward for the development of proxy measures employable by ecoimmunologists.
Collapse
Affiliation(s)
- Alexander E Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Ramya S Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Sciences Center at San Antonio; San Antonio, TX, USA
| | - Annie Robinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jennie Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine; New York, NY, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei City, Taiwan
| | - Oyebola Oyesola
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, USA
| | - Frank Yeung
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine; New York, NY, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine; New York, NY, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - P’ng Loke
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine; New York, NY, USA
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, USA
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Santa Fe Institute; Santa Fe, NM, USA
| |
Collapse
|
2
|
Downie AE, Oyesola O, Barre RS, Caudron Q, Chen YH, Dennis EJ, Garnier R, Kiwanuka K, Menezes A, Navarrete DJ, Mondragón-Palomino O, Saunders JB, Tokita CK, Zaldana K, Cadwell K, Loke P, Graham AL. Spatiotemporal-social association predicts immunological similarity in rewilded mice. SCIENCE ADVANCES 2023; 9:eadh8310. [PMID: 38134275 PMCID: PMC10745690 DOI: 10.1126/sciadv.adh8310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We therefore tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including associations measured from spatiotemporal co-occurrences, to immune phenotypes. We found extensive variation in individual and social behavior among and within mouse strains upon rewilding. In addition, we found that the more associated two individuals were, the more similar their immune phenotypes were. Spatiotemporal association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or shared infection status. These results highlight the importance of shared spatiotemporal activity patterns and/or social networks for immune phenotype and suggest potential immunological correlates of social life.
Collapse
Affiliation(s)
- Alexander E. Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Oyebola Oyesola
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramya S. Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Quentin Caudron
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Emily J. Dennis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Romain Garnier
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kasalina Kiwanuka
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arthur Menezes
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J. Navarrete
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesse B. Saunders
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Christopher K. Tokita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kimberly Zaldana
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
3
|
Nunes S. Animal-friendly behavioral testing in field studies: examples from ground squirrels. Front Behav Neurosci 2023; 17:1239774. [PMID: 37681193 PMCID: PMC10480841 DOI: 10.3389/fnbeh.2023.1239774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Field studies of behavior provide insight into the expression of behavior in its natural ecological context and can serve as an important complement to behavioral studies conducted in the lab under controlled conditions. In addition to naturalistic observations, behavioral testing can be an important component of field studies of behavior. This mini review evaluates a sample of behavioral testing methods in field studies to identify ways in which behavioral testing can be animal-friendly and generate ethologically relevant data. Specific examples, primarily from studies of ground squirrels, are presented to illustrate ways in which principles of animal-friendly behavioral testing can be applied to and guide testing methods. Tests conducted with animals in their natural habitat and that elicit naturally occurring behavioral responses can minimize stress and disturbance for animals, as well as disruption of the larger ecosystem, and can have high ethological validity. When animals are trapped or handled as part of a study, behavioral testing can be incorporated into handling procedures to reduce overall disturbance. When behavior is evaluated in a testing arena, the arena can be designed to resemble natural conditions to increase the ethological relevance of the test. Efforts to minimize time spent in testing arenas can also reduce disturbance to animals. Adapting a behavioral test to a species or habitat conditions can facilitate reduced disruption to subjects and increased ethological relevance of the test.
Collapse
Affiliation(s)
- Scott Nunes
- Department of Biology, University of San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Downie AE, Oyesola O, Barre RS, Caudron Q, Chen YH, Dennis EJ, Garnier R, Kiwanuka K, Menezes A, Navarrete DJ, Mondragón-Palomino O, Saunders JB, Tokita CK, Zaldana K, Cadwell K, Loke P, Graham AL. Social association predicts immunological similarity in rewilded mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532825. [PMID: 36993264 PMCID: PMC10055139 DOI: 10.1101/2023.03.15.532825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including social associations, to immune phenotypes. We found that the more associated two individuals were, the more similar their immune phenotypes were. Social association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or worm infection status. These results highlight the importance of social networks for immune phenotype and reveal important immunological correlates of social life.
