1
|
Borjon LJ, de Assis Ferreira LC, Trinidad JC, Šašić S, Hohmann AG, Tracey WD. Multiple mechanisms of action for an extremely painful venom. Curr Biol 2025; 35:444-453.e4. [PMID: 39765227 DOI: 10.1016/j.cub.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025]
Abstract
Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream. Hot oil from the deep fryer spilling over your entire hand."1 The effectiveness of the velvet ant sting against potential predators has been shown across vertebrate orders, including mammals, amphibians, reptiles, and birds.2,3,4 This leads to the hypothesis that velvet ant venom targets a conserved nociception mechanism, which we sought to uncover using Drosophila melanogaster as a model system. Drosophila larvae have peripheral sensory neurons that sense potentially damaging (noxious) stimuli such as high temperature, harsh mechanical touch, and noxious chemicals.5,6,7,8 They share features with vertebrate nociceptors, including conserved sensory receptor channels.9,10 We found that velvet ant venom strongly activated Drosophila nociceptors through heteromeric Pickpocket/Balboa (Ppk/Bba) ion channels, through a single venom peptide, Do6a. Drosophila Ppk/Bba is homologous to mammalian acid-sensing ion channels (ASICs).11 However, Do6a did not produce behavioral signs of nociception in mice, which was instead triggered by other venom peptides that are non-specific and less potent on Drosophila nociceptors. This suggests that Do6a has an insect-specific function. In fact, we further demonstrated that the velvet ant's sting produced aversive behavior in a predatory praying mantis. Together, our results indicate that velvet ant venom acts through different molecular mechanisms in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Lydia J Borjon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Luana C de Assis Ferreira
- Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | | - Sunčica Šašić
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Andrea G Hohmann
- Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - W Daniel Tracey
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
2
|
Borjon LJ, de Assis Ferreira LC, Trinidad JC, Šašić S, Hohmann AG, Tracey WD. Multiple mechanisms of action of an extremely painful venom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612741. [PMID: 39314321 PMCID: PMC11419154 DOI: 10.1101/2024.09.12.612741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Evolutionary arms races between predator and prey can lead to extremely specific and effective defense mechanisms. Such defenses include venoms that deter predators by targeting nociceptive (pain-sensing) pathways. Through co-evolution, venom toxins can become extremely efficient modulators of their molecular targets. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. The intensity of a velvet ant sting has been described as "Explosive and long lasting, you sound insane as you scream. Hot oil from the deep fryer spilling over your entire hand." [1] The effectiveness of the velvet ant sting as a deterrent against potential predators has been shown across vertebrate orders, including mammals, amphibians, reptiles, and birds [2-4]. The venom's low toxicity suggests it has a targeted effect on nociceptive sensory mechanisms [5]. This leads to the hypothesis that velvet ant venom targets a conserved nociception mechanism, which we sought to uncover using Drosophila melanogaster as a model system. Drosophila larvae have peripheral sensory neurons that sense potentially damaging (noxious) stimuli such as high temperature, harsh mechanical touch, and noxious chemicals [6-9]. These polymodal nociceptors are called class IV multidendritic dendritic arborizing (cIV da) neurons, and they share many features with vertebrate nociceptors, including conserved sensory receptor channels [10,11]. We found that velvet ant venom strongly activated Drosophila nociceptors through heteromeric Pickpocket/Balboa (Ppk/Bba) ion channels. Furthermore, we found a single venom peptide (Do6a) that activated larval nociceptors at nanomolar concentrations through Ppk/Bba. Drosophila Ppk/Bba is homologous to mammalian Acid Sensing Ion Channels (ASICs) [12]. However, the Do6a peptide did not produce behavioral signs of nociception in mice, which was instead triggered by other non-specific, less potent, peptides within the venom. This suggests that Do6a is an insect-specific venom component that potently activates insect nociceptors. Consistent with this, we showed that the velvet ant's defensive sting produced aversive behavior in a predatory praying mantis. Together, our results indicate that velvet ant venom evolved to target nociceptive systems of both vertebrates and invertebrates, but through different molecular mechanisms.
