1
|
Kaul M, Mukherjee D, Weiner HL, Cox LM. Gut microbiota immune cross-talk in amyotrophic lateral sclerosis. Neurotherapeutics 2024; 21:e00469. [PMID: 39510899 PMCID: PMC11585889 DOI: 10.1016/j.neurot.2024.e00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons. While there has been significant progress in defining the genetic contributions to ALS, greater than 90 % of cases are sporadic, which suggests an environmental component. The gut microbiota is altered in ALS and is an ecological factor that contributes to disease by modulating immunologic, metabolic, and neuronal signaling. Depleting the microbiome worsens disease in the SOD1 ALS animal model, while it ameliorates disease in the C9orf72 model of ALS, indicating critical subtype-specific interactions. Furthermore, administering beneficial microbiota or microbial metabolites can slow disease progression in animal models. This review discusses the current state of microbiome research in ALS, including interactions with different ALS subtypes, evidence in animal models and human studies, key immunologic and metabolomic mediators, and a path toward microbiome-based therapies for ALS.
Collapse
Affiliation(s)
- Megha Kaul
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Debanjan Mukherjee
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Scarian E, Viola C, Dragoni F, Di Gerlando R, Rizzo B, Diamanti L, Gagliardi S, Bordoni M, Pansarasa O. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2698. [PMID: 38473944 DOI: 10.3390/ijms25052698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.
Collapse
Affiliation(s)
- Eveljn Scarian
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Camilla Viola
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
3
|
Hong D, Zhang C, Wu W, Lu X, Zhang L. Modulation of the gut-brain axis via the gut microbiota: a new era in treatment of amyotrophic lateral sclerosis. Front Neurol 2023; 14:1133546. [PMID: 37153665 PMCID: PMC10157060 DOI: 10.3389/fneur.2023.1133546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
There are trillions of different microorganisms in the human digestive system. These gut microbes are involved in the digestion of food and its conversion into the nutrients required by the body. In addition, the gut microbiota communicates with other parts of the body to maintain overall health. The connection between the gut microbiota and the brain is known as the gut-brain axis (GBA), and involves connections via the central nervous system (CNS), the enteric nervous system (ENS), and endocrine and immune pathways. The gut microbiota regulates the central nervous system bottom-up through the GBA, which has prompted researchers to pay considerable attention to the potential pathways by which the gut microbiota might play a role in the prevention and treatment of amyotrophic lateral sclerosis (ALS). Studies with animal models of ALS have shown that dysregulation of the gut ecology leads to dysregulation of brain-gut signaling. This, in turn, induces changes in the intestinal barrier, endotoxemia, and systemic inflammation, which contribute to the development of ALS. Through the use of antibiotics, probiotic supplementation, phage therapy, and other methods of inducing changes in the intestinal microbiota that can inhibit inflammation and delay neuronal degeneration, the clinical symptoms of ALS can be alleviated, and the progression of the disease can be delayed. Therefore, the gut microbiota may be a key target for effective management and treatment of ALS.
Collapse
Affiliation(s)
- Du Hong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wenshuo Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohui Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Liping Zhang
| |
Collapse
|
4
|
Sun J, Huang T, Debelius JW, Fang F. Gut microbiome and amyotrophic lateral sclerosis: A systematic review of current evidence. J Intern Med 2021; 290:758-788. [PMID: 34080741 DOI: 10.1111/joim.13336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), characterized by a loss of motor neurons in the brain and spinal cord, is a relatively rare but currently incurable neurodegenerative disease. The global incidence of ALS is estimated as 1.75 per 100,000 person-years and the global prevalence is estimated as 4.1-8.4 per 100,000 individuals. Contributions from outside the central nervous system to the etiology of ALS have been increasingly recognized. Gut microbiome is one of the most quickly growing fields of research for ALS. In this article, we performed a comprehensive review of the results from existing animal and human studies, to provide an up-to-date summary of the current research on gut microbiome and ALS. In brief, we found relatively consistent results from animal studies, suggesting an altered gut microbiome composition in experimental ALS. Publication bias might however be a concern. Findings from human studies are largely inconclusive. A few animal and human studies demonstrated the usefulness of intervention with microbial-derived metabolites in modulating the disease progression of ALS. We discussed potential methodological concerns in these studies, including study design, statistical power, handling process of biospecimens and sequencing data, as well as statistical methods and interpretation of results. Finally, we made a few proposals for continued microbiome research in ALS, with the aim to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Jiangwei Sun
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Huang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Justine W Debelius
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Koçancı FG. Role of Fatty Acid Chemical Structures on Underlying Mechanisms of Neurodegenerative Diseases and Gut Microbiota. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Gonca Koçancı
- Vocational High School of Health Services Department of Medical Laboratory Techniques Alanya Alaaddin Keykubat University Alanya/Antalya 07425 Turkey
| |
Collapse
|
6
|
Crabé R, Aimond F, Gosset P, Scamps F, Raoul C. How Degeneration of Cells Surrounding Motoneurons Contributes to Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122550. [PMID: 33260927 PMCID: PMC7760029 DOI: 10.3390/cells9122550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by the progressive degeneration of upper and lower motoneurons. Despite motoneuron death being recognized as the cardinal event of the disease, the loss of glial cells and interneurons in the brain and spinal cord accompanies and even precedes motoneuron elimination. In this review, we provide striking evidence that the degeneration of astrocytes and oligodendrocytes, in addition to inhibitory and modulatory interneurons, disrupt the functionally coherent environment of motoneurons. We discuss the extent to which the degeneration of glial cells and interneurons also contributes to the decline of the motor system. This pathogenic cellular network therefore represents a novel strategic field of therapeutic investigation.
Collapse
Affiliation(s)
- Roxane Crabé
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Franck Aimond
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Philippe Gosset
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Frédérique Scamps
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| |
Collapse
|
7
|
A Novel HGF/SF Receptor (MET) Agonist Transiently Delays the Disease Progression in an Amyotrophic Lateral Sclerosis Mouse Model by Promoting Neuronal Survival and Dampening the Immune Dysregulation. Int J Mol Sci 2020; 21:ijms21228542. [PMID: 33198383 PMCID: PMC7696450 DOI: 10.3390/ijms21228542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment. The Hepatocyte Growth Factor/Scatter Factor (HGF/SF), through its receptor MET, is one of the most potent survival-promoting factors for motor neurons (MN) and is known as a modulator of immune cell function. We recently developed a novel recombinant MET agonist optimized for therapy, designated K1K1. K1K1 was ten times more potent than HGF/SF in preventing MN loss in an in vitro model of ALS. Treatments with K1K1 delayed the onset of muscular impairment and reduced MN loss and skeletal muscle denervation of superoxide dismutase 1 G93A (SOD1G93A) mice. This effect was associated with increased levels of phospho-extracellular signal-related kinase (pERK) in the spinal cord and sciatic nerves and the activation of non-myelinating Schwann cells. Moreover, reduced activated microglia and astroglia, lower T cells infiltration and increased interleukin 4 (IL4) levels were found in the lumbar spinal cord of K1K1 treated mice. K1K1 treatment also prevented the infiltration of T cells in skeletal muscle of SOD1G93A mice. All these protective effects were lost on long-term treatment suggesting a mechanism of drug tolerance. These data provide a rational justification for further exploring the long-term loss of K1K1 efficacy in the perspective of providing a potential treatment for ALS.
