1
|
Mattera A, Alfieri V, Granato G, Baldassarre G. Chaotic recurrent neural networks for brain modelling: A review. Neural Netw 2024; 184:107079. [PMID: 39756119 DOI: 10.1016/j.neunet.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Even in the absence of external stimuli, the brain is spontaneously active. Indeed, most cortical activity is internally generated by recurrence. Both theoretical and experimental studies suggest that chaotic dynamics characterize this spontaneous activity. While the precise function of brain chaotic activity is still puzzling, we know that chaos confers many advantages. From a computational perspective, chaos enhances the complexity of network dynamics. From a behavioural point of view, chaotic activity could generate the variability required for exploration. Furthermore, information storage and transfer are maximized at the critical border between order and chaos. Despite these benefits, many computational brain models avoid incorporating spontaneous chaotic activity due to the challenges it poses for learning algorithms. In recent years, however, multiple approaches have been proposed to overcome this limitation. As a result, many different algorithms have been developed, initially within the reservoir computing paradigm. Over time, the field has evolved to increase the biological plausibility and performance of the algorithms, sometimes going beyond the reservoir computing framework. In this review article, we examine the computational benefits of chaos and the unique properties of chaotic recurrent neural networks, with a particular focus on those typically utilized in reservoir computing. We also provide a detailed analysis of the algorithms designed to train chaotic RNNs, tracing their historical evolution and highlighting key milestones in their development. Finally, we explore the applications and limitations of chaotic RNNs for brain modelling, consider their potential broader impacts beyond neuroscience, and outline promising directions for future research.
Collapse
Affiliation(s)
- Andrea Mattera
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy.
| | - Valerio Alfieri
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy; International School of Advanced Studies, Center for Neuroscience, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - Giovanni Granato
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| | - Gianluca Baldassarre
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| |
Collapse
|
2
|
Wang J, Lin S, Liu A. Bioinspired Perception and Navigation of Service Robots in Indoor Environments: A Review. Biomimetics (Basel) 2023; 8:350. [PMID: 37622955 PMCID: PMC10452487 DOI: 10.3390/biomimetics8040350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Biological principles draw attention to service robotics because of similar concepts when robots operate various tasks. Bioinspired perception is significant for robotic perception, which is inspired by animals' awareness of the environment. This paper reviews the bioinspired perception and navigation of service robots in indoor environments, which are popular applications of civilian robotics. The navigation approaches are classified by perception type, including vision-based, remote sensing, tactile sensor, olfactory, sound-based, inertial, and multimodal navigation. The trend of state-of-art techniques is moving towards multimodal navigation to combine several approaches. The challenges in indoor navigation focus on precise localization and dynamic and complex environments with moving objects and people.
Collapse
Affiliation(s)
- Jianguo Wang
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shiwei Lin
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ang Liu
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Szorkovszky A, Veenstra F, Glette K. Central pattern generators evolved for real-time adaptation to rhythmic stimuli. BIOINSPIRATION & BIOMIMETICS 2023; 18:046020. [PMID: 37339660 DOI: 10.1088/1748-3190/ace017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
For a robot to be both autonomous and collaborative requires the ability to adapt its movement to a variety of external stimuli, whether these come from humans or other robots. Typically, legged robots have oscillation periods explicitly defined as a control parameter, limiting the adaptability of walking gaits. Here we demonstrate a virtual quadruped robot employing a bio-inspired central pattern generator (CPG) that can spontaneously synchronize its movement to a range of rhythmic stimuli. Multi-objective evolutionary algorithms were used to optimize the variation of movement speed and direction as a function of the brain stem drive and the centre of mass control respectively. This was followed by optimization of an additional layer of neurons that filters fluctuating inputs. As a result, a range of CPGs were able to adjust their gait pattern and/or frequency to match the input period. We show how this can be used to facilitate coordinated movement despite differences in morphology, as well as to learn new movement patterns.