Collapse
Affiliation(s)
- A. E. Downie
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - O. Oyesola
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - R. S. Barre
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Sciences Center at San Antonio; San Antonio, TX 78229, USA
| | - Q. Caudron
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Y.-H. Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - E. J. Dennis
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
| | - R. Garnier
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - K. Kiwanuka
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - A. Menezes
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - D. J. Navarrete
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University; Stanford, CA 94305, USA
| | - O. Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - J. B. Saunders
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - C. K. Tokita
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - K. Zaldana
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
- Department of Microbiology, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - K. Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine; New York, NY 10016, USA
- Department of Microbiology, New York University Grossman School of Medicine; New York, NY 10016, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - P. Loke
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - A. L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
- Santa Fe Institute; Santa Fe, NM 87501, USA
| |
Collapse
|
5
|
Abstract
Laboratory mice have provided invaluable insight into mammalian immune systems. Yet the immune phenotypes of mice bred and maintained in conventional laboratory conditions often differ from the immune phenotypes of wild mammals. Recent work to naturalize the environmental experience of inbred laboratory mice-to take them where the wild things are (to borrow a phrase from Maurice Sendak), via approaches such as construction of exposure histories, provision of fecal transplants or surrogate mothering by wild mice, and rewilding-is poised to expand understanding, complementing genetic and phylogenetic research on how natural selection has shaped mammalian immune systems while improving the translational potential of mouse research.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
6
|
Flowerpot method for rapid eye movement sleep deprivation does not induce stress as defined by elevated serum corticosterone level in rats. Neurosci Lett 2021; 745:135631. [PMID: 33444674 DOI: 10.1016/j.neulet.2021.135631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/07/2023]
Abstract
Flowerpot method of rapid eye movement sleep (REMS) deprivation (REMSD) has been most extensively used in experiments to decipher the functions of REMS. The most common but serious criticism of this method has been presumed stress experienced by the experimental animals. The lack of systematic studies with appropriate controls to resolve this issue prompted this study. We have compared serum corticosterone levels as a marker of stress in male rats under REMSD by the flowerpot method and multiple types of control conditions. Additionally, to maintain consistency and uniformity of REMSD among groups, in the same rats, we estimated brain Na-K ATPase activity, which has been consistently reported to increase upon REMSD. The most effective method was one rat in single- or multiple-platforms set-up in a pool because it significantly increased Na-K ATPase activity without elevating serum corticosterone level. More than one rat in multiple platform set-up was ineffective and must be avoided. Also, large platform- and recovery-controls must be carried out simultaneously to rule out non-specific confounding effects.
Collapse
|
7
|
Lopes PC, König B. Wild mice with different social network sizes vary in brain gene expression. BMC Genomics 2020; 21:506. [PMID: 32698762 PMCID: PMC7374831 DOI: 10.1186/s12864-020-06911-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Appropriate social interactions influence animal fitness by impacting several processes, such as mating, territory defense, and offspring care. Many studies shedding light on the neurobiological underpinnings of social behavior have focused on nonapeptides (vasopressin, oxytocin, and homologues) and on sexual or parent-offspring interactions. Furthermore, animals have been studied under artificial laboratory conditions, where the consequences of behavioral responses may not be as critical as when expressed under natural environments, therefore obscuring certain physiological responses. We used automated recording of social interactions of wild house mice outside of the breeding season to detect individuals at both tails of a distribution of egocentric network sizes (characterized by number of different partners encountered per day). We then used RNA-seq to perform an unbiased assessment of neural differences in gene expression in the prefrontal cortex, the hippocampus and the hypothalamus between these mice with naturally occurring extreme differences in social network size. Results We found that the neurogenomic pathways associated with having extreme social network sizes differed between the sexes. In females, hundreds of genes were differentially expressed between animals with small and large social network sizes, whereas in males very few were. In males, X-chromosome inactivation pathways in the prefrontal cortex were the ones that better differentiated animals with small from those with large social network sizes animals. In females, animals with small network size showed up-regulation of dopaminergic production and transport pathways in the hypothalamus. Additionally, in females, extracellular matrix deposition on hippocampal neurons was higher in individuals with small relative to large social network size. Conclusions Studying neural substrates of natural variation in social behavior in traditional model organisms in their habitat can open new targets of research for understanding variation in social behavior in other taxa.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|