Collapse
|
8
|
Clark CM, Clark RM, Hoyle JA, Dickson TC. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J Neurochem 2020; 156:273-289. [PMID: 32654149 DOI: 10.1111/jnc.15125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous peptide of the central and enteric nervous systems which has gained significant interest as a potential neuroprotective agent for treatment of neurodegenerative disease. Amyotrophic lateral sclerosis (ALS) is an aggressive and fatal neurodegenerative disease characterized by motor deficits and motor neuron loss. In ALS, recent evidence from ALS patients and animal models has indicated that NPY may have a role in the disease pathogenesis. Increased NPY levels were found to correlate with disease progression in ALS patients. Similarly, NPY expression is increased in the motor cortex of ALS mice by end stages of the disease. Although the functional consequence of increased NPY levels in ALS is currently unknown, NPY has been shown to exert a diverse range of neuroprotective roles in other neurodegenerative diseases; through modulation of potassium channel activity, increased production of neurotrophins, inhibition of endoplasmic reticulum stress and autophagy, reduction of excitotoxicity, oxidative stress, neuroinflammation and hyperexcitability. Several of these mechanisms and signalling pathways are heavily implicated in the pathogenesis of ALS. Therefore, in this review, we discuss possible effects of NPY and NPY-receptor signalling in the ALS disease context, as determining NPY's contribution to, or impact on, ALS disease mechanisms will be essential for future studies investigating the NPY system as a therapeutic strategy in this devastating disease.
Collapse
Affiliation(s)
- Courtney M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Joshua A Hoyle
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
9
|
Bk B, Skuntz S, Prochazkova M, Kesavapany S, Amin ND, Shukla V, Grant P, Kulkarni AB, Pant HC. Overexpression of the Cdk5 inhibitory peptide in motor neurons rescue of amyotrophic lateral sclerosis phenotype in a mouse model. Hum Mol Genet 2020; 28:3175-3187. [PMID: 31189016 DOI: 10.1093/hmg/ddz118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor nerve cells in the brain and the spinal cord. Etiological mechanisms underlying the disease remain poorly understood; recent studies suggest that deregulation of p25/Cyclin-dependent kinase 5 (Cdk5) activity leads to the hyperphosphorylation of Tau and neurofilament (NF) proteins in ALS transgenic mouse model (SOD1G37R). A Cdk5 involvement in motor neuron degeneration is supported by analysis of three SOD1G37R mouse lines exhibiting perikaryal inclusions of NF proteins and hyperphosphorylation of Tau. Here, we tested the hypothesis that inhibition of Cdk5/p25 hyperactivation in vivo is a neuroprotective factor during ALS pathogenesis by crossing the new transgenic mouse line that overexpresses Cdk5 inhibitory peptide (CIP) in motor neurons with the SOD1G37R, ALS mouse model (TriTg mouse line). The overexpression of CIP in the motor neurons significantly improves motor deficits, extends survival and delays pathology in brain and spinal cord of TriTg mice. In addition, overexpression of CIP in motor neurons significantly delays neuroinflammatory responses in TriTg mouse. Taken together, these data suggest that CIP may serve as a novel therapeutic agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Binukumar Bk
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Susan Skuntz
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sashi Kesavapany
- National Institute of Health Technologies, Nanyang Technological University, Singapore
| | - Niranjana D Amin
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Varsha Shukla
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Nabais MF, Lin T, Benyamin B, Williams KL, Garton FC, Vinkhuyzen AAE, Zhang F, Vallerga CL, Restuadi R, Freydenzon A, Zwamborn RAJ, Hop PJ, Robinson MR, Gratten J, Visscher PM, Hannon E, Mill J, Brown MA, Laing NG, Mather KA, Sachdev PS, Ngo ST, Steyn FJ, Wallace L, Henders AK, Needham M, Veldink JH, Mathers S, Nicholson G, Rowe DB, Henderson RD, McCombe PA, Pamphlett R, Yang J, Blair IP, McRae AF, Wray NR. Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis. NPJ Genom Med 2020; 5:10. [PMID: 32140259 PMCID: PMC7046630 DOI: 10.1038/s41525-020-0118-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
We conducted DNA methylation association analyses using Illumina 450K data from whole blood for an Australian amyotrophic lateral sclerosis (ALS) case–control cohort (782 cases and 613 controls). Analyses used mixed linear models as implemented in the OSCA software. We found a significantly higher proportion of neutrophils in cases compared to controls which replicated in an independent cohort from the Netherlands (1159 cases and 637 controls). The OSCA MOMENT linear mixed model has been shown in simulations to best account for confounders. When combined in a methylation profile score, the 25 most-associated probes identified by MOMENT significantly classified case–control status in the Netherlands sample (area under the curve, AUC = 0.65, CI95% = [0.62–0.68], p = 8.3 × 10−22). The maximum AUC achieved was 0.69 (CI95% = [0.66–0.71], p = 4.3 × 10−34) when cell-type proportion was included in the predictor.
