1
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in environmental stress over COVID-19 pandemic likely contributed to failure to replicate adiposity phenotype associated with Krtcap3. Physiol Genomics 2023; 55:452-467. [PMID: 37458463 PMCID: PMC10642928 DOI: 10.1152/physiolgenomics.00019.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023] Open
Abstract
We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| |
Collapse
|
2
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in Environmental Stress over COVID-19 Pandemic Likely Contributed to Failure to Replicate Adiposity Phenotype Associated with Krtcap3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532439. [PMID: 36993361 PMCID: PMC10055176 DOI: 10.1101/2023.03.15.532439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole-body Krtcap3 knock-out (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lock-down orders and was completed during the pandemic with a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study by genotype interaction where WT had significantly higher CORT relative to KO in Study 1, with no differences in Study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| |
Collapse
|
3
|
Hochman E, Feldman B, Weizman A, Krivoy A, Gur S, Barzilay E, Gabay H, Levinkron-Fisch O, Lawrence G. Gestational hemodilution as a putative risk factor for postpartum depression: A large-scale nationwide longitudinal cohort study. J Affect Disord 2023; 325:444-452. [PMID: 36610600 DOI: 10.1016/j.jad.2022.12.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND While anemia during pregnancy has been linked to increased postpartum depression (PPD) risk, longitudinal studies on the association between gestational hemodilution, represented by decreased hematocrit (Hct) during the transition from the 1st to 2nd trimester, and PPD risk, are scarce. The current study aimed to investigate this association in a nationwide cohort over the perinatal period. METHODS This retrospective cohort study included 104,715 women who gave birth between January 2008 and December 2015. The cohort was followed up for new-onset PPD during the year post birth and gestational hemodilution was assessed by the change in Hct levels (Δ: 2nd-1st trimester). The cohort was divided into three hemodilution groupings: maximal and minimal 10 % of mothers and intermediate 80 %. Multivariable regression analyses were performed to estimate the association between gestational hemodilution and PPD, adjusting for confounders. RESULTS Among the full cohort, 2.2 % (n = 2263) met the definition of new-onset PPD. Mothers with greater hemodilution had higher rates of PPD: 2.7 % (n = 269) in the maximal hemodilution group, 2.1 % (n = 1783) in the intermediate and 1.9 % (n = 211) in the minimal hemodilution group (p < 0.001). The maximal hemodilution group had higher rates of pre-gestational psychiatric disorders (p < 0.001) and higher adjusted risk for PPD [OR = 1.18, 95 % CI (1.04, 1.35)]. LIMITATIONS Data on iron levels and supplementation were unavailable, thus it could not be adjusted for in the analysis. CONCLUSIONS Women in the top 10th percentile of gestational hemodilution may be at risk for PPD, justifying monitoring of gestational Hct as a biomarker for PPD.
Collapse
Affiliation(s)
- Eldar Hochman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petah-Tikva, Israel; Laboratory of Molecular Psychiatry, Felsenstein Medical Research Center, Petah-Tikva, Israel.
