1
|
Murata K, Itakura T, Touhara K. Neural basis for pheromone signal transduction in mice. Front Neural Circuits 2024; 18:1409994. [PMID: 38742089 PMCID: PMC11089125 DOI: 10.3389/fncir.2024.1409994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Pheromones are specialized chemical messengers used for inter-individual communication within the same species, playing crucial roles in modulating behaviors and physiological states. The detection mechanisms of these signals at the peripheral organ and their transduction to the brain have been unclear. However, recent identification of pheromone molecules, their corresponding receptors, and advancements in neuroscientific technology have started to elucidate these processes. In mammals, the detection and interpretation of pheromone signals are primarily attributed to the vomeronasal system, which is a specialized olfactory apparatus predominantly dedicated to decoding socio-chemical cues. In this mini-review, we aim to delineate the vomeronasal signal transduction pathway initiated by specific vomeronasal receptor-ligand interactions in mice. First, we catalog the previously identified pheromone ligands and their corresponding receptor pairs, providing a foundational understanding of the specificity inherent in pheromonal communication. Subsequently, we examine the neural circuits involved in processing each pheromone signal. We focus on the anatomical pathways, the sexually dimorphic and physiological state-dependent aspects of signal transduction, and the neural coding strategies underlying behavioral responses to pheromonal cues. These insights provide further critical questions regarding the development of innate circuit formation and plasticity within these circuits.
Collapse
Affiliation(s)
- Ken Murata
- Laboratory of Biological Chemistry, Graduate School of Agricultural and Life Sciences, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Takumi Itakura
- Laboratory of Biological Chemistry, Graduate School of Agricultural and Life Sciences, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States
| | - Kazushige Touhara
- Laboratory of Biological Chemistry, Graduate School of Agricultural and Life Sciences, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Ohta KI, Araki C, Ujihara H, Iseki K, Suzuki S, Otabi H, Kumei H, Warita K, Kusaka T, Miki T. Maternal separation early in life induces excessive activity of the central amygdala related to abnormal aggression. J Neurochem 2023; 167:778-794. [PMID: 38037675 DOI: 10.1111/jnc.16020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Epidemiological studies have indicated that child maltreatment, such as neglect, is a risk factor of escalated aggression, potentially leading to delinquency and violent crime in the future. However, little is known about the mechanisms by which an early adverse environment may later cause violent behavior. In this study, we aimed to thoroughly examine the association between aggression against conspecific animals and the activity of amygdala subnuclei using the maternal separation (MS) model, which is a common model of early life stress. In the MS group, pups of Sprague-Dawley rats were separated from their dam during postnatal days 2-20 (twice a day, 3 h each). We only included 9-week-old male offspring for each analysis and compared the MS group with the mother-reared control group; both groups were raised by the same dam during postnatal days 2-20. The results revealed that the MS group exhibited higher aggression and excessive activity of only the central amygdala (CeA) among the amygdala subnuclei during the aggressive behavior test. Moreover, a significant positive correlation was observed between higher aggression and CeA activation. While CeA activity is known to be involved in hunting behavior for prey, some previous studies have also indicated a relationship between CeA and intraspecific aggression. It remains unclear, however, whether excessive CeA activity directly induces intraspecific aggression. Therefore, we stimulated the CeA using optogenetics with 8-week-old rats to clarify the relationship between intraspecific aggression and CeA activity. Notably, CeA activation resulted in higher aggression, even when the opponent was a conspecific animal. In particular, bilateral CeA activation resulted in more severe displays of aggressive behavior than necessary, such as biting a surrendered opponent. These findings suggest that an adverse environment during early development intensifies aggression through excessive CeA activation, which can increase the risk of escalating to violent behavior in the future.
Collapse
Affiliation(s)
- Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Chihiro Araki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Hidetoshi Ujihara
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Keizo Iseki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Hikari Otabi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Haruki Kumei
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| |
Collapse
|
3
|
Salia S, Martin Y, Burke FF, Myles LA, Jackman L, Halievski K, Bambico FR, Swift-Gallant A. Antibiotic-induced socio-sexual behavioral deficits are reversed via cecal microbiota transplantation but not androgen treatment. Brain Behav Immun Health 2023; 30:100637. [PMID: 37256194 PMCID: PMC10225889 DOI: 10.1016/j.bbih.2023.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/03/2023] [Accepted: 05/07/2023] [Indexed: 06/01/2023] Open
Abstract
Recent evidence has demonstrated a sex-specific role of the gut microbiome on social behavior such as anxiety, possibly driven by a reciprocal relationship between the gut microbiome and gonadal hormones. For instance, gonadal hormones drive sex differences in gut microbiota composition, and certain gut bacteria can produce androgens from glucocorticoids. We thus asked whether the gut microbiome can influence androgen-dependent socio-sexual behaviors. We first treated C57BL/6 mice with broad-spectrum antibiotics (ABX) in drinking water to deplete the gut microbiota either transiently during early development (embryonic day 16-postnatal day [PND] 21) or in adulthood (PND 60-85). We hypothesized that if ABX interferes with androgens, then early ABX would interfere with critical periods for sexual differentiation of brain and thus lead to long-term decreases in males' socio-sexual behavior, while adult ABX would interfere with androgens' activational effects on behavior. We found that in males but not females, early and adult ABX treatment decreased territorial aggression, and adult ABX also decreased sexual odor preference. We then assessed whether testosterone and/or cecal microbiota transplantation (CMT) via oral gavage could prevent ABX-induced socio-sexual behavioral deficits in adult ABX-treated males. Mice were treated with same- or other-sex control cecum contents or with testosterone for two weeks. While testosterone was not effective in rescuing any behavior, we found that male CMT restored both olfactory preference and aggression in adult ABX male mice, while female CMT restored olfactory preference but not aggression. These results suggest sex-specific effects of the gut microbiome on socio-sexual behaviors, independent of androgens.