Collapse
Affiliation(s)
- Marta F Nabais
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,2University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, Devon EX2 5DW UK
| | - Tian Lin
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Beben Benyamin
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,3Australian Centre for Precision Health, University of South Australia Cancer Research Institute, School of Health Sciences, University of South Australia, Adelaide, SA 5001 Australia
| | - Kelly L Williams
- 4Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109 Australia
| | - Fleur C Garton
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Anna A E Vinkhuyzen
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Futao Zhang
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Costanza L Vallerga
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Restuadi Restuadi
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Anna Freydenzon
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Ramona A J Zwamborn
- 5Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG Netherlands
| | - Paul J Hop
- 5Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG Netherlands
| | - Matthew R Robinson
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Jacob Gratten
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,6Mater Research Institute, The University of Queensland, Brisbane, QLD 4101 Australia
| | - Peter M Visscher
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Eilis Hannon
- 2University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, Devon EX2 5DW UK
| | - Jonathan Mill
- 2University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, Devon EX2 5DW UK.,8Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF UK
| | - Matthew A Brown
- 9Australian Translational Genomics Centre, Queensland University of Technology, Brisbane, QLD 4102 Australia
| | - Nigel G Laing
- 10The Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA 6009 Australia.,11Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009 Australia
| | - Karen A Mather
- 12Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2031 Australia.,13Neuroscience Research Australia Institute, Randwick, NSW 2031 Australia
| | - Perminder S Sachdev
- 12Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2031 Australia.,14Neuropsychiatric Institute, The Prince of Wales Hospital, University of New South Wales, Randwick, NSW 2031 Australia
| | - Shyuan T Ngo
- 7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia.,15The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia.,16Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4019 Australia
| | - Frederik J Steyn
- 15The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia.,16Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4019 Australia
| | - Leanne Wallace
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Anjali K Henders
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Merrilee Needham
- 17Fiona Stanley Hospital, Perth, WA 6150 Australia.,18The University of Notre Dame Australia, Fremantle, WA 6160 Australia.,19Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150 Australia
| | - Jan H Veldink
- 5Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG Netherlands
| | - Susan Mathers
- 20Calvary Health Care Bethlehem, Parkdale, VIC 3195 Australia
| | - Garth Nicholson
- 21ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, NSW 2139 Australia
| | - Dominic B Rowe
- 4Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109 Australia
| | - Robert D Henderson
- 7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia.,16Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4019 Australia.,22Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029 Australia
| | - Pamela A McCombe
- 16Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4019 Australia.,22Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029 Australia
| | - Roger Pamphlett
- 23Discipline of Pathology and Department of Neuropathology, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
| | - Jian Yang
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Ian P Blair
- 4Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109 Australia
| | - Allan F McRae
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Naomi R Wray
- 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.,7Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
11
|
Cytotoxic CD8 + T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proc Natl Acad Sci U S A 2019; 116:2312-2317. [PMID: 30674678 PMCID: PMC6369778 DOI: 10.1073/pnas.1815961116] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CD8+ T lymphocytes, which are typically devoted to eliminate malignant and infected cells, have been described in the central nervous system (CNS) of patients and mice with amyotrophic lateral sclerosis (ALS). However, their role in ALS pathogenesis has yet to be unraveled. Here, we show that ablation of CD8+ T cells in ALS mice increased the number of surviving motoneurons. CD8+ T cells expressing the ALS-causing superoxide dismutase-1 mutant protein recognize and selectively kill motoneurons in vitro. To exert their cytotoxic function, mutant CD8+ T cells required presentation of the antigen-MHC-I complex at the surface of the motoneurons. Analysis of T cell receptor diversity supports the evidence that self-reactive CD8+ T lymphocytes infiltrate the CNS of ALS mice to exert cytotoxic function. Adaptive immune response is part of the dynamic changes that accompany motoneuron loss in amyotrophic lateral sclerosis (ALS). CD4+ T cells that regulate a protective immunity during the neurodegenerative process have received the most attention. CD8+ T cells are also observed in the spinal cord of patients and ALS mice although their contribution to the disease still remains elusive. Here, we found that activated CD8+ T lymphocytes infiltrate the central nervous system (CNS) of a mouse model of ALS at the symptomatic stage. Selective ablation of CD8+ T cells in mice expressing the ALS-associated superoxide dismutase-1 (SOD1)G93A mutant decreased spinal motoneuron loss. Using motoneuron-CD8+ T cell coculture systems, we found that mutant SOD1-expressing CD8+ T lymphocytes selectively kill motoneurons. This cytotoxicity activity requires the recognition of the peptide-MHC-I complex (where MHC-I represents major histocompatibility complex class I). Measurement of interaction strength by atomic force microscopy-based single-cell force spectroscopy demonstrated a specific MHC-I-dependent interaction between motoneuron and SOD1G93A CD8+ T cells. Activated mutant SOD1 CD8+ T cells produce interferon-γ, which elicits the expression of the MHC-I complex in motoneurons and exerts their cytotoxic function through Fas and granzyme pathways. In addition, analysis of the clonal diversity of CD8+ T cells in the periphery and CNS of ALS mice identified an antigen-restricted repertoire of their T cell receptor in the CNS. Our results suggest that self-directed immune response takes place during the course of the disease, contributing to the selective elimination of a subset of motoneurons in ALS.
Collapse
|
12
|
Zubiri I, Lombardi V, Bremang M, Mitra V, Nardo G, Adiutori R, Lu CH, Leoni E, Yip P, Yildiz O, Ward M, Greensmith L, Bendotti C, Pike I, Malaspina A. Tissue-enhanced plasma proteomic analysis for disease stratification in amyotrophic lateral sclerosis. Mol Neurodegener 2018; 13:60. [PMID: 30404656 PMCID: PMC6223075 DOI: 10.1186/s13024-018-0292-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
Background It is unclear to what extent pre-clinical studies in genetically homogeneous animal models of amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disorder, can be informative of human pathology. The disease modifying effects in animal models of most therapeutic compounds have not been reproduced in patients. To advance therapeutics in ALS, we need easily accessible disease biomarkers which can discriminate across the phenotypic variants observed in ALS patients and can bridge animal and human pathology. Peripheral blood mononuclear cells alterations reflect the rate of progression of the disease representing an ideal biological substrate for biomarkers discovery. Methods We have applied TMTcalibrator™, a novel tissue-enhanced bio fluid mass spectrometry technique, to study the plasma proteome in ALS, using peripheral blood mononuclear cells as tissue calibrator. We have tested slow and fast progressing SOD1G93A mouse models of ALS at a pre-symptomatic and symptomatic stage in parallel with fast and slow progressing ALS patients at an early and late stage of the disease. Immunoassays were used to retest the expression of relevant protein candidates. Results The biological features differentiating fast from slow progressing mouse model plasma proteomes were different from those identified in human pathology, with only processes encompassing membrane trafficking with translocation of GLUT4, innate immunity, acute phase response and cytoskeleton organization showing enrichment in both species. Biological processes associated with senescence, RNA processing, cell stress and metabolism, major histocompatibility complex-II linked immune-reactivity and apoptosis (early stage) were enriched specifically in fast progressing ALS patients. Immunodetection confirmed regulation of the immunosenescence markers Galectin-3, Integrin beta 3 and Transforming growth factor beta-1 in plasma from pre-symptomatic and symptomatic transgenic animals while Apolipoprotein E differential plasma expression provided a good separation between fast and slow progressing ALS patients. Conclusions These findings implicate immunosenescence and metabolism as novel targets for biomarkers and therapeutic discovery and suggest immunomodulation as an early intervention. The variance observed in the plasma proteomes may depend on different biological patterns of disease progression in human and animal model. Electronic supplementary material The online version of this article (10.1186/s13024-018-0292-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Zubiri
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK. .,Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK.
| | - Vittoria Lombardi
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Michael Bremang
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Vikram Mitra
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Rocco Adiutori
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Ching-Hua Lu
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK.,Department of Neurology, China Medical University Hospital, Taichung City, Taiwan
| | - Emanuela Leoni
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK.,Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Ping Yip
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Ozlem Yildiz
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK
| | - Malcolm Ward
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, UK
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Ian Pike
- Proteome Sciences plc, Hamilton House, Mabledon Place, London, UK
| | - Andrea Malaspina
- Neuroscience and Trauma Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, City of London, Greater London, E1 2AT, UK.
