1
|
Dura-Bernal S, Herrera B, Lupascu C, Marsh BM, Gandolfi D, Marasco A, Neymotin S, Romani A, Solinas S, Bazhenov M, Hay E, Migliore M, Reinmann M, Arkhipov A. Large-Scale Mechanistic Models of Brain Circuits with Biophysically and Morphologically Detailed Neurons. J Neurosci 2024; 44:e1236242024. [PMID: 39358017 PMCID: PMC11450527 DOI: 10.1523/jneurosci.1236-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024] Open
Abstract
Understanding the brain requires studying its multiscale interactions from molecules to networks. The increasing availability of large-scale datasets detailing brain circuit composition, connectivity, and activity is transforming neuroscience. However, integrating and interpreting this data remains challenging. Concurrently, advances in supercomputing and sophisticated modeling tools now enable the development of highly detailed, large-scale biophysical circuit models. These mechanistic multiscale models offer a method to systematically integrate experimental data, facilitating investigations into brain structure, function, and disease. This review, based on a Society for Neuroscience 2024 MiniSymposium, aims to disseminate recent advances in large-scale mechanistic modeling to the broader community. It highlights (1) examples of current models for various brain regions developed through experimental data integration; (2) their predictive capabilities regarding cellular and circuit mechanisms underlying experimental recordings (e.g., membrane voltage, spikes, local-field potential, electroencephalography/magnetoencephalography) and brain function; and (3) their use in simulating biomarkers for brain diseases like epilepsy, depression, schizophrenia, and Parkinson's, aiding in understanding their biophysical underpinnings and developing novel treatments. The review showcases state-of-the-art models covering hippocampus, somatosensory, visual, motor, auditory cortical, and thalamic circuits across species. These models predict neural activity at multiple scales and provide insights into the biophysical mechanisms underlying sensation, motor behavior, brain signals, neural coding, disease, pharmacological interventions, and neural stimulation. Collaboration with experimental neuroscientists and clinicians is essential for the development and validation of these models, particularly as datasets grow. Hence, this review aims to foster interest in detailed brain circuit models, leading to cross-disciplinary collaborations that accelerate brain research.
Collapse
Affiliation(s)
- Salvador Dura-Bernal
- State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, New York 11203
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | | | - Carmen Lupascu
- Institute of Biophysics, National Research Council/Human Brain Project, Palermo 90146, Italy
| | - Brianna M Marsh
- University of California San Diego, La Jolla, California 92093
| | - Daniela Gandolfi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Samuel Neymotin
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- School of Medicine, New York University, New York 10012
| | - Armando Romani
- Swiss Federal Institute of Technology Lausanne (EPFL)/Blue Brain Project, Lausanne 1015, Switzerland
| | | | - Maxim Bazhenov
- University of California San Diego, La Jolla, California 92093
| | - Etay Hay
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Michele Migliore
- Institute of Biophysics, National Research Council/Human Brain Project, Palermo 90146, Italy
| | - Michael Reinmann
- Swiss Federal Institute of Technology Lausanne (EPFL)/Blue Brain Project, Lausanne 1015, Switzerland
| | | |
Collapse
|
2
|
Zehra A, Naik PA, Hasan A, Farman M, Nisar KS, Chaudhry F, Huang Z. Physiological and chaos effect on dynamics of neurological disorder with memory effect of fractional operator: A mathematical study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108190. [PMID: 38688140 DOI: 10.1016/j.cmpb.2024.