Collapse
Affiliation(s)
- Alex Szorkovszky
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Frank Veenstra
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Kyrre Glette
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Sun T, Dai Z, Manoonpong P. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications. Front Neural Circuits 2023; 17:1111285. [PMID: 37063383 PMCID: PMC10102392 DOI: 10.3389/fncir.2023.1111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionAnimals such as cattle can achieve versatile and elegant behaviors through automatic sensorimotor coordination. Their self-organized movements convey an impression of adaptability, robustness, and motor memory. However, the adaptive mechanisms underlying such natural abilities of these animals have not been completely realized in artificial legged systems.MethodsHence, we propose adaptive neural control that can mimic these abilities through adaptive physical and neural communications. The control algorithm consists of distributed local central pattern generator (CPG)-based neural circuits for generating basic leg movements, an adaptive sensory feedback mechanism for generating self-organized phase relationships among the local CPG circuits, and an adaptive neural coupling mechanism for transferring and storing the formed phase relationships (a gait pattern) into the neural structure. The adaptive neural control was evaluated in experiments using a quadruped robot.ResultsThe adaptive neural control enabled the robot to 1) rapidly and automatically form its gait (i.e., self-organized locomotion) within a few seconds, 2) memorize the gait for later recovery, and 3) robustly walk, even when a sensory feedback malfunction occurs. It also enabled maneuverability, with the robot being able to change its walking speed and direction. Moreover, implementing adaptive physical and neural communications provided an opportunity for understanding the mechanism of motor memory formation.DiscussionOverall, this study demonstrates that the integration of the two forms of communications through adaptive neural control is a powerful way to achieve robust and reusable self-organized locomotion in legged robots.
Collapse
Affiliation(s)
- Tao Sun
- Neurorobotics Technology for Advanced Robot Motor Control Lab, The College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Wearable Systems Lab, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhendong Dai
- Neurorobotics Technology for Advanced Robot Motor Control Lab, The College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Poramate Manoonpong
- Neurorobotics Technology for Advanced Robot Motor Control Lab, The College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Bio-Inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
- *Correspondence: Poramate Manoonpong ;
| |
Collapse
|
5
|
Mangan M, Floreano D, Yasui K, Trimmer BA, Gravish N, Hauert S, Webb B, Manoonpong P, Szczecinski N. A virtuous cycle between invertebrate and robotics research: perspective on a decade of Living Machines research. BIOINSPIRATION & BIOMIMETICS 2023; 18:035005. [PMID: 36881919 DOI: 10.1088/1748-3190/acc223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Many invertebrates are ideal model systems on which to base robot design principles due to their success in solving seemingly complex tasks across domains while possessing smaller nervous systems than vertebrates. Three areas are particularly relevant for robot designers: Research on flying and crawling invertebrates has inspired new materials and geometries from which robot bodies (their morphologies) can be constructed, enabling a new generation of softer, smaller, and lighter robots. Research on walking insects has informed the design of new systems for controlling robot bodies (their motion control) and adapting their motion to their environment without costly computational methods. And research combining wet and computational neuroscience with robotic validation methods has revealed the structure and function of core circuits in the insect brain responsible for the navigation and swarming capabilities (their mental faculties) displayed by foraging insects. The last decade has seen significant progress in the application of principles extracted from invertebrates, as well as the application of biomimetic robots to model and better understand how animals function. This Perspectives paper on the past 10 years of the Living Machines conference outlines some of the most exciting recent advances in each of these fields before outlining lessons gleaned and the outlook for the next decade of invertebrate robotic research.
Collapse
Affiliation(s)
- Michael Mangan
- The University of Sheffield, Mappin St, Sheffield S10 2TN, United Kingdom
| | - Dario Floreano
- Ecole Polytechnique Federale de Lausanne, Laboratory of Intelligent Systems, Station 9, Lausanne CH-1015, Switzerland
| | - Kotaro Yasui
- Tohoku University, Frontier Research Institute for Interdisciplinary Sciences, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Barry A Trimmer
- Tufts University, Biology, 200 Boston Av, Boston, MA 02111, United States of America
| | - Nick Gravish
- University of California San Diego, Mechanical and Aerospace Engineering, Building EBU II, La Jolla, CA 92093, United States of America
| | - Sabine Hauert
- University of Bristol, Engineering Mathematics, Bristol BS8 1QU, United Kingdom
| | - Barbara Webb
- University of Edinburgh, School of Informatics, 10 Crichton St, Edinburgh EH8 9AB, United Kingdom
| | - Poramate Manoonpong
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- Bio-Inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand
| | - Nicholas Szczecinski
- West Virginia University, Mechanical and Aerospace Engineering, Morgantown, WV 26506-6201, United States of America
| |
Collapse
|
6
|
Manoonpong P, Patanè L, Xiong X, Brodoline I, Dupeyroux J, Viollet S, Arena P, Serres JR. Insect-Inspired Robots: Bridging Biological and Artificial Systems. SENSORS (BASEL, SWITZERLAND) 2021; 21:7609. [PMID: 34833685 PMCID: PMC8623770 DOI: 10.3390/s21227609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022]
Abstract
This review article aims to address common research questions in hexapod robotics. How can we build intelligent autonomous hexapod robots that can exploit their biomechanics, morphology, and computational systems, to achieve autonomy, adaptability, and energy efficiency comparable to small living creatures, such as insects? Are insects good models for building such intelligent hexapod robots because they are the only animals with six legs? This review article is divided into three main sections to address these questions, as well as to assist roboticists in identifying relevant and future directions in the field of hexapod robotics over the next decade. After an introduction in section (1), the sections will respectively cover the following three key areas: (2) biomechanics focused on the design of smart legs; (3) locomotion control; and (4) high-level cognition control. These interconnected and interdependent areas are all crucial to improving the level of performance of hexapod robotics in terms of energy efficiency, terrain adaptability, autonomy, and operational range. We will also discuss how the next generation of bioroboticists will be able to transfer knowledge from biology to robotics and vice versa.