| |
Collapse
|
13
|
Salter M, Corfield E, Ramadass A, Grand F, Green J, Westra J, Lim CR, Farrimond L, Feneberg E, Scaber J, Thompson A, Ossher L, Turner M, Talbot K, Cudkowicz M, Berry J, Hunter E, Akoulitchev A. Initial Identification of a Blood-Based Chromosome Conformation Signature for Aiding in the Diagnosis of Amyotrophic Lateral Sclerosis. EBioMedicine 2018; 33:169-184. [PMID: 29941342 PMCID: PMC6085506 DOI: 10.1016/j.ebiom.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The identification of blood-based biomarkers specific to the diagnosis of amyotrophic lateral sclerosis (ALS) is an active field of academic and clinical research. While inheritance studies have advanced the field, a majority of patients do not have a known genetic link to the disease, making direct sequence-based genetic testing for ALS difficult. The ability to detect biofluid-based epigenetic changes in ALS would expand the relevance of using genomic information for disease diagnosis. METHODS Assessing differences in chromosomal conformations (i.e. how they are positioned in 3-dimensions) represents one approach for assessing epigenetic changes. In this study, we used an industrial platform, EpiSwitch™, to compare the genomic architecture of healthy and diseased patient samples (blood and tissue) to discover a chromosomal conformation signature (CCS) with diagnostic potential in ALS. A three-step biomarker selection process yielded a distinct CCS for ALS, comprised of conformation changes in eight genomic loci and detectable in blood. FINDINGS We applied the ALS CCS to determine a diagnosis for 74 unblinded patient samples and subsequently conducted a blinded diagnostic study of 16 samples. Sensitivity and specificity for ALS detection in the 74 unblinded patient samples were 83∙33% (CI 51∙59 to 97∙91%) and 76∙92% (46∙19 to 94∙96%), respectively. In the blinded cohort, sensitivity reached 87∙50% (CI 47∙35 to 99∙68%) and specificity was 75∙0% (34∙91 to 96∙81%). INTERPRETATIONS The sensitivity and specificity values achieved using the ALS CCS identified and validated in this study provide an indication that the detection of chromosome conformation signatures is a promising approach to disease diagnosis and can potentially augment current strategies for diagnosing ALS. FUND: This research was funded by Oxford BioDynamics and Innovate UK. Work in the Oxford MND Care and Research Centre is supported by grants from the Motor Neurone Disease Association and the Medical Research Council. Additional support was provided by the Northeast ALS Consortium (NEALS).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucy Farrimond
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Emily Feneberg
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Alexander Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Lynn Ossher
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Martin Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Merit Cudkowicz
- Neurology Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - James Berry
- Neurology Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | | |
Collapse
|
14
|
Ji Y, Duan W, Liu Y, Liu Y, Liu C, Li Y, Wen D, Li Z, Li C. IGF1 affects macrophage invasion and activation and TNF-α production in the sciatic nerves of female SOD1G93A mice. Neurosci Lett 2017; 668:1-6. [PMID: 29294332 DOI: 10.1016/j.neulet.2017.12.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/14/2017] [Accepted: 12/30/2017] [Indexed: 01/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease leading to paralysis and death within 3-5 years of its diagnosis. The SOD1G93A mouse is used extensively as an ALS animal model. Increasing evidence shows that non-neuronal cellscontribute to the pathogenesis and progression of ALS. Among them, many studies focus on microgliosis in the spinal cord (SC); while few on macrophage activation in the sciatic nerves. Substantial evidence shows that insulin-like growth factor 1 (IGF1) delays disease progression and increases the lifespan of SOD1G93A mice, and some studies indicate that IGF1 reduces inflammation in the SC of ALS mice. However, no studies have focused on the effect of IGF on sciatic nerve inflammation. Here, we find that ALS progression is characterized by increasing macrophage invasion and activation accompanied by significant TNF-α production in the sciatic nerve. Furthermore, IGF1 treatment and knockdown alleviate and aggravate these responses, respectively. Collectively, our findings show the first time that IGF1 has an anti-inflammatory effect in the sciatic nerves of SOD1G93A mice.
Collapse
Affiliation(s)
- Yingxiao Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Weisong Duan
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang, Hebei, 050000, People's Republic of China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yakun Liu
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Chang Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yuanyuan Li
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Di Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Zhongyao Li
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang, Hebei, 050000, People's Republic of China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
15
|
Bowerman M, Murray LM, Scamps F, Schneider BL, Kothary R, Raoul C. Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. Eur J Med Genet 2017; 61:685-698. [PMID: 29313812 DOI: 10.1016/j.ejmg.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/04/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases.
Collapse
Affiliation(s)
- Melissa Bowerman
- School of Medicine, Keele University, Staffordshire, United Kingdom; Institute for Science and Technology in Medicine, Stoke-on-Trent, United Kingdom; Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Lyndsay M Murray
- Euan McDonald Centre for Motor Neuron Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frédérique Scamps
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
16
|
Liu J, Wang F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications. Front Immunol 2017; 8:1005. [PMID: 28871262 PMCID: PMC5567007 DOI: 10.3389/fimmu.2017.01005] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects upper motor neurons (MNs) comprising the corticospinal tract and lower MNs arising from the brain stem nuclei and ventral roots of the spinal cord, leading to fatal paralysis. Currently, there are no effective therapies for ALS. Increasing evidence indicates that neuroinflammation plays an important role in ALS pathogenesis. The neuroinflammation in ALS is characterized by infiltration of lymphocytes and macrophages, activation of microglia and reactive astrocytes, as well as the involvement of complement. In this review, we focus on the key cellular players of neuroinflammation during the pathogenesis of ALS by discussing not only their detrimental roles but also their immunomodulatory actions. We will summarize the pharmacological therapies for ALS that target neuroinflammation, as well as recent advances in the field of stem cell therapy aimed at modulating the inflammatory environment to preserve the remaining MNs in ALS patients and animal models of the disease.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
E Hirbec H, Noristani HN, Perrin FE. Microglia Responses in Acute and Chronic Neurological Diseases: What Microglia-Specific Transcriptomic Studies Taught (and did Not Teach) Us. Front Aging Neurosci 2017; 9:227. [PMID: 28785215 PMCID: PMC5519576 DOI: 10.3389/fnagi.2017.00227] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, microglia have been acknowledged to be key players in central nervous system (CNS) under both physiological and pathological conditions. They constantly survey the CNS environment and as immune cells, in pathological contexts, they provide the first host defense and orchestrate the immune response. It is well recognized that under pathological conditions microglia have both sequential and simultaneous, beneficial and detrimental effects. Cell-specific transcriptomics recently became popular in Neuroscience field allowing concurrent monitoring of the expression of numerous genes in a given cell population. Moreover, by comparing two or more conditions, these approaches permit to unbiasedly identify deregulated genes and pathways. A growing number of studies have thus investigated microglial transcriptome remodeling over the course of neuropathological conditions and highlighted the molecular diversity of microglial response to different diseases. In the present work, we restrict our review to microglia obtained directly from in vivo samples and not cell culture, and to studies using whole-genome strategies. We first critically review the different methods developed to decipher microglia transcriptome. In particular, we compare advantages and drawbacks of flow cytometry and laser microdissection to isolate pure microglia population as well as identification of deregulated microglial genes obtained via RNA sequencing (RNA-Seq) vs. microarrays approaches. Second, we summarize insights obtained from microglia transcriptomes in traumatic brain and spinal cord injuries, pain and more chronic neurological conditions including Amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD) and Multiple sclerosis (MS). Transcriptomic responses of microglia in other non-neurodegenerative CNS disorders such as gliomas and sepsis are also addressed. Third, we present a comparison of the most activated pathways in each neuropathological condition using Gene ontology (GO) classification and highlight the diversity of microglia response to insults focusing on their pro- and anti-inflammatory signatures. Finally, we discuss the potential of the latest technological advances, in particular, single cell RNA-Seq to unravel the individual microglial response diversity in neuropathological contexts.
