1
|
Contreras A, Djebari S, Temprano-Carazo S, Múnera A, Gruart A, Delgado-Garcia JM, Jiménez-Díaz L, Navarro-López JD. Impairments in hippocampal oscillations accompany the loss of LTP induced by GIRK activity blockade. Neuropharmacology 2023:109668. [PMID: 37474000 DOI: 10.1016/j.neuropharm.2023.109668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Learning and memory occurrence requires of hippocampal long-term synaptic plasticity and precise neural activity orchestrated by brain network oscillations, both processes reciprocally influencing each other. As G-protein-gated inwardly rectifying potassium (GIRK) channels rule synaptic plasticity that supports hippocampal-dependent memory, here we assessed their unknown role in hippocampal oscillatory activity in relation to synaptic plasticity induction. In alert male mice, pharmacological GIRK modulation did not alter neural oscillations before long-term potentiation (LTP) induction. However, after an LTP generating protocol, both gain- and loss-of basal GIRK activity transformed LTP into long-term depression, but only specific suppression of constitutive GIRK activity caused a disruption of network synchronization (δ, α, γ bands), even leading to long-lasting ripples and fast ripples pathological oscillations. Together, our data showed that constitutive GIRK activity plays a key role in the tuning mechanism of hippocampal oscillatory activity during long-term synaptic plasticity processes that underlies hippocampal-dependent cognitive functions.
Collapse
Affiliation(s)
- Ana Contreras
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Souhail Djebari
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Sara Temprano-Carazo
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Alejandro Múnera
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain; Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Agnès Gruart
- Division of Neurosciences, University Pablo de Olavide, 41013, Seville, Spain
| | | | - Lydia Jiménez-Díaz
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Juan D Navarro-López
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
2
|
Truckenbrod LM, Cooper EM, Orsini CA. Cognitive mechanisms underlying decision making involving risk of explicit punishment in male and female rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:248-275. [PMID: 36539558 PMCID: PMC10065932 DOI: 10.3758/s13415-022-01052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Individuals engage in the process of risk-based decision making on a daily basis to navigate various aspects of life. There are, however, individual differences in this form of decision making, with some individuals exhibiting preference for riskier choices (risk taking) and others exhibiting preference for safer choices (risk aversion). Recent work has shown that extremes in risk taking (e.g., excessive risk taking or risk aversion) are not only cognitive features of neuropsychiatric diseases, but may in fact predispose individuals to the development of such diseases. To better understand individual differences in risk taking, and thus the mechanisms by which they confer disease vulnerability, the current study investigated the cognitive contributions to risk taking in both males and females. Rats were first behaviorally characterized in a decision-making task involving risk of footshock punishment and then tested on a battery of cognitive behavioral assays. Individual variability in risk taking was compared with performance on these tasks. Consistent with prior work, females were more risk averse than males. With the exception of the Set-shifting Task, there were no sex differences in performance on other cognitive assays. There were, however, sex-dependent associations between risk taking and specific cognitive measures. Greater risk taking was associated with better cognitive flexibility in males whereas greater risk aversion was associated with better working memory in females. Collectively, these findings reveal that distinct cognitive mechanisms are associated with risk taking in males and females, which may account for sex differences in this form of decision making.
Collapse
Affiliation(s)
- Leah M Truckenbrod
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Emily M Cooper
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Caitlin A Orsini
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
- Department of Neurology, The University of Texas at Austin, Austin, TX, USA.