Collapse
Affiliation(s)
- Poramate Manoonpong
- Embodied Artificial Intelligence and Neurorobotics Laboratory, SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, 5230 Odense, Denmark;
- Bio-Inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Luca Patanè
- Department of Engineering, University of Messina, 98100 Messina, Italy
| | - Xiaofeng Xiong
- Embodied Artificial Intelligence and Neurorobotics Laboratory, SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, 5230 Odense, Denmark;
| | - Ilya Brodoline
- Department of Biorobotics, Aix Marseille University, CNRS, ISM, CEDEX 07, 13284 Marseille, France; (I.B.); (S.V.)
| | - Julien Dupeyroux
- Faculty of Aerospace Engineering, Delft University of Technology, 52600 Delft, The Netherlands;
| | - Stéphane Viollet
- Department of Biorobotics, Aix Marseille University, CNRS, ISM, CEDEX 07, 13284 Marseille, France; (I.B.); (S.V.)
| | - Paolo Arena
- Department of Electrical, Electronic and Computer Engineering, University of Catania, 95131 Catania, Italy
| | - Julien R. Serres
- Department of Biorobotics, Aix Marseille University, CNRS, ISM, CEDEX 07, 13284 Marseille, France; (I.B.); (S.V.)
| |
Collapse
|
7
|
Calandra M, Patanè L, Sun T, Arena P, Manoonpong P. Echo State Networks for Estimating Exteroceptive Conditions From Proprioceptive States in Quadruped Robots. Front Neurorobot 2021; 15:655330. [PMID: 34497502 PMCID: PMC8421012 DOI: 10.3389/fnbot.2021.655330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
We propose a methodology based on reservoir computing for mapping local proprioceptive information acquired at the level of the leg joints of a simulated quadruped robot into exteroceptive and global information, including both the ground reaction forces at the level of the different legs and information about the type of terrain traversed by the robot. Both dynamic estimation and terrain classification can be achieved concurrently with the same reservoir computing structure, which serves as a soft sensor device. Simulation results are presented together with preliminary experiments on a real quadruped robot. They demonstrate the suitability of the proposed approach for various terrains and sensory system fault conditions. The strategy, which belongs to the class of data-driven models, is independent of the robotic mechanical design and can easily be generalized to different robotic structures.
Collapse
Affiliation(s)
- Mario Calandra
- Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy
| | - Luca Patanè
- Department of Engineering, University of Messina, Messina, Italy
| | - Tao Sun
- Institute of Bio-inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Paolo Arena
- Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy
| | - Poramate Manoonpong
- Institute of Bio-inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.,Embodied AI & Neurorobotics Lab, SDU Biorobotics, Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Abstract
The static stability of hexapods motivates their design for tasks in which stable locomotion is required, such as navigation across complex environments. This task is of high interest due to the possibility of replacing human beings in exploration, surveillance and rescue missions. For this application, the control system must adapt the actuation of the limbs according to their surroundings to ensure that the hexapod does not tumble during locomotion. The most traditional approach considers their limbs as robotic manipulators and relies on mechanical models to actuate them. However, the increasing interest in model-free models for the control of these systems has led to the design of novel solutions. Through a systematic literature review, this paper intends to overview the trends in this field of research and determine in which stage the design of autonomous and adaptable controllers for hexapods is.