| | | | - Abraham Weizman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petah-Tikva, Israel; Laboratory of Molecular Psychiatry, Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Amir Krivoy
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petah-Tikva, Israel; Laboratory of Molecular Psychiatry, Felsenstein Medical Research Center, Petah-Tikva, Israel; Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, Kings College, London, UK
| | - Shay Gur
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petah-Tikva, Israel
| | - Eran Barzilay
- Department of Obstetrics and Gynecology, Samson Assuta Ashdod University Hospital, Ashdod, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Hagit Gabay
- Clalit Research Institute, Ramat Gan, Israel
| | | | - Gabriella Lawrence
- Clalit Research Institute, Ramat Gan, Israel; Braun School of Public Health, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
4
|
Kim S, Gacek SA, Mocchi MM, Redei EE. Sex-Specific Behavioral Response to Early Adolescent Stress in the Genetically More Stress-Reactive Wistar Kyoto More Immobile, and Its Nearly Isogenic Wistar Kyoto Less Immobile Control Strain. Front Behav Neurosci 2022; 15:779036. [PMID: 34970127 PMCID: PMC8713037 DOI: 10.3389/fnbeh.2021.779036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic predisposition and environmental stress are known etiologies of stress-related psychiatric disorders. Environmental stress during adolescence is assumed to be particularly detrimental for adult affective behaviors. To investigate how genetic stress-reactivity differences modify the effects of stress during adolescence on adult affective behaviors we employed two inbred strains with differing stress reactivity. The Wistar Kyoto More Immobile (WMI) rat strain show increased stress-reactivity and despair-like behaviors as well as passive coping compared to the nearly isogenic control strain, the Wistar Kyoto Less Immobile (WLI). Males and females of these strains were exposed to contextual fear conditioning (CFC) during early adolescence (EA), between 32 and 34 postnatal days (PND), and were tested for the consequences of this mild EA stress in adulthood. Early adolescent stress significantly decreased anxiety-like behavior, measured in the open field test (OFT) and increased social interaction and recognition in adult males of both strains compared to controls. In contrast, no significant effects of EA stress were observed in adult females in these behaviors. Both males and females of the genetically less stress-reactive WLI strain showed significantly increased immobility in the forced swim test (FST) after EA stress compared to controls. In contrast, immobility was significantly attenuated by EA stress in adult WMI females compared to controls. Transcriptomic changes of the glucocorticoid receptor (Nr3c1, GR) and the brain-derived neurotrophic factor (Bdnf) illuminate primarily strain and stress-dependent changes, respectively, in the prefrontal cortex and hippocampus of adults. These results suggest that contrary to expectations, limited adolescent stress is beneficial to males thru decreasing anxiety and enhancing social behaviors, and to the stress more-reactive WMI females by way of decreasing passive coping.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephanie A Gacek
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Madaline M Mocchi
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Schaack AK, Mocchi M, Przybyl KJ, Redei EE. Immediate stress alters social and object interaction and recognition memory in nearly isogenic rat strains with differing stress reactivity. Stress 2021; 24:911-919. [PMID: 34374625 DOI: 10.1080/10253890.2021.1958203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stress prior to learning and recall is known to affect both processes depending on the learning paradigm, the sex of the animal, and their reactivity to stress. Male and female animals of the inbred Wistar-Kyoto More Immobile (WMI) and Less Immobile (WLI) strains were tested in the modified novel object and spatial recognition paradigm and in the social interaction-recognition paradigm immediately after a 30 min restraint stress. The WMI strain shows enhanced stress reactivity compared to its near isogenic WLI control and thus, represents a genetically stress-susceptible rodent model. Without stress, there were no strain differences in social or object recognition, but there were sex differences in both types of investigation. Immediate stress generally increased object investigation, but decreased social interaction in all groups, except the WMI males, who exhibited increased aggression toward the juveniles. While stress increased plasma corticosterone and decreased testosterone levels in WLI males as expected, it increased testosterone in the aggressive WMI males, despite elevated levels of corticosterone. Stress generally decreased recognition, except the spatial recognition of WMI females, which paradoxically improved after stress. The strain-specific effects of immediate stress indicate that stress unlocks the vulnerability encoded by the stable genetic differences between WLIs and WMIs to result in the observed phenotypes.