Collapse
Affiliation(s)
- Hélène E Hirbec
- Institute for Functional Genomics, CNRS UMR5203, INSERM U1191, University of MontpellierMontpellier, France.,Laboratory of Excellence in Ion Channel Science and Therapeutics (LabEx ICST)Montpellier, France
| | - Harun N Noristani
- University of Montpellier, INSERM U1198Montpellier, France.,École Pratique des Hautes Études (EPHE)Paris, France
| | - Florence E Perrin
- University of Montpellier, INSERM U1198Montpellier, France.,École Pratique des Hautes Études (EPHE)Paris, France
| |
Collapse
|
18
|
Won YH, Lee MY, Choi YC, Ha Y, Kim H, Kim DY, Kim MS, Yu JH, Seo JH, Kim M, Cho SR, Kang SW. Elucidation of Relevant Neuroinflammation Mechanisms Using Gene Expression Profiling in Patients with Amyotrophic Lateral Sclerosis. PLoS One 2016; 11:e0165290. [PMID: 27812125 PMCID: PMC5094695 DOI: 10.1371/journal.pone.0165290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by damage of motor neurons. Recent reports indicate that inflammatory responses occurring within the central nervous system contribute to the pathogenesis of ALS. We aimed to investigate disease-specific gene expression associated with neuroinflammation by conducting transcriptome analysis on fibroblasts from three patients with sporadic ALS and three normal controls. Several pathways were found to be upregulated in patients with ALS, among which the toll-like receptor (TLR) and NOD-like receptor (NLR) signaling pathways are related to the immune response. Genes—toll-interacting protein (TOLLIP), mitogen-activated protein kinase 9 (MAPK9), interleukin-1β (IL-1β), interleukin-8 (IL-8), and chemokine (C-X-C motif) ligand 1 (CXCL1)—related to these two pathways were validated using western blotting. This study validated the genes that are associated with TLR and NLR signaling pathways from different types of patient-derived cells. Not only fibroblasts but also induced pluripotent stem cells (iPSCs) and neural rosettes from the same origins showed similar expression patterns. Furthermore, expression of TOLLIP, a regulator of TLR signaling pathway, decreased with cellular aging as judged by changes in its expression through multiple passages. TOLLIP expression was downregulated in ALS cells under conditions of inflammation induced by lipopolysaccharide. Our data suggest that the TLR and NLR signaling pathways are involved in pathological innate immunity and neuroinflammation associated with ALS and that TOLLIP, MAPK9, IL-1β, IL-8, and CXCL1 play a role in ALS-specific immune responses. Moreover, changes of TOLLIP expression might be associated with progression of ALS.
Collapse
Affiliation(s)
- Yu Hui Won
- Department of Physical Medicine and Rehabilitation, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
- Department of Medicine, the Graduate School of Yonsei University, Seoul, Korea
| | - Min-Young Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine & Spinal Cord Institute, College of Medicine, Yonsei University, Seoul, Korea
| | - Hyongbum Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Do-Young Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Myung-Sun Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - MinGi Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- * E-mail: (SWK); (SRC)
| | - Seong-Woong Kang
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea
- Department of Medicine, the Graduate School of Yonsei University, Seoul, Korea
- * E-mail: (SWK); (SRC)
| |
Collapse
|
19
|
Abstract
AbstractBackground: Pathophysiological mechanisms that contribute to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS) include oxidative stress and inflammation. We conducted a preliminary study to explore these mechanisms, to discuss their link in ALS, and to determine the feasibility of incorporating this combined analysis into current biomarkers research. Methods: We enrolled 10 ALS patients and 10 controls. We measured the activities of glutathione peroxidase, glutathione reductase, superoxyde dismutase (SOD), and the levels of serum total antioxidant status (TAS), malondialdehyde (MDA), 8-hydroxy-2’-deoxyguanosine (8-OHdG), and glutathione status (e.g. glutathione disulfide, GSSG/reduced glutathione, GSH). We analysed the concentrations of homocysteine, several cytokines, vitamins and metals by standard methods used in routine practice. Results: There was a significant decrease in TAS levels (p=0.027) and increase in 8-OHdG (p=0.014) and MDA (p=0.011) levels in ALS patients. We also observed a significantly higher GSSG/GSH ratio (p=0.022), and IL-6 (p=0.0079) and IL-8 (p=0.009) concentrations in ALS patients. Correlations were found between biological and clinical markers (homosysteine vs. clinical status at diagnosis, p=0.02) and between some biological markers such as IL-6 vs. GSSG/GSH (p=0.045) or SOD activity (p=0.017). Conclusion: We confirmed the systemic alteration of both the redox and the inflammation status in ALS patients, and we observed a link with some clinical parameters. These promising results encourage us to pursue this study with collection of combined oxidative stress and inflammatory markers.
Collapse
|
20
|
Mouzat K, Raoul C, Polge A, Kantar J, Camu W, Lumbroso S. Liver X receptors: from cholesterol regulation to neuroprotection-a new barrier against neurodegeneration in amyotrophic lateral sclerosis? Cell Mol Life Sci 2016; 73:3801-8. [PMID: 27510420 PMCID: PMC11108529 DOI: 10.1007/s00018-016-2330-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
Cholesterol plays a central role in numerous nervous system functions. Cholesterol is the major constituent of myelin sheaths, is essential for synapse and dendrite formation, axon guidance as well as neurotransmission. Among regulators of cholesterol homeostasis, liver X receptors (LXRs), two members of the nuclear receptor superfamily, play a determinant role. LXRs act as cholesterol sensors and respond to high intracellular cholesterol concentration by decreasing plasmatic and intracellular cholesterol content. Beyond their cholesterol-lowering role, LXRs have been proposed as regulators of immunity and anti-inflammatory factors. Dysregulation of cholesterol metabolism combined to neuroinflammatory context have been described in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). ALS is characterized by the progressive loss of motoneurons in the brain and spinal cord, leading to severe paralytic condition and death of patients in a median time of 3 years. Motoneuron degeneration is accompanied by chronic neuroinflammatory response, involving microglial and astrocytic activation, infiltration of blood-derived immune cells and release of pro-inflammatory factors. We propose to discuss here the role of LXRs as a molecular link between the central nervous system cholesterol metabolism, neuroinflammation, motoneuron survival and their potential as promising therapeutic candidates for ALS therapy.
Collapse
Affiliation(s)
- Kevin Mouzat
- Department of Biochemistry and Molecular Biology, Nîmes University Hospital, Nîmes, France.