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND OBJECTIVE To study the dynamical system, it is necessary to formulate the mathematical model to understand the dynamics of various diseases that are spread worldwide. The main objective of our work is to examine neurological disorders by early detection and treatment by taking asymptomatic. The central nervous system (CNS) is impacted by the prevalent neurological condition known as multiple sclerosis (MS), which can result in lesions that spread across time and place. It is widely acknowledged that multiple sclerosis (MS) is an unpredictable disease that can cause lifelong damage to the brain, spinal cord, and optic nerves. The use of integral operators and fractional order (FO) derivatives in mathematical models has become popular in the field of epidemiology. METHOD The model consists of segments of healthy or barian brain cells, infected brain cells, and damaged brain cells as a result of immunological or viral effectors with novel fractal fractional operator in sight Mittag Leffler function. The stability analysis, positivity, boundedness, existence, and uniqueness are treated for a proposed model with novel fractional operators. RESULTS Model is verified the local and global with the Lyapunov function. Chaos Control will use the regulate for linear responses approach to bring the system to stabilize according to its points of equilibrium so that solutions are bounded in the feasible domain. To ensure the existence and uniqueness of the solutions to the suggested model, it makes use of Banach's fixed point and the Leray Schauder nonlinear alternative theorem. For numerical simulation and results the steps Lagrange interpolation method at different fractional order values and the outcomes are compared with those obtained using the well-known FFM method. CONCLUSION Overall, by offering a mathematical model that can be used to replicate and examine the behavior of disease models, this research advances our understanding of the course and recurrence of disease. Such type of investigation will be useful to investigate the spread of disease as well as helpful in developing control strategies from our justified outcomes.
Collapse
Affiliation(s)
- Anum Zehra
- Department of Mathematics, The Women University Multan, Multan, Pakistan
| | - Parvaiz Ahmad Naik
- Department of Mathematics and Computer Science, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Ali Hasan
- Department of Mathematics and Statistics, The University of Lahore, 54100 Lahore, Pakistan
| | - Muhammad Farman
- Faculty of Arts and Sciences, Department of Mathematics, Near East University, Northern Cyprus, Turkey; Department of Computer Science and Mathematics, Lebanese American University, 1102-2801, Beirut, Lebanon
| | - Kottakkaran Sooppy Nisar
- Department of Mathematics, College of Science and Humanities , Al Kharj, 11942, Prince Sattam bin Abdulaziz University, Saudi Arabia
| | - Faryal Chaudhry
- Department of Mathematics and Statistics, The University of Lahore, 54100 Lahore, Pakistan
| | - Zhengxin Huang
- Department of Mathematics and Computer Science, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| |
Collapse
|
3
|
Pimentel JM, Moioli RC, De Araujo MFP, Vargas PA. An Integrated Neurorobotics Model of the Cerebellar-Basal Ganglia Circuitry. Int J Neural Syst 2023; 33:2350059. [PMID: 37791495 DOI: 10.1142/s0129065723500594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This work presents a neurorobotics model of the brain that integrates the cerebellum and the basal ganglia regions to coordinate movements in a humanoid robot. This cerebellar-basal ganglia circuitry is well known for its relevance to the motor control used by most mammals. Other computational models have been designed for similar applications in the robotics field. However, most of them completely ignore the interplay between neurons from the basal ganglia and cerebellum. Recently, neuroscientists indicated that neurons from both regions communicate not only at the level of the cerebral cortex but also at the subcortical level. In this work, we built an integrated neurorobotics model to assess the capacity of the network to predict and adjust the motion of the hands of a robot in real time. Our model was capable of performing different movements in a humanoid robot by respecting the sensorimotor loop of the robot and the biophysical features of the neuronal circuitry. The experiments were executed in simulation and the real world. We believe that our proposed neurorobotics model can be an important tool for new studies on the brain and a reference toward new robot motor controllers.
