1
|
Wheeler DW, Kopsick JD, Sutton N, Tecuatl C, Komendantov AO, Nadella K, Ascoli GA. Hippocampome.org 2.0 is a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits. eLife 2024; 12:RP90597. [PMID: 38345923 PMCID: PMC10942544 DOI: 10.7554/elife.90597] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Previously, Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression (Wheeler et al., 2015). Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.
Collapse
Affiliation(s)
- Diek W Wheeler
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Jeffrey D Kopsick
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason UniversityFairfaxUnited States
| | - Nate Sutton
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Carolina Tecuatl
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Alexander O Komendantov
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Kasturi Nadella
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason UniversityFairfaxUnited States
| |
Collapse
|
2
|
Wheeler DW, Kopsick JD, Sutton N, Tecuatl C, Komendantov AO, Nadella K, Ascoli GA. Hippocampome.org v2.0: a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540597. [PMID: 37425693 PMCID: PMC10327012 DOI: 10.1101/2023.05.12.540597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression. Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.
Collapse
Affiliation(s)
- Diek W. Wheeler
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Jeffrey D. Kopsick
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
| | - Nate Sutton
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Carolina Tecuatl
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Alexander O. Komendantov
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Kasturi Nadella
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| |
Collapse
|
3
|
Faghihi F, Alashwal H, Moustafa AA. A Synaptic Pruning-Based Spiking Neural Network for Hand-Written Digits Classification. Front Artif Intell 2022; 5:680165. [PMID: 35280233 PMCID: PMC8908262 DOI: 10.3389/frai.2022.680165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
A spiking neural network model inspired by synaptic pruning is developed and trained to extract features of hand-written digits. The network is composed of three spiking neural layers and one output neuron whose firing rate is used for classification. The model detects and collects the geometric features of the images from the Modified National Institute of Standards and Technology database (MNIST). In this work, a novel learning rule is developed to train the network to detect features of different digit classes. For this purpose, randomly initialized synaptic weights between the first and second layers are updated using average firing rates of pre- and postsynaptic neurons. Then, using a neuroscience-inspired mechanism named, “synaptic pruning” and its predefined threshold values, some of the synapses are deleted. Hence, these sparse matrices named, “information channels” are constructed so that they show highly specific patterns for each digit class as connection matrices between the first and second layers. The “information channels” are used in the test phase to assign a digit class to each test image. In addition, the role of feed-back inhibition as well as the connectivity rates of the second and third neural layers are studied. Similar to the abilities of the humans to learn from small training trials, the developed spiking neural network needs a very small dataset for training, compared to the conventional deep learning methods that have shown a very good performance on the MNIST dataset. This work introduces a new class of brain-inspired spiking neural networks to extract the features of complex data images.
Collapse
Affiliation(s)
| | - Hany Alashwal
- College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Hany Alashwal
| | - Ahmed A. Moustafa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, QLD, Australia
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|