Collapse
|
4
|
Muñiz‐de Miguel S, Barreiro‐Vázquez JD, Sánchez‐Quinteiro P, Ortiz‐Leal I, González‐Martínez Á. Behavioural disorder in a dog with congenital agenesis of the vomeronasal organ and the septum pellucidum. VETERINARY RECORD CASE REPORTS 2023. [DOI: 10.1002/vrc2.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Susana Muñiz‐de Miguel
- Veterinary Teaching at the Rof Codina University Veterinary Hospital, Faculty of Veterinary Medicine, University of Santiago de Compostela Lugo Spain
| | - José Daniel Barreiro‐Vázquez
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences Faculty of Veterinary Medicine University of Santiago de Compostela, Lugo, Spain
- Diagnostic Imaging Service, Rof Codina University Veterinary Hospital, Faculty of Veterinary Medicine, University of Santiago de Compostela Lugo Spain
| | - Pablo Sánchez‐Quinteiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences Faculty of Veterinary Medicine University of Santiago de Compostela, Lugo, Spain
| | - Irene Ortiz‐Leal
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences Faculty of Veterinary Medicine University of Santiago de Compostela, Lugo, Spain
| | - Ángela González‐Martínez
- Veterinary Teaching at the Rof Codina University Veterinary Hospital, Faculty of Veterinary Medicine, University of Santiago de Compostela Lugo Spain
| |
Collapse
|
5
|
Romero D, Mebarak M, Millán A, Tovar-Castro JC, Martinez M, Rodrigues DL. Reliability and Validity of the Colombian Version of the Revised Sociosexual Orientation Inventory. ARCHIVES OF SEXUAL BEHAVIOR 2023; 52:325-331. [PMID: 36097069 PMCID: PMC9859835 DOI: 10.1007/s10508-022-02402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Sociosexuality refers to an individual's disposition to have casual sex without establishing affective bonds and has been widely studied worldwide using the Revised Sociosexual Orientation Inventory (SOI-R; Penke & Asendorpf, 2008). Despite its many validations in different cultural contexts, no psychometric analyses of this instrument have been conducted in Spanish-speaking Latin American countries. To address this gap in the literature, we examined the psychometric properties of the SOI-R in Colombia. In a cross-sectional study with a large sample of participants (N = 812; 64% women), we conducted exploratory and confirmatory factor analyses to identify different factor structures and determine which had the best fit for our sample and examined the reliability of the scale. Results showed that a three-factor structure, with sociosexual behaviors, attitudes, and desire as first-order factors, and global sociosexuality as a second-order factor, had the best fit indexes. Each factor presented good reliability indexes. Replicating already established gender differences, we also found that men scored higher on each factor when compared to women. These findings show that the SOI-R is a reliable and valid instrument to assess sociosexuality in countries where sociosexuality research is underrepresented.
Collapse
Affiliation(s)
- Duban Romero
- Department of Psychology, Universidad del Norte, Km.5 Vía Puerto Colombia, Barranquilla, 081007, Colombia.