Collapse
Affiliation(s)
- Jhielson M Pimentel
- Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Renan C Moioli
- Bioinformatics Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Patricia A Vargas
- Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
4
|
Ranieri CM, Moioli RC, Vargas PA, Romero RAF. A neurorobotics approach to behaviour selection based on human activity recognition. Cogn Neurodyn 2023; 17:1009-1028. [PMID: 37522044 PMCID: PMC10374508 DOI: 10.1007/s11571-022-09886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
Behaviour selection has been an active research topic for robotics, in particular in the field of human-robot interaction. For a robot to interact autonomously and effectively with humans, the coupling between techniques for human activity recognition and robot behaviour selection is of paramount importance. However, most approaches to date consist of deterministic associations between the recognised activities and the robot behaviours, neglecting the uncertainty inherent to sequential predictions in real-time applications. In this paper, we address this gap by presenting an initial neurorobotics model that embeds, in a simulated robot, computational models of parts of the mammalian brain that resembles neurophysiological aspects of the basal ganglia-thalamus-cortex (BG-T-C) circuit, coupled with human activity recognition techniques. A robotics simulation environment was developed for assessing the model, where a mobile robot accomplished tasks by using behaviour selection in accordance with the activity being performed by the inhabitant of an intelligent home. Initial results revealed that the initial neurorobotics model is advantageous, especially considering the coupling between the most accurate activity recognition approaches and the computational models of more complex animals.
Collapse
Affiliation(s)
- Caetano M. Ranieri
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Avenida Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590 Brazil
| | - Renan C. Moioli
- Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Natal, RN 59078-970 Brazil
| | - Patricia A. Vargas
- Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, UK
| | - Roseli A. F. Romero
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Avenida Trabalhador Sao Carlense, 400, Sao Carlos, SP 13566-590 Brazil
| |
Collapse
|
5
|
Awile O, Kumbhar P, Cornu N, Dura-Bernal S, King JG, Lupton O, Magkanaris I, McDougal RA, Newton AJH, Pereira F, Săvulescu A, Carnevale NT, Lytton WW, Hines ML, Schürmann F. Modernizing the NEURON Simulator for Sustainability, Portability, and Performance. Front Neuroinform 2022; 16:884046. [PMID: 35832575 PMCID: PMC9272742 DOI: 10.3389/fninf.2022.884046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2022] [Indexed: 12/25/2022] Open
Abstract
The need for reproducible, credible, multiscale biological modeling has led to the development of standardized simulation platforms, such as the widely-used NEURON environment for computational neuroscience. Developing and maintaining NEURON over several decades has required attention to the competing needs of backwards compatibility, evolving computer architectures, the addition of new scales and physical processes, accessibility to new users, and efficiency and flexibility for specialists. In order to meet these challenges, we have now substantially modernized NEURON, providing continuous integration, an improved build system and release workflow, and better documentation. With the help of a new source-to-source compiler of the NMODL domain-specific language we have enhanced NEURON's ability to run efficiently, via the CoreNEURON simulation engine, on a variety of hardware platforms, including GPUs. Through the implementation of an optimized in-memory transfer mechanism this performance optimized backend is made easily accessible to users, providing training and model-development paths from laptop to workstation to supercomputer and cloud platform. Similarly, we have been able to accelerate NEURON's reaction-diffusion simulation performance through the use of just-in-time compilation. We show that these efforts have led to a growing developer base, a simpler and more robust software distribution, a wider range of supported computer architectures, a better integration of NEURON with other scientific workflows, and substantially improved performance for the simulation of biophysical and biochemical models.
Collapse
Affiliation(s)
- Omar Awile
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Pramod Kumbhar
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Nicolas Cornu
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Salvador Dura-Bernal
- Department Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY, United States
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - James Gonzalo King
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Olli Lupton
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Ioannis Magkanaris
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Robert A. McDougal
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
- Yale Center for Medical Informatics, Yale University, New Haven, CT, United States
| | - Adam J. H. Newton
- Department Physiology and Pharmacology, SUNY Downstate, Brooklyn, NY, United States
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Fernando Pereira
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Alexandru Săvulescu
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | - William W. Lytton
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Michael L. Hines
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
6
|
Yu Y, Han F, Wang Q. Exploring phase–amplitude coupling from primary motor cortex-basal ganglia-thalamus network model. Neural Netw 2022; 153:130-141. [DOI: 10.1016/j.neunet.2022.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
|