Collapse
|
9
|
|
10
|
Zamboni R, Owaki D, Hayashibe M. Adaptive and Energy-Efficient Optimal Control in CPGs Through Tegotae-Based Feedback. Front Robot AI 2021; 8:632804. [PMID: 34124172 PMCID: PMC8187776 DOI: 10.3389/frobt.2021.632804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/03/2021] [Indexed: 11/29/2022] Open
Abstract
To obtain biologically inspired robotic control, the architecture of central pattern generators (CPGs) has been extensively adopted to generate periodic patterns for locomotor control. This is attributed to the interesting properties of nonlinear oscillators. Although sensory feedback in CPGs is not necessary for the generation of patterns, it plays a central role in guaranteeing adaptivity to environmental conditions. Nonetheless, its inclusion significantly modifies the dynamics of the CPG architecture, which often leads to bifurcations. For instance, the force feedback can be exploited to derive information regarding the state of the system. In particular, the Tegotae approach can be adopted by coupling proprioceptive information with the state of the oscillation itself in the CPG model. This paper discusses this policy with respect to other types of feedback; it provides higher adaptivity and an optimal energy efficiency for reflex-like actuation. We believe this is the first attempt to analyse the optimal energy efficiency along with the adaptivity of the Tegotae approach.
Collapse
Affiliation(s)
| | - Dai Owaki
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Mitsuhiro Hayashibe
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Szczecinski NS, Quinn RD, Hunt AJ. Extending the Functional Subnetwork Approach to a Generalized Linear Integrate-and-Fire Neuron Model. Front Neurorobot 2020; 14:577804. [PMID: 33281592 PMCID: PMC7691602 DOI: 10.3389/fnbot.2020.577804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022] Open
Abstract
Engineering neural networks to perform specific tasks often represents a monumental challenge in determining network architecture and parameter values. In this work, we extend our previously-developed method for tuning networks of non-spiking neurons, the “Functional subnetwork approach” (FSA), to the tuning of networks composed of spiking neurons. This extension enables the direct assembly and tuning of networks of spiking neurons and synapses based on the network's intended function, without the use of global optimization or machine learning. To extend the FSA, we show that the dynamics of a generalized linear integrate and fire (GLIF) neuron model have fundamental similarities to those of a non-spiking leaky integrator neuron model. We derive analytical expressions that show functional parallels between: (1) A spiking neuron's steady-state spiking frequency and a non-spiking neuron's steady-state voltage in response to an applied current; (2) a spiking neuron's transient spiking frequency and a non-spiking neuron's transient voltage in response to an applied current; and (3) a spiking synapse's average conductance during steady spiking and a non-spiking synapse's conductance. The models become more similar as additional spiking neurons are added to each population “node” in the network. We apply the FSA to model a neuromuscular reflex pathway two different ways: Via non-spiking components and then via spiking components. These results provide a concrete example of how a single non-spiking neuron may model the average spiking frequency of a population of spiking neurons. The resulting model also demonstrates that by using the FSA, models can be constructed that incorporate both spiking and non-spiking units. This work facilitates the construction of large networks of spiking neurons and synapses that perform specific functions, for example, those implemented with neuromorphic computing hardware, by providing an analytical method for directly tuning their parameters without time-consuming optimization or learning.
Collapse
Affiliation(s)
- Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| | - Roger D Quinn
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Alexander J Hunt
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, United States
| |
Collapse
|
12
|
Goldsmith CA, Szczecinski NS, Quinn RD. Neurodynamic modeling of the fruit fly Drosophila melanogaster. BIOINSPIRATION & BIOMIMETICS 2020; 15:065003. [PMID: 32924978 DOI: 10.1088/1748-3190/ab9e52] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This manuscript describes neuromechanical modeling of the fruit fly Drosophila melanogaster in the form of a hexapod robot, Drosophibot, and an accompanying dynamic simulation. Drosophibot is a testbed for real-time dynamical neural controllers modeled after the anatomy and function of the insect nervous system. As such, Drosophibot has been designed to capture features of the animal's biomechanics in order to better test the neural controllers. These features include: dynamically scaling the robot to match the fruit fly by designing its joint elasticity and movement speed; a biomimetic actuator control scheme that converts neural activity into motion in the same way as observed in insects; biomimetic sensing, including proprioception from all leg joints and strain sensing from all leg segments; and passively compliant tarsi that mimic the animal's passive compliance to the walking substrate. We incorporated these features into a dynamical simulation of Drosophibot, and demonstrate that its actuators and sensors perform in an animal-like way. We used this simulation to test a neural walking controller based on anatomical and behavioral data from insects. Finally, we describe Drosophibot's hardware and show that the animal-like features of the simulation transfer to the physical robot.