- University of Montpellier, Montpellier, France.
- INSERM UMR1051, The Neuroscience Institute of Montpellier (INM), Saint Eloi Hospital, Montpellier, France.
| | - Cédric Raoul
- INSERM UMR1051, The Neuroscience Institute of Montpellier (INM), Saint Eloi Hospital, Montpellier, France
| | - Anne Polge
- Department of Biochemistry and Molecular Biology, Nîmes University Hospital, Nîmes, France
| | - Jovana Kantar
- Department of Biochemistry and Molecular Biology, Nîmes University Hospital, Nîmes, France
- INSERM UMR1051, The Neuroscience Institute of Montpellier (INM), Saint Eloi Hospital, Montpellier, France
| | - William Camu
- University of Montpellier, Montpellier, France
- INSERM UMR1051, The Neuroscience Institute of Montpellier (INM), Saint Eloi Hospital, Montpellier, France
- Neurology Department, ALS Center, Gui de Chauliac Hospital, Montpellier, France
| | - Serge Lumbroso
- Department of Biochemistry and Molecular Biology, Nîmes University Hospital, Nîmes, France
- University of Montpellier, Montpellier, France
- INSERM UMR1051, The Neuroscience Institute of Montpellier (INM), Saint Eloi Hospital, Montpellier, France
| |
Collapse
|
21
|
Nardo G, Trolese MC, Bendotti C. Major Histocompatibility Complex I Expression by Motor Neurons and Its Implication in Amyotrophic Lateral Sclerosis. Front Neurol 2016; 7:89. [PMID: 27379008 PMCID: PMC4904147 DOI: 10.3389/fneur.2016.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022] Open
Abstract
Neuronal expression of major histocompatibility complex I (MHCI)-related molecules in adults and during CNS diseases is involved in the synaptic plasticity and axonal regeneration with mechanisms either dependent or independent of their immune functions. Motor neurons are highly responsive in triggering the expression of MHCI molecules during normal aging or following insults and diseases, and this has implications in the synaptic controls, axonal regeneration, and neuromuscular junction stability of these neurons. We recently reported that MHCI and immunoproteasome are strongly activated in spinal motor neurons and their peripheral motor axon in a mouse model of familial amyotrophic lateral sclerosis (ALS) during the course of the disease. This response was prominent in ALS mice with slower disease progression in which the axonal structure and function was better preserved than in fast-progressing mice. This review summarizes and discusses our observations in the light of knowledge about the possible role of MHCI in motor neurons providing additional insight into the pathophysiology of ALS.
Collapse
Affiliation(s)
- Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| | - Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS , Milan , Italy
| |
Collapse
|
22
|
Th17 Cell Response in SOD1G93A Mice following Motor Nerve Injury. Mediators Inflamm 2016; 2016:6131234. [PMID: 27194826 PMCID: PMC4852359 DOI: 10.1155/2016/6131234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
An increased risk of ALS has been reported for veterans, varsity athletes, and professional football players. The mechanism underlying the increased risk in these populations has not been identified; however, it has been proposed that motor nerve injury may trigger immune responses which, in turn, can accelerate the progression of ALS. Accumulating evidence indicates that abnormal immune reactions and inflammation are involved in the pathogenesis of ALS, but the specific immune cells involved have not been clearly defined. To understand how nerve injury and immune responses may contribute to ALS development, we investigated responses of CD4+ T cell after facial motor nerve axotomy (FNA) at a presymptomatic stage in a transgenic mouse model of ALS (B6SJL SOD1G93A). SOD1G93A mice, compared with WT mice, displayed an increase in the basal activation state of CD4+ T cells and higher frequency of Th17 cells, which were further enhanced by FNA. In conclusion, SOD1G93A mice exhibit abnormal CD4+ T cell activation with increased levels of Th17 cells prior to the onset of neurological symptoms. Motor nerve injury exacerbates Th17 cell responses and may contribute to the development of ALS, especially in those who carry genetic susceptibility to this disease.
Collapse
|
23
|
Ellwardt E, Walsh JT, Kipnis J, Zipp F. Understanding the Role of T Cells in CNS Homeostasis. Trends Immunol 2016; 37:154-165. [DOI: 10.1016/j.it.2015.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 01/16/2023]
|
24
|
Complex Inflammation mRNA-Related Response in ALS Is Region Dependent. Neural Plast 2015; 2015:573784. [PMID: 26301107 PMCID: PMC4537753 DOI: 10.1155/2015/573784] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/04/2015] [Accepted: 06/25/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammatory changes are analyzed in the anterior spinal cord and frontal cortex area 8 in typical spinal-predominant ALS cases. Increased numbers of astrocytes and activated microglia are found in the anterior horn of the spinal cord and pyramidal tracts. Significant increased expression of TLR7, CTSS, and CTSC mRNA and a trend to increased expression of IL10RA, TGFB1, and TGFB2 are found in the anterior lumbar spinal cord in ALS cases compared to control cases, whereas C1QTNF7 and TNFRSF1A mRNA expression levels are significantly decreased. IL6 is significantly upregulated and IL1B shows a nonsignificant increased expression in frontal cortex area 8 in ALS cases. IL-6 immunoreactivity is found in scattered monocyte-derived macrophages/microglia and TNF-α in a few cells of unknown origin in ALS cases. Increased expression and abnormal distribution of IL-1β occurred in motor neurons of the lumbar spinal cord in ALS. Strong IL-10 immunoreactivity colocalizes with TDP-43-positive inclusions in motor neurons in ALS cases. The present observations show a complex participation of cytokines and mediators of the inflammatory response in ALS consistent with increased proinflammatory cytokines and sequestration of anti-inflammatory IL-10 in affected neurons.
Collapse
|
25
|
Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin and brain inflammaging. Prog Neurobiol 2015; 127-128:46-63. [DOI: 10.1016/j.pneurobio.2015.02.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/27/2014] [Accepted: 02/05/2015] [Indexed: 02/07/2023]
|
26
|
Cai M, Choi SM, Yang EJ. The effects of bee venom acupuncture on the central nervous system and muscle in an animal hSOD1G93A mutant. Toxins (Basel) 2015; 7:846-58. [PMID: 25781653 PMCID: PMC4379529 DOI: 10.3390/toxins7030846] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by the degeneration of lower and upper motor neurons, leading to muscle paralysis and respiratory failure. However, there is no effective drug or therapy to treat ALS. Complementary and alternative medicine (CAM), including acupuncture, pharmacopuncture, herbal medicine, and massage is popular due to the significant limitations of conventional therapy. Bee venom acupuncture (BVA), also known as one of pharmacopunctures, has been used in Oriental medicine to treat inflammatory diseases. The purpose of this study is to investigate the effect of BVA on the central nervous system (CNS) and muscle in symptomatic hSOD1G93A transgenic mice, an animal model of ALS. Our findings show that BVA at ST36 enhanced motor function and decreased motor neuron death in the spinal cord compared to that observed in hSOD1G93A transgenic mice injected intraperitoneally (i.p.) with BV. Furthermore, BV treatment at ST36 eliminated signaling downstream of inflammatory proteins such as TLR4 in the spinal cords of symptomatic hSOD1G93A transgenic mice. However, i.p. treatment with BV reduced the levels of TNF-α and Bcl-2 expression in the muscle hSOD1G93A transgenic mice. Taken together, our findings suggest that BV pharmacopuncture into certain acupoints may act as a chemical stimulant to activate those acupoints and subsequently engage the endogenous immune modulatory system in the CNS in an animal model of ALS.