Collapse
Affiliation(s)
- Lydia J. Borjon
- Department of Biology, Indiana University; Bloomington, IN
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
| | - Luana C. de Assis Ferreira
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
- Department of Psychological and Brain Sciences, Indiana University; Bloomington, IN
| | | | - Sunčica Šašić
- Department of Biology, Indiana University; Bloomington, IN
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
| | - Andrea G. Hohmann
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
- Department of Psychological and Brain Sciences, Indiana University; Bloomington, IN
- Program in Neuroscience, Indiana University; Bloomington, IN
| | - W. Daniel Tracey
- Department of Biology, Indiana University; Bloomington, IN
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
- Program in Neuroscience, Indiana University; Bloomington, IN
| |
Collapse
|
3
|
Lövei GL, Ferrante M. The Use and Prospects of Nonlethal Methods in Entomology. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:183-198. [PMID: 37669564 DOI: 10.1146/annurev-ento-120220-024402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Arthropods are declining globally, and entomologists ought to be in the forefront of protecting them. However, entomological study methods are typically lethal, and we argue that this makes the ethical status of the profession precarious. Lethal methods are used in most studies, even those that aim to support arthropod conservation. Additionally, almost all collecting methods result in bycatch, and a first step toward less destructive research practices is to minimize bycatch and/or ensure its proper storage and use. In this review, we describe the available suite of nonlethal methods with the aim of promoting their use. We classify nonlethal methods into (a) reuse of already collected material, (b) methods that are damaging but not lethal, (c) methods that modify behavior, and (d) true nonlethal methods. Artificial intelligence and miniaturization will help to extend the nonlethal methodological toolkit, but the need for further method development and testing remains.
Collapse
Affiliation(s)
- Gábor L Lövei
- Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, Slagelse, Denmark;
- Hungarian Research Network Anthropocene Ecology Research Group, Debrecen University, Debrecen, Hungary
| | - Marco Ferrante
- Functional Agrobiodiversity, Department of Crop Sciences, University of Göttingen, Germany;
| |
Collapse
|
4
|
Farnsworth KD, Elwood RW. Why it hurts: with freedom comes the biological need for pain. Anim Cogn 2023:10.1007/s10071-023-01773-2. [PMID: 37029847 DOI: 10.1007/s10071-023-01773-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
We argue that pain is not needed to protect the body from damage unless the organism is able to make free choices in action selection. Then pain (including its affective and evaluative aspects) provides a necessary prioritising motivation to select actions expected to avoid it, whilst leaving the possibility of alternative actions to serve potentially higher priorities. Thus, on adaptive grounds, only organisms having free choice over action selection should experience pain. Free choice implies actions must be selected following appraisal of their effects, requiring a predictive model generating estimates of action outcomes. These features give organisms anticipatory behavioural autonomy (ABA), for which we propose a plausible system using an internal predictive model, integrated into a system able to produce the qualitative and affective aspects of pain. Our hypothesis can be tested using behavioural experiments designed to elicit trade-off responses to novel experiences for which algorithmic (automaton) responses might be inappropriate. We discuss the empirical evidence for our hypothesis among taxonomic groups, showing how testing for ABA guides thinking on which groups might experience pain. It is likely that all vertebrates do and plausible that some invertebrates do (decapods, cephalopods and at least some insects).
Collapse
Affiliation(s)
- Keith D Farnsworth
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT95DL, UK.
| | - Robert W Elwood
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT95DL, UK
| |
Collapse
|
5
|
Key B, Zalucki O, Brown DJ. A First Principles Approach to Subjective Experience. Front Syst Neurosci 2022; 16:756224. [PMID: 35250497 PMCID: PMC8888408 DOI: 10.3389/fnsys.2022.756224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2022] Open
Abstract
Understanding the neural bases of subjective experience remains one of the great challenges of the natural sciences. Higher-order theories of consciousness are typically defended by assessments of neural activity in higher cortical regions during perception, often with disregard to the nature of the neural computations that these regions execute. We have sought to refocus the problem toward identification of those neural computations that are necessary for subjective experience with the goal of defining the sorts of neural architectures that can perform these operations. This approach removes reliance on behaviour and brain homologies for appraising whether non-human animals have the potential to subjectively experience sensory stimuli. Using two basic principles—first, subjective experience is dependent on complex processing executing specific neural functions and second, the structure-determines-function principle—we have reasoned that subjective experience requires a neural architecture consisting of stacked forward models that predict the output of neural processing from inputs. Given that forward models are dependent on appropriately connected processing modules that generate prediction, error detection and feedback control, we define a minimal neural architecture that is necessary (but not sufficient) for subjective experience. We refer to this framework as the hierarchical forward models algorithm. Accordingly, we postulate that any animal lacking this neural architecture will be incapable of subjective experience.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Brian Key,
| | - Oressia Zalucki
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Deborah J. Brown
- School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, QLD, Australia
- Deborah J. Brown,
| |
Collapse
|