Collapse
Affiliation(s)
- C A Goldsmith
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States of America
| | - N S Szczecinski
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States of America
| | - R D Quinn
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States of America
| |
Collapse
|
13
|
Rungruangsak-Torrissen K, Manoonpong P. Neural computational model GrowthEstimate: A model for studying living resources through digestive efficiency. PLoS One 2019; 14:e0216030. [PMID: 31461459 PMCID: PMC6713322 DOI: 10.1371/journal.pone.0216030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/13/2019] [Indexed: 11/18/2022] Open
Abstract
The neural computational model GrowthEstimate is introduced with focusing on new perspectives for the practical estimation of weight specific growth rate (SGR, % day-1). It is developed using recurrent neural networks of reservoir computing type, for estimating SGR based on the known data of three key biological factors relating to growth. These factors are: (1) weight (g) for specifying the age of the growth stage; (2) digestive efficiency through the pyloric caecal activity ratio of trypsin to chymotrypsin (T/C ratio) for specifying genetic differences in food utilization and growth potential, basically resulting from food consumption under variations in food quality and environmental conditions; and (3) protein growth efficiency through the condition factor (CF, 100 × g cm-3), as higher dietary protein level affecting higher skeletal growth (length) and resulting in lower CF. The computational model was trained using four datasets of different salmonids with size variations. It was evaluated with 15% of each dataset, resulting in an acceptable range of SGR outputs. Additional tests with different species indicated similarity between the estimated SGR outputs and the real SGR values, and the same ranking of wild population growth. The developed model GrowthEstimate is exceptionally useful for the precise and comparable growth estimation of living resources at individual levels, especially in natural ecosystems where the studied individuals, environmental conditions, food availability and consumption rates cannot be controlled. It is a revelation and will help to minimize uncertainty in wild stock assessment process. This will improve our knowledge in nutritional ecology, through the biochemical effects of climate change and environmental impact on the growth performance quality of aquatic living resources in the wild, as well as in aquaculture. The original GrowthEstimate software is available at GitHub repository (https://github.com/RungruangsakTorrissenManoonpong/GrowthEstimate). All other relevant data are within the paper. It will be improved for generality for future use, and required co-operations of the biodata collections of different species from different climate zones. Therefore, a co-operation will be available.
Collapse
Affiliation(s)
- Krisna Rungruangsak-Torrissen
- Institute of Marine Research, Ecosystem Processes Research Group, Matredal, Norway
- Freelance Researcher, Bergen, Norway
| | - Poramate Manoonpong
- Embodied Artificial Intelligence and Neurorobotics Lab, Centre for Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense M, Denmark
- Bio-inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| |
Collapse
|
14
|
Dutta S, Parihar A, Khanna A, Gomez J, Chakraborty W, Jerry M, Grisafe B, Raychowdhury A, Datta S. Programmable coupled oscillators for synchronized locomotion. Nat Commun 2019; 10:3299. [PMID: 31341167 PMCID: PMC6656780 DOI: 10.1038/s41467-019-11198-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/21/2019] [Indexed: 01/25/2023] Open
Abstract
The striking similarity between biological locomotion gaits and the evolution of phase patterns in coupled oscillatory network can be traced to the role of central pattern generator located in the spinal cord. Bio-inspired robotics aim at harnessing this control approach for generation of rhythmic patterns for synchronized limb movement. Here, we utilize the phenomenon of synchronization and emergent spatiotemporal pattern from the interaction among coupled oscillators to generate a range of locomotion gait patterns. We experimentally demonstrate a central pattern generator network using capacitively coupled Vanadium Dioxide nano-oscillators. The coupled oscillators exhibit stable limit-cycle oscillations and tunable natural frequencies for real-time programmability of phase-pattern. The ultra-compact 1 Transistor-1 Resistor implementation of oscillator and bidirectional capacitive coupling allow small footprint area and low operating power. Compared to biomimetic CMOS based neuron and synapse models, our design simplifies on-chip implementation and real-time tunability by reducing the number of control parameters. Designing alternative paradigms for bio-inspired analog computing that harnesses collective dynamics remains a challenge. Here, the authors exploit the synchronization dynamics of coupled vanadium dioxide-based insulator-to-metal phase-transition nano-oscillators for adaptive locomotion control.