Collapse
Affiliation(s)
- MuDan Cai
- Department of KM Fundamental Research, Korea Institute of Oriental Medicine, 483 Expo-ro, Daejeon, Yuseong-gu 305-811, Korea.
| | - Sun-Mi Choi
- Executive Director of R&D, Korea Institute of Oriental Medicine, 483 Expo-ro, Daejeon, Yuseong-gu 305-811, Korea.
| | - Eun Jin Yang
- Department of KM Fundamental Research, Korea Institute of Oriental Medicine, 483 Expo-ro, Daejeon, Yuseong-gu 305-811, Korea.
| |
Collapse
|
27
|
Liu KX, Edwards B, Lee S, Finelli MJ, Davies B, Davies KE, Oliver PL. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain 2015; 138:1167-81. [PMID: 25753484 PMCID: PMC4407188 DOI: 10.1093/brain/awv039] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a key factor contributing to motor neuron injury in amyotrophic lateral sclerosis (ALS). Liu et al. show that overexpression of oxidation resistance 1 (Oxr1) in neurons reduces pathology and extends lifespan in an ALS mouse model. Manipulation of OXR1 levels may have therapeutic benefit in neurodegenerative disease. Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder characterized by the progressive loss of spinal motor neurons. While the aetiological mechanisms underlying the disease remain poorly understood, oxidative stress is a central component of amyotrophic lateral sclerosis and contributes to motor neuron injury. Recently, oxidation resistance 1 (OXR1) has emerged as a critical regulator of neuronal survival in response to oxidative stress, and is upregulated in the spinal cord of patients with amyotrophic lateral sclerosis. Here, we tested the hypothesis that OXR1 is a key neuroprotective factor during amyotrophic lateral sclerosis pathogenesis by crossing a new transgenic mouse line that overexpresses OXR1 in neurons with the SOD1G93A mouse model of amyotrophic lateral sclerosis. Interestingly, we report that overexpression of OXR1 significantly extends survival, improves motor deficits, and delays pathology in the spinal cord and in muscles of SOD1G93A mice. Furthermore, we find that overexpression of OXR1 in neurons significantly delays non-cell-autonomous neuroinflammatory response, classic complement system activation, and STAT3 activation through transcriptomic analysis of spinal cords of SOD1G93A mice. Taken together, these data identify OXR1 as the first neuron-specific antioxidant modulator of pathogenesis and disease progression in SOD1-mediated amyotrophic lateral sclerosis, and suggest that OXR1 may serve as a novel target for future therapeutic strategies.
Collapse
Affiliation(s)
- Kevin X Liu
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Benjamin Edwards
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Sheena Lee
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Mattéa J Finelli
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Ben Davies
- 2 Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kay E Davies
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Peter L Oliver
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
28
|
Fujimori K, Takaki J, Shigemoto-Mogami Y, Sekino Y, Suzuki T, Sato K. Paroxetine prevented the down-regulation of astrocytic L-Glu transporters in neuroinflammation. J Pharmacol Sci 2015; 127:145-9. [PMID: 25704030 DOI: 10.1016/j.jphs.2014.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/26/2014] [Accepted: 09/18/2014] [Indexed: 11/26/2022] Open
Abstract
The extracellular L-glutamate (L-Glu) concentration is elevated in neuroinflammation, thereby causing excitotoxicity. One of the mechanisms is down-regulation of astrocyte L-Glu transporters. Some antidepressants have anti-inflammatory effects. We therefore investigated effects of various antidepressants on the down-regulation of astrocyte L-Glu transporters in the in vitro neuroinflammation model. Among these antidepressants, only paroxetine was effective. We previously demonstrated that the down-regulation of astrocyte L-Glu transporters was caused by L-Glu released from activated microglia. We here clarified that only paroxetine inhibited L-Glu release from microglia. This is the novel action of paroxetine, which may bring advantages on the therapy of neuroinflammation.
Collapse
Affiliation(s)
- Koki Fujimori
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; Division of Basic Biological Science, Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512, Japan
| | - Junpei Takaki
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; Division of Basic Biological Science, Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512, Japan
| | - Yukari Shigemoto-Mogami
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yuko Sekino
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Takeshi Suzuki
- Division of Basic Biological Science, Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512, Japan
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| |
Collapse
|
29
|
Cloutier F, Marrero A, O'Connell C, Morin P. MicroRNAs as potential circulating biomarkers for amyotrophic lateral sclerosis. J Mol Neurosci 2014; 56:102-12. [PMID: 25433762 DOI: 10.1007/s12031-014-0471-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a condition primarily characterized by the selective loss of upper and lower motor neurons. Motor neuron loss gives rise to muscle tissue malfunctions, including weakness, spasticity, atrophy, and ultimately paralysis, with death typically due to respiratory failure within 2 to 5 years of symptoms' onset. The mean delay in time from presentation to diagnosis remains at over 1 year. Biomarkers are urgently needed to facilitate ALS diagnosis and prognosis as well as to act as indicators of therapeutic response in clinical trials. MicroRNAs (miRNAs) are small molecules that can influence posttranscriptional gene expression of a variety of transcript targets. Interestingly, miRNAs can be released into the circulation by pathologically affected tissues. This review presents therapeutic and diagnostic challenges associated with ALS, highlights the potential role of miRNAs in ALS, and discusses the diagnostic potential of these molecules in identifying ALS-specific miRNAs or in distinguishing between the various genotypic and phenotypic forms of ALS.
Collapse
Affiliation(s)
- Frank Cloutier
- Institut de l'Atlantique en Neurosciences Atlantic Institute, Vitalité Health Network, Centre Hospitalier Universitaire Dr Georges-L.-Dumont/Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada,
| | | | | | | |
Collapse
|
30
|
Heiman A, Pallottie A, Heary RF, Elkabes S. Toll-like receptors in central nervous system injury and disease: a focus on the spinal cord. Brain Behav Immun 2014; 42:232-45. [PMID: 25063708 DOI: 10.1016/j.bbi.2014.06.203] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/17/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are best known for recognizing pathogens and initiating an innate immune response to protect the host. However, they also detect tissue damage and induce sterile inflammation upon the binding of endogenous ligands released by stressed or injured cells. In addition to immune system-related cells, TLRs have been identified in central nervous system (CNS) neurons and glial subtypes including microglia, astrocytes and oligodendrocytes. Direct and indirect effects of TLR ligands on neurons and glial subtypes have been documented in vitro. Likewise, the effects of TLR ligands have been demonstrated in vivo using animal models of CNS trauma and disease including spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS) and neuropathic pain. The indirect effects are most likely mediated via microglia or immune system cells that infiltrate the diseased or injured CNS. Despite considerable progress over the past decade, the role of TLRs in the physiological and pathological function of the spinal cord remains inadequately defined. Published reports collectively highlight TLRs as promising targets for therapeutic interventions in spinal cord pathology. The findings also underscore the complexity of TLR-mediated mechanisms and the necessity for further research in this field. The goals of the current review are to recapitulate the studies that investigated the role of TLRs in the spinal cord, to discuss potential future research directions, and to examine some of the challenges associated with pre-clinical studies pertinent to TLRs in the injured or diseased spinal cord.