| | - Moisés Mebarak
- Department of Psychology, Universidad del Norte, Km.5 Vía Puerto Colombia, Barranquilla, 081007, Colombia
| | - Anthony Millán
- Department of Psychology, Universidad del Norte, Km.5 Vía Puerto Colombia, Barranquilla, 081007, Colombia
| | | | - Martha Martinez
- Department of Psychology, Universidad Simón Bolivar, Barranquilla, Colombia
| | - David L Rodrigues
- Iscte-Instituto Universitário de Lisboa, CIS-Iscte, Lisbon, Portugal
| |
Collapse
|
6
|
Villamayor PR, Gullón J, Quintela L, Sánchez-Quinteiro P, Martínez P, Robledo D. Sex separation unveils the functional plasticity of the vomeronasal organ in rabbits. Front Mol Neurosci 2022; 15:1034254. [PMID: 36340690 PMCID: PMC9634631 DOI: 10.3389/fnmol.2022.1034254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 02/10/2024] Open
Abstract
Chemosensory cues are vital for social and sexual behaviours and are primarily detected and processed by the vomeronasal system (VNS), whose plastic capacity has been investigated in mice. However, studying chemosensory plasticity outside of laboratory conditions may give a more realistic picture of how the VNS adapts to a changing environment. Rabbits are a well-described model of chemocommunication since the discovery of the rabbit mammary pheromone and their vomeronasal organ (VNO) transcriptome was recently characterised, a first step to further study plasticity-mediated transcriptional changes. In this study, we assessed the plastic capacity of the rabbit male and female VNO under sex-separation vs. sex-combined scenarios, including adults and juveniles, to determine whether the rabbit VNO is plastic and, if so, whether such plasticity is already established at early stages of life. First, we characterised the number of differentially expressed genes (DEGs) between the VNO of rabbit male and female under sex-separation and compared it to sex-combined individuals, both in adults and juveniles, finding that differences between male and female were larger in a sex-separated scenario. Secondly, we analysed the number of DEGs between sex-separated and sex-combined scenarios, both in males and females. In adults, both sexes showed a high number of DEGs while in juveniles only females showed differences. Additionally, the vomeronasal receptor genes were strikingly downregulated in sex-separated adult females, whereas in juveniles upregulation was shown for the same condition, suggesting a role of VRs in puberty onset. Finally, we described the environment-modulated plastic capacity of genes involved in reproduction, immunity and VNO functional activity, including G-protein coupled receptors. Our results show that sex-separation induces sex- and stage-specific gene expression differences in the VNO of male and female rabbit, both in adults and juveniles. These results bring out for the first time the plastic capacity of the rabbit VNO, supporting its functional adaptation to specifically respond to a continuous changing environment. Finally, species-specific differences and individual variability should always be considered in VNO studies and overall chemocommunication research.
Collapse
Affiliation(s)
- Paula R. Villamayor
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Luis Quintela
- Departamento de Patoloxía Animal, Facultade de Veterinaria Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Sánchez-Quinteiro
- Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paulino Martínez
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Diego Robledo
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Kashash Y, Smarsh G, Zilkha N, Yovel Y, Kimchi T. Alone, in the dark: The extraordinary neuroethology of the solitary blind mole rat. eLife 2022; 11:78295. [PMID: 35674717 PMCID: PMC9177142 DOI: 10.7554/elife.78295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
On the social scale, the blind mole rat (BMR; Spalax ehrenbergi) is an extreme. It is exceedingly solitary, territorial, and aggressive. BMRs reside underground, in self-excavated tunnels that they rarely leave. They possess specialized sensory systems for social communication and navigation, which allow them to cope with the harsh environmental conditions underground. This review aims to present the blind mole rat as an ideal, novel neuroethological model for studying aggressive and solitary behaviors. We discuss the BMR's unique behavioral phenotype, particularly in the context of 'anti-social' behaviors, and review the available literature regarding its specialized sensory adaptations to the social and physical habitat. To date, the neurobiology of the blind mole rat remains mostly unknown and holds a promising avenue for scientific discovery. Unraveling the neural basis of the BMR's behavior, in comparison to that of social rodents, can shed important light on the underlying mechanisms of psychiatric disorders in humans, in which similar behaviors are displayed.
Collapse
Affiliation(s)
- Yael Kashash
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Grace Smarsh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.,School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Does a third intermediate model for the vomeronasal processing of information exist? Insights from the macropodid neuroanatomy. Brain Struct Funct 2021; 227:881-899. [PMID: 34800143 PMCID: PMC8930919 DOI: 10.1007/s00429-021-02425-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/07/2021] [Indexed: 12/27/2022]
Abstract
The study of the α-subunit of Gi2 and Go proteins in the accessory olfactory bulb (AOB) was crucial for the identification of the two main families of vomeronasal receptors, V1R and V2R. Both families are expressed in the rodent and lagomorph AOBs, according to a segregated model characterized by topographical anteroposterior zonation. Many mammal species have suffered from the deterioration of the Gαo pathway and are categorized as belonging to the uniform model. This scenario has been complicated by characterization of the AOB in the tammar wallaby, Notamacropus eugenii, which appears to follow a third model of vomeronasal organization featuring exclusive Gαo protein expression, referred to as the intermediate model, which has not yet been replicated in any other species. Our morphofunctional study of the vomeronasal system (VNS) in Bennett’s wallaby, Notamacropus rufogriseus, provides further information regarding this third model of vomeronasal transduction. A comprehensive histological, lectin, and immunohistochemical study of the Bennett’s wallaby VNS was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful because they labeled the transduction cascade of V2R and V1R receptors, respectively. Both G proteins showed canonical immunohistochemical labeling in the vomeronasal organ and the AOB, consistent with the anterior–posterior zonation of the segregated model. The lectin Ulex europaeus agglutinin selectively labeled the anterior AOB, providing additional evidence for the segregation of vomeronasal information in the wallaby. Overall, the VNS of the Bennett’s wallaby shows a degree of differentiation and histochemical and neurochemical diversity comparable to species with greater VNS development. The existence of the third intermediate type in vomeronasal information processing reported in Notamacropus eugenii is not supported by our lectin-histochemical and immunohistochemical findings in Notamacropus rufogriseus.
Collapse
|
10
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|