1
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Jdila MB, Triki CC, Ghorbel R, Bouchalla W, Ncir SB, Kamoun F, Fakhfakh F. Unusual double mutation in MECP2 and CDKL5 genes in Rett-like syndrome: Correlation with phenotype and genes expression. Clin Chim Acta 2020; 508:287-294. [PMID: 32445745 DOI: 10.1016/j.cca.2020.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Rett syndrome (RTT) is a neuro-developmental disorder affecting almost exclusively females and it divided into classical and atypical forms of the disease. RTT-like syndrome was also described and presents an overlapping phenotype of RTT. RTT-like syndrome has been associated with several genes including MECP2 and CDKL5 having common biological pathways and regulatory interactions especially during neural maturation and synaptogenesis. METHODS We report patient with Rett-like syndrome for whom clinical features and their progression guided toward the screening of two candidate genes MECP2 and CDKL5 by sequencing. Severity score was evaluated by "Rett Assessment Rating Scale" (R.A.R.S.). Predictions of pahogenicity and functional effects used several bioinformatic tools and qRT-PCR was conducted to evaluate gene expression. RESULTS Mutational screening revealed two mutations c.1065 C > A (p.S355R) in MECP2 gene and c.616 G > A (p.D206N) mutation in CDKL5 gene in the patient with a high R.A.R.S. Bioinformatic investigations predicted a moderate effect of p.S355R in MECP2 gene but a more pathogenic one of p.D206N mutation in CDKL5. Effect of c.616 G > A mutation on structure and stability of CDKL5 mRNA was confirmed by qRT-PCR. Additionally, analysis of gene expression revealed a drastic effect of CDKL5 mutant on its MeCP2 and Dnmt1 substrates and also on its MYCN regulator. CONCLUSIONS The co-existence of the two mutations in CDKL5 and MECP2 genes could explain the severe phenotype in our patient with RTT-Like and is consistent with the data related to the interactions of CDKL5 with MeCP2 and Dnmt1 proteins.
Collapse
Affiliation(s)
- Marwa Ben Jdila
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Tunisia; Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, Sfax University, Tunisia.
| | - Chahnez Charfi Triki
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Tunisia; Child Neurology Department, Hedi Chaker Universitary Hospital of Sfax, Tunisia
| | - Rania Ghorbel
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, Sfax University, Tunisia
| | - Wafa Bouchalla
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Tunisia; Child Neurology Department, Hedi Chaker Universitary Hospital of Sfax, Tunisia
| | - Sihem Ben Ncir
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Tunisia; Child Neurology Department, Hedi Chaker Universitary Hospital of Sfax, Tunisia
| | - Fatma Kamoun
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Tunisia; Child Neurology Department, Hedi Chaker Universitary Hospital of Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, Sfax University, Tunisia.
| |
Collapse
|
4
|
Yang H, Douglas G, Monaghan KG, Retterer K, Cho MT, Escobar LF, Tucker ME, Stoler J, Rodan LH, Stein D, Marks W, Enns GM, Platt J, Cox R, Wheeler PG, Crain C, Calhoun A, Tryon R, Richard G, Vitazka P, Chung WK. De novo truncating variants in the AHDC1 gene encoding the AT-hook DNA-binding motif-containing protein 1 are associated with intellectual disability and developmental delay. Cold Spring Harb Mol Case Stud 2016; 1:a000562. [PMID: 27148574 PMCID: PMC4850891 DOI: 10.1101/mcs.a000562] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Whole-exome sequencing (WES) represents a significant breakthrough in clinical genetics, and identifies a genetic etiology in up to 30% of cases of intellectual disability (ID). Using WES, we identified seven unrelated patients with a similar clinical phenotype of severe intellectual disability or neurodevelopmental delay who were all heterozygous for de novo truncating variants in the AT-hook DNA-binding motif–containing protein 1 (AHDC1). The patients were all minimally verbal or nonverbal and had variable neurological problems including spastic quadriplegia, ataxia, nystagmus, seizures, autism, and self-injurious behaviors. Additional common clinical features include dysmorphic facial features and feeding difficulties associated with failure to thrive and short stature. The AHDC1 gene has only one coding exon, and the protein contains conserved regions including AT-hook motifs and a PDZ binding domain. We postulate that all seven variants detected in these patients result in a truncated protein missing critical functional domains, disrupting interactions with other proteins important for brain development. Our study demonstrates that truncating variants in AHDC1 are associated with ID and are primarily associated with a neurodevelopmental phenotype.
Collapse
Affiliation(s)
- Hui Yang
- GeneDx, Gaithersburg, Maryland 20877, USA
| | | | | | | | | | - Luis F Escobar
- Peyton Manning Children's Hospital at St. Vincent, Indianapolis, Indiana 46260, USA
| | - Megan E Tucker
- Peyton Manning Children's Hospital at St. Vincent, Indianapolis, Indiana 46260, USA
| | - Joan Stoler
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Diane Stein
- Stein Life Child Neurology, Irvine, California 92604, USA
| | - Warren Marks
- Cook Children's Medical Center, Fort Worth, Texas 76104, USA
| | - Gregory M Enns
- Division of Medical Genetics, Lucile Packard Children's Hospital Stanford, Palo Alto, California 94304, USA
| | - Julia Platt
- Division of Medical Genetics, Lucile Packard Children's Hospital Stanford, Palo Alto, California 94304, USA
| | - Rachel Cox
- Division of Medical Genetics, Lucile Packard Children's Hospital Stanford, Palo Alto, California 94304, USA
| | | | - Carrie Crain
- Nemours Children's Hospital, Orlando, Florida 32827, USA
| | - Amy Calhoun
- University of Minnesota Medical Center, Minneapolis, Minnesota 55454, USA
| | - Rebecca Tryon
- University of Minnesota Medical Center, Minneapolis, Minnesota 55454, USA
| | | | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|