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1601B Trinity Street, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Ueno H, Takahashi Y, Murakami S, Wani K, Miyazaki T, Matsumoto Y, Okamoto M, Ishihara T. Component-Specific Reduction in Perineuronal Nets in Senescence-Accelerated Mouse Strains. IBRO Neurosci Rep 2023. [DOI: 10.1016/j.ibneur.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
4
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Anderson EM, Demis S, Wrucke B, Engelhardt A, Hearing MC. Infralimbic cortex pyramidal neuron GIRK signaling contributes to regulation of cognitive flexibility but not affect-related behavior in male mice. Physiol Behav 2021; 242:113597. [PMID: 34536435 DOI: 10.1016/j.physbeh.2021.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Dysfunction of the infralimbic cortical (ILC) region of the medial prefrontal cortex (mPFC) is thought to be an underlying factor in both affect- and cognition-related behavioral deficits that co-occur across neuropsychiatric disorders. Increasing evidence highlights pathological imbalances in prefrontal pyramidal neuron excitability and associated aberrant firing as an underlying factor in this dysfunction. G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels mediate excitability of mPFC pyramidal neurons, however the functional role of these channels in ILC-dependent regulation of behavior and pyramidal neuron excitation is unknown. The present study used a viral-cre approach in male mice harboring a 'floxed' version of the kcnj3 (Girk1) gene, to disrupt GIRK1-containing channel expression in pyramidal neurons within the ILC. Loss of GIRK1-dependent signaling increased excitability and spike firing of pyramidal neurons but did not alter affective behavior measured in an elevated plus maze, forced swim test, or progressive ratio test of motivation. Alternatively, ablation of GIRK1 impaired performance in an operant-based attentional set-shifting task designed to assess cognitive flexibility. These data highlight a unique role for GIRK1 signaling in ILC pyramidal neurons in the regulation of strategy shifting but not affect and suggest that these channels may represent a therapeutic target for treatment of cognitive deficits in neuropsychiatric disease.
Collapse
|
6
|
Anderson EM, Loke S, Wrucke B, Engelhardt A, Demis S, O'Reilly K, Hess E, Wickman K, Hearing MC. Suppression of pyramidal neuron G protein-gated inwardly rectifying K+ channel signaling impairs prelimbic cortical function and underlies stress-induced deficits in cognitive flexibility in male, but not female, mice. Neuropsychopharmacology 2021; 46:2158-2169. [PMID: 34158613 PMCID: PMC8505646 DOI: 10.1038/s41386-021-01063-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Imbalance in prefrontal cortical (PFC) pyramidal neuron excitation:inhibition is thought to underlie symptomologies shared across stress-related disorders and neuropsychiatric disease, including dysregulation of emotion and cognitive function. G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels mediate excitability of medial PFC pyramidal neurons, however, the functional role of these channels in mPFC-dependent regulation of affect, cognition, and cortical dynamics is unknown. We used a viral-cre approach in male and female mice harboring a "floxed" version of the kcnj3 (Girk1) gene, to disrupt GIRK1-containing channel expression in pyramidal neurons within the prelimbic cortex (PrL). In males, loss of pyramidal GIRK1-dependent signaling differentially impacted measures of affect and impaired working memory and cognitive flexibility. Unexpectedly, ablation of PrL GIRK1-dependent signaling did not impact affect or cognition in female mice. Additional studies used a model of chronic unpredictable stress (CUS) to determine the impact on PrL GIRK-dependent signaling and cognitive function. CUS exposure in male mice produced deficits in cognition that paralleled a reduction in PrL pyramidal GIRK-dependent signaling akin to viral approaches whereas CUS exposure in female mice did not alter cognitive flexibility performance. Stress-induced behavioral deficits in male mice were rescued by systemic injection of a novel, GIRK1-selective agonist, ML297. In conclusion, GIRK1-dependent signaling in male mice, but not females, is critical for maintaining optimal PrL function and behavioral control. Disruption of this inhibition may underlie stress-related dysfunction of the PrL and represent a therapeutic target for treating stress-induced deficits in affect regulation and impaired cognition that reduce quality of life.
Collapse
Affiliation(s)
- Eden M Anderson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Steven Loke
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Benjamin Wrucke
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Annabel Engelhardt
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Skyler Demis
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Kevin O'Reilly
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Evan Hess
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew C Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|