Collapse
Affiliation(s)
- Alice K Schaack
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Madaline Mocchi
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Katherine J Przybyl
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Przybyl KJ, Jenz ST, Lim PH, Ji MT, Wert SL, Luo W, Gacek SA, Schaack AK, Redei EE. Genetic stress-reactivity, sex, and conditioning intensity affect stress-enhanced fear learning. Neurobiol Learn Mem 2021; 185:107523. [PMID: 34562618 DOI: 10.1016/j.nlm.2021.107523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/11/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022]
Abstract
The Stress-Enhanced Fear Learning (SEFL) model of posttraumatic stress disorder (PTSD) reveals increased fear memory in animals exposed to stress prior to contextual fear conditioning (CFC), similar to the increased likelihood of developing PTSD in humans after prior stress. The present study utilized the SEFL model by exposing animals to restraint stress as the first stressor, followed by CFC using foot-shocks with 0.6 mA or 0.8 mA intensity. Adult males and females from the two nearly isogenic rat strains, the genetically more stress-reactive Wistar Kyoto (WKY) More Immobile (WMI), and the less stress-reactive WKY Less Immobile (WLI) were employed. Percent time spent freezing at acquisition and at recall differed between these strains in both prior stress and no stress conditions. The significant correlations between percent freezing at acquisition and at recall suggest that fear memory differences represent a true phenotype related to the stress-reactivity differences between the strains. This assumption is further substantiated by the lack of effect of either conditioning intensity on percent freezing in WLI males, while WMI males were affected by both intensities albeit with opposite directional changes after prior stress. Differences between the sexes in sensitivity to the two conditioning intensities became apparent by the opposite directional and inverse relationship between fear memory and the intensity of conditioning in WMI males and females. The present data also illustrate that although corticosterone (CORT) responses to prior stress are known to be necessary for SEFL, plasma CORT and percent freezing were positively correlated only in the stress less-reactive WLI strain. These differences in baseline fear acquisition, fear memory, and the percent freezing responses to the SEFL paradigm in the two genetically close inbred WMI and WLI strains provide a unique opportunity to study the genetic contribution to the variation in these phenotypes.
Collapse
Affiliation(s)
- K J Przybyl
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S T Jenz
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - P H Lim
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - M T Ji
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S L Wert
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - W Luo
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S A Gacek
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - A K Schaack
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - E E Redei
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
7
|
de Jong TV, Kim P, Guryev V, Mulligan MK, Williams RW, Redei EE, Chen H. Whole genome sequencing of nearly isogenic WMI and WLI inbred rats identifies genes potentially involved in depression and stress reactivity. Sci Rep 2021; 11:14774. [PMID: 34285244 PMCID: PMC8292482 DOI: 10.1038/s41598-021-92993-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
The WMI and WLI inbred rats were generated from the stress-prone, and not yet fully inbred, Wistar Kyoto (WKY) strain. These were selected using bi-directional selection for immobility in the forced swim test and were then sib-mated for over 38 generations. Despite the low level of genetic diversity among WKY progenitors, the WMI substrain is significantly more vulnerable to stress relative to the counter-selected WLI strain. Here we quantify numbers and classes of genomic sequence variants distinguishing these substrains with the long term goal of uncovering functional and behavioral polymorphism that modulate sensitivity to stress and depression-like phenotypes. DNA from WLI and WMI was sequenced using Illumina xTen, IonTorrent, and 10X Chromium linked-read platforms to obtain a combined coverage of ~ 100X for each strain. We identified 4,296 high quality homozygous SNPs and indels between the WMI and WLI. We detected high impact variants in genes previously implicated in depression (e.g. Gnat2), depression-like behavior (e.g. Prlr, Nlrp1a), other psychiatric disease (e.g. Pou6f2, Kdm5a, Reep3, Wdfy3), and responses to psychological stressors (e.g. Pigr). High coverage sequencing data confirm that the two substrains are nearly coisogenic. Nonetheless, the small number of sequence variants contributes to numerous well characterized differences including depression-like behavior, stress reactivity, and addiction related phenotypes. These selected substrains are an ideal resource for forward and reverse genetic studies using a reduced complexity cross.
Collapse
Affiliation(s)
| | - Panjun Kim
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, The Netherlands
| | | | | | - Eva E Redei
- Northwestern University - Chicago, Chicago, IL, USA
| | - Hao Chen
- University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|