Collapse
Affiliation(s)
- Sourav Dutta
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Abhinav Parihar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Abhishek Khanna
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jorge Gomez
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Wriddhi Chakraborty
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew Jerry
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Benjamin Grisafe
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Arijit Raychowdhury
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suman Datta
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
15
|
Bio-inspired design and movement generation of dung beetle-like legs. ARTIFICIAL LIFE AND ROBOTICS 2018. [DOI: 10.1007/s10015-018-0475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Szczecinski NS, Quinn RD. Leg-local neural mechanisms for searching and learning enhance robotic locomotion. BIOLOGICAL CYBERNETICS 2018; 112:99-112. [PMID: 28782078 DOI: 10.1007/s00422-017-0726-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Adapting motor output based on environmental forces is critical for successful locomotion in the real world. Arthropods use at least two neural mechanisms to adjust muscle activation while walking based on detected forces. Mechanism 1 uses negative feedback of leg depressor force to ensure that each stance leg supports an appropriate amount of the body's weight. Mechanism 2 encourages searching for ground contact if the leg supports no body weight. We expand the neural controller for MantisBot, a robot based upon a praying mantis, to include these mechanisms by incorporating leg-local memory and command neurons, as observed in arthropods. We present results from MantisBot transitioning between searching and stepping, mimicking data from animals as reported in the literature.
Collapse
|
17
|
Szczecinski NS, Hunt AJ, Quinn RD. A Functional Subnetwork Approach to Designing Synthetic Nervous Systems That Control Legged Robot Locomotion. Front Neurorobot 2017; 11:37. [PMID: 28848419 PMCID: PMC5552699 DOI: 10.3389/fnbot.2017.00037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/17/2017] [Indexed: 11/13/2022] Open
Abstract
A dynamical model of an animal's nervous system, or synthetic nervous system (SNS), is a potentially transformational control method. Due to increasingly detailed data on the connectivity and dynamics of both mammalian and insect nervous systems, controlling a legged robot with an SNS is largely a problem of parameter tuning. Our approach to this problem is to design functional subnetworks that perform specific operations, and then assemble them into larger models of the nervous system. In this paper, we present networks that perform addition, subtraction, multiplication, division, differentiation, and integration of incoming signals. Parameters are set within each subnetwork to produce the desired output by utilizing the operating range of neural activity, R, the gain of the operation, k, and bounds based on biological values. The assembly of large networks from functional subnetworks underpins our recent results with MantisBot.
Collapse
Affiliation(s)
- Nicholas S Szczecinski
- Biologically Inspired Robotics Laboratory, Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Alexander J Hunt
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, United States
| | - Roger D Quinn
- Biologically Inspired Robotics Laboratory, Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
18
|
Aoi S, Manoonpong P, Ambe Y, Matsuno F, Wörgötter F. Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review. Front Neurorobot 2017; 11:39. [PMID: 28878645 PMCID: PMC5572352 DOI: 10.3389/fnbot.2017.00039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 07/31/2017] [Indexed: 12/02/2022] Open
Abstract
Walking animals produce adaptive interlimb coordination during locomotion in accordance with their situation. Interlimb coordination is generated through the dynamic interactions of the neural system, the musculoskeletal system, and the environment, although the underlying mechanisms remain unclear. Recently, investigations of the adaptation mechanisms of living beings have attracted attention, and bio-inspired control systems based on neurophysiological findings regarding sensorimotor interactions are being developed for legged robots. In this review, we introduce adaptive interlimb coordination for legged robots induced by various factors (locomotion speed, environmental situation, body properties, and task). In addition, we show characteristic properties of adaptive interlimb coordination, such as gait hysteresis and different time-scale adaptations. We also discuss the underlying mechanisms and control strategies to achieve adaptive interlimb coordination and the design principle for the control system of legged robots.
Collapse
Affiliation(s)
- Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto UniversityKyoto, Japan
| | - Poramate Manoonpong
- Embodied AI & Neurorobotics Lab, Centre for Biorobotics, Mærsk Mc-Kinney Møller Institute, University of Southern DenmarkOdense, Denmark
| | - Yuichi Ambe
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku UniversityAoba-ku, Japan
| | - Fumitoshi Matsuno
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto UniversityKyoto, Japan
| | - Florentin Wörgötter
- Bernstein Center for Computational Neuroscience, Third Institute of Physics, Georg-August-Universität GöttingenGöttingen, Germany
| |
Collapse
|
19
|
Owaki D, Goda M, Miyazawa S, Ishiguro A. A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach. Front Neurorobot 2017. [PMID: 28649197 PMCID: PMC5465294 DOI: 10.3389/fnbot.2017.00029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Insects exhibit adaptive and versatile locomotion despite their minimal neural computing. Such locomotor patterns are generated via coordination between leg movements, i.e., an interlimb coordination, which is largely controlled in a distributed manner by neural circuits located in thoracic ganglia. However, the mechanism responsible for the interlimb coordination still remains elusive. Understanding this mechanism will help us to elucidate the fundamental control principle of animals' agile locomotion and to realize robots with legs that are truly adaptive and could not be developed solely by conventional control theories. This study aims at providing a “minimal" model of the interlimb coordination mechanism underlying hexapedal locomotion, in the hope that a single control principle could satisfactorily reproduce various aspects of insect locomotion. To this end, we introduce a novel concept we named “Tegotae,” a Japanese concept describing the extent to which a perceived reaction matches an expectation. By using the Tegotae-based approach, we show that a surprisingly systematic design of local sensory feedback mechanisms essential for the interlimb coordination can be realized. We also use a hexapod robot we developed to show that our mathematical model of the interlimb coordination mechanism satisfactorily reproduces various insects' gait patterns.
Collapse
Affiliation(s)
- Dai Owaki
- Research Institute of Electrical Communication, Tohoku UniversitySendai, Japan
| | - Masashi Goda
- Research Institute of Electrical Communication, Tohoku UniversitySendai, Japan
| | - Sakiko Miyazawa
- Research Institute of Electrical Communication, Tohoku UniversitySendai, Japan
| | - Akio Ishiguro
- Research Institute of Electrical Communication, Tohoku UniversitySendai, Japan.,Japan Science and Technology Agency, CRESTSaitama, Japan
| |
Collapse
|
20
|
Szczecinski NS, Quinn RD. Template for the neural control of directed stepping generalized to all legs of MantisBot. BIOINSPIRATION & BIOMIMETICS 2017; 12:045001. [PMID: 28422047 DOI: 10.1088/1748-3190/aa6dd9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We previously developed a neural controller for one leg of our six-legged robot, MantisBot, that could direct locomotion toward a goal by modulating leg-local reflexes with simple descending commands from a head sensor. In this work, we successfully apply an automated method to tune the control network for all three pairs of legs of our hexapod robot MantisBot in only 90 s with a desktop computer. Each foot's motion changes appropriately as the body's intended direction of travel changes. In addition, several results from studies of walking insects are captured by this model. This paper both demonstrates the broad applicability of this control method for robots, and suggests neural mechanisms underlying observations from walking insects.
Collapse
Affiliation(s)
- Nicholas S Szczecinski
- Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | | |
Collapse
|
21
|
Hunt A, Szczecinski N, Quinn R. Development and Training of a Neural Controller for Hind Leg Walking in a Dog Robot. Front Neurorobot 2017; 11:18. [PMID: 28420977 PMCID: PMC5378996 DOI: 10.3389/fnbot.2017.00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/15/2017] [Indexed: 11/17/2022] Open
Abstract
Animals dynamically adapt to varying terrain and small perturbations with remarkable ease. These adaptations arise from complex interactions between the environment and biomechanical and neural components of the animal's body and nervous system. Research into mammalian locomotion has resulted in several neural and neuro-mechanical models, some of which have been tested in simulation, but few “synthetic nervous systems” have been implemented in physical hardware models of animal systems. One reason is that the implementation into a physical system is not straightforward. For example, it is difficult to make robotic actuators and sensors that model those in the animal. Therefore, even if the sensorimotor circuits were known in great detail, those parameters would not be applicable and new parameter values must be found for the network in the robotic model of the animal. This manuscript demonstrates an automatic method for setting parameter values in a synthetic nervous system composed of non-spiking leaky integrator neuron models. This method works by first using a model of the system to determine required motor neuron activations to produce stable walking. Parameters in the neural system are then tuned systematically such that it produces similar activations to the desired pattern determined using expected sensory feedback. We demonstrate that the developed method successfully produces adaptive locomotion in the rear legs of a dog-like robot actuated by artificial muscles. Furthermore, the results support the validity of current models of mammalian locomotion. This research will serve as a basis for testing more complex locomotion controllers and for testing specific sensory pathways and biomechanical designs. Additionally, the developed method can be used to automatically adapt the neural controller for different mechanical designs such that it could be used to control different robotic systems.
Collapse
Affiliation(s)
- Alexander Hunt
- Department of Mechanical and Materials Engineering, Portland State UniversityPortland, OR, USA
| | - Nicholas Szczecinski
- Department of Mechanical and Aerospace Engineering, Case Western Reserve UniversityCleveland, OH, USA
| | - Roger Quinn
- Department of Mechanical and Aerospace Engineering, Case Western Reserve UniversityCleveland, OH, USA
| |
Collapse
|
22
|
Urbain G, Degrave J, Carette B, Dambre J, Wyffels F. Morphological Properties of Mass-Spring Networks for Optimal Locomotion Learning. Front Neurorobot 2017; 11:16. [PMID: 28396634 PMCID: PMC5366341 DOI: 10.3389/fnbot.2017.00016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022] Open
Abstract
Robots have proven very useful in automating industrial processes. Their rigid components and powerful actuators, however, render them unsafe or unfit to work in normal human environments such as schools or hospitals. Robots made of compliant, softer materials may offer a valid alternative. Yet, the dynamics of these compliant robots are much more complicated compared to normal rigid robots of which all components can be accurately controlled. It is often claimed that, by using the concept of morphological computation, the dynamical complexity can become a strength. On the one hand, the use of flexible materials can lead to higher power efficiency and more fluent and robust motions. On the other hand, using embodiment in a closed-loop controller, part of the control task itself can be outsourced to the body dynamics. This can significantly simplify the additional resources required for locomotion control. To this goal, a first step consists in an exploration of the trade-offs between morphology, efficiency of locomotion, and the ability of a mechanical body to serve as a computational resource. In this work, we use a detailed dynamical model of a Mass–Spring–Damper (MSD) network to study these trade-offs. We first investigate the influence of the network size and compliance on locomotion quality and energy efficiency by optimizing an external open-loop controller using evolutionary algorithms. We find that larger networks can lead to more stable gaits and that the system’s optimal compliance to maximize the traveled distance is directly linked to the desired frequency of locomotion. In the last set of experiments, the suitability of MSD bodies for being used in a closed loop is also investigated. Since maximally efficient actuator signals are clearly related to the natural body dynamics, in a sense, the body is tailored for the task of contributing to its own control. Using the same simulation platform, we therefore study how the network states can be successfully used to create a feedback signal and how its accuracy is linked to the body size.
Collapse
Affiliation(s)
- Gabriel Urbain
- IDLab, Electronics and Information Systems Department, Ghent University - imec , Ghent , Belgium
| | - Jonas Degrave
- IDLab, Electronics and Information Systems Department, Ghent University - imec , Ghent , Belgium
| | - Benonie Carette
- IDLab, Electronics and Information Systems Department, Ghent University - imec , Ghent , Belgium
| | - Joni Dambre
- IDLab, Electronics and Information Systems Department, Ghent University - imec , Ghent , Belgium
| | - Francis Wyffels
- IDLab, Electronics and Information Systems Department, Ghent University - imec , Ghent , Belgium
| |
Collapse
|
23
|
Arena E, Arena P, Strauss R, Patané L. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System. Front Neurorobot 2017; 11:12. [PMID: 28337138 PMCID: PMC5340754 DOI: 10.3389/fnbot.2017.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioral motor tasks. Here, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, is exposed to the need of learning new motor skills: moving through the environment, the structure is able to modulate motor commands and implements an obstacle climbing procedure. Experimental results on a simulated hexapod robot are reported; they are obtained in a dynamic simulation environment and the robot mimicks the structures of Drosophila melanogaster.
Collapse
Affiliation(s)
- Eleonora Arena
- Dipartimento di Ingegneria Elettrica, Elettronica, e Informatica, University of Catania Catania, Italy
| | - Paolo Arena
- Dipartimento di Ingegneria Elettrica, Elettronica, e Informatica, University of CataniaCatania, Italy; National Institute of Biostructures and BiosystemsRome, Italy
| | - Roland Strauss
- Institut für Zoologie III (Neurobiologie), University of Mainz Mainz, Germany
| | - Luca Patané
- Dipartimento di Ingegneria Elettrica, Elettronica, e Informatica, University of Catania Catania, Italy
| |
Collapse
|
24
|
Soltoggio A, van der Velde F. Editorial: Neural plasticity for rich and uncertain robotic information streams. Front Neurorobot 2015; 9:12. [PMID: 26578947 PMCID: PMC4621436 DOI: 10.3389/fnbot.2015.00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/08/2015] [Indexed: 01/22/2023] Open
|