Collapse
Affiliation(s)
- Adee Heiman
- Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Alexandra Pallottie
- Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States; Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Robert F Heary
- Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States.
| |
Collapse
|
31
|
Doty KR, Guillot-Sestier MV, Town T. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive? Brain Res 2014; 1617:155-73. [PMID: 25218556 DOI: 10.1016/j.brainres.2014.09.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases share common features, including catastrophic neuronal loss that leads to cognitive or motor dysfunction. Neuronal injury occurs in an inflammatory milieu that is populated by resident and sometimes, infiltrating, immune cells - all of which participate in a complex interplay between secreted inflammatory modulators and activated immune cell surface receptors. The importance of these immunomodulators is highlighted by the number of immune factors that have been associated with increased risk of neurodegeneration in recent genome-wide association studies. One of the more difficult tasks for designing therapeutic strategies for immune modulation against neurodegenerative diseases is teasing apart beneficial from harmful signals. In this regard, learning more about the immune components of these diseases has yielded common themes. These unifying concepts should eventually enable immune-based therapeutics for treatment of Alzheimer׳s and Parkinson׳s diseases and amyotrophic lateral sclerosis. Targeted immune modulation should be possible to temper maladaptive factors, enabling beneficial immune responses in the context of neurodegenerative diseases. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Kevin R Doty
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Marrali G, Casale F, Salamone P, Fuda G, Caorsi C, Amoroso A, Brunetti M, Restagno G, Barberis M, Bertuzzo D, Canosa A, Moglia C, Calvo A, Chiò A. NADPH oxidase (NOX2) activity is a modifier of survival in ALS. J Neurol 2014; 261:2178-83. [PMID: 25178511 DOI: 10.1007/s00415-014-7470-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 12/11/2022]
Abstract
NADPH-oxidases (NOX) catalyze the formation of reactive oxygen species (ROS), which play a role in the development of neurological diseases, particularly those generated by the phagocytic isoform NOX2. Increased ROS has been observed in the amyotrophic lateral sclerosis (ALS) SOD1 transgenic mouse, and in this preclinical model the inactivation of NOX2 decreases ROS production and extends survival. Our aim was to evaluate NOX2 activity measuring neutrophil oxidative burst in a cohort of 83 ALS patients, and age- and gender-matched healthy controls. Oxidative burst was measured directly in fresh blood using Phagoburst™ assay by flow cytometry. Mean fluorescence intensity (MFI), emitted in response to different stimuli, leads to produce ROS and corresponds to the percentage of oxidizing cells and their enzymatic activity (GeoMean). No difference was found between the MFI values in cases and controls. NOX2 activity was independent from gender and age, and in patients was not related to disease duration, site of onset (bulbar vs. spinal), or ALSFRS-R score. However, patients with a NOX2 activity lower than the median value showed a 1-year increase of survival from onset (p = 0.011). The effect of NOX2 was independent from other known prognostic factors. These findings are in keeping with the observations in the mouse model of ALS, and demonstrate the strong role of NOX2 in modifying progression in ALS patients. A proper modulation of NOX2 activity might hold therapeutic potential for ALS.
Collapse
Affiliation(s)
- Giuseppe Marrali
- "Rita Levi Montalcini" Department of Neuroscience, ALS Centre, University of Torino, Via Cherasco 15, 10126, Turin, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tapia R. Cellular and molecular mechanisms of motor neuron death in amyotrophic lateral sclerosis: a perspective. Front Cell Neurosci 2014; 8:241. [PMID: 25177274 PMCID: PMC4132292 DOI: 10.3389/fncel.2014.00241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| |
Collapse
|
34
|
De I, Nikodemova M, Steffen MD, Sokn E, Maklakova VI, Watters JJ, Collier LS. CSF1 overexpression has pleiotropic effects on microglia in vivo. Glia 2014; 62:1955-67. [PMID: 25042473 DOI: 10.1002/glia.22717] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 12/19/2022]
Abstract
Macrophage colony stimulating factor (CSF1) is a cytokine that is upregulated in several diseases of the central nervous system (CNS). To examine the effects of CSF1 overexpression on microglia, transgenic mice that overexpress CSF1 in the glial fibrillary acidic protein (GFAP) compartment were generated. CSF1 overexpressing mice have increased microglial proliferation and increased microglial numbers compared with controls. Treatment with PLX3397, a small molecule inhibitor of the CSF1 receptor CSF1R and related kinases, decreases microglial numbers by promoting microglial apoptosis in both CSF1 overexpressing and control mice. Microglia in CSF1 overexpressing mice exhibit gene expression profiles indicating that they are not basally M1 or M2 polarized, but they do have defects in inducing expression of certain genes in response to the inflammatory stimulus lipopolysaccharide. These results indicate that the CSF1 overexpression observed in CNS pathologies likely has pleiotropic influences on microglia. Furthermore, small molecule inhibition of CSF1R has the potential to reverse CSF1-driven microglial accumulation that is frequently observed in CNS pathologies, but can also promote apoptosis of normal microglia.
Collapse
Affiliation(s)
- Ishani De
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Comprehensive Cancer Center and the Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | | | | | | | | | | | | |
Collapse
|
35
|
Brites D, Vaz AR. Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 2014; 8:117. [PMID: 24904276 PMCID: PMC4033073 DOI: 10.3389/fncel.2014.00117] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common and most aggressive form of adult motor neuron (MN) degeneration. The cause of the disease is still unknown, but some protein mutations have been linked to the pathological process. Loss of upper and lower MNs results in progressive muscle paralysis and ultimately death due to respiratory failure. Although initially thought to derive from the selective loss of MNs, the pathogenic concept of non-cell-autonomous disease has come to the forefront for the contribution of glial cells in ALS, in particular microglia. Recent studies suggest that microglia may have a protective effect on MN in an early stage. Conversely, activated microglia contribute and enhance MN death by secreting neurotoxic factors, and impaired microglial function at the end-stage may instead accelerate disease progression. However, the nature of microglial–neuronal interactions that lead to MN degeneration remains elusive. We review the contribution of the neurodegenerative network in ALS pathology, with a special focus on each glial cell type from data obtained in the transgenic SOD1G93A rodents, the most widely used model. We further discuss the diverse roles of neuroinflammation and microglia phenotypes in the modulation of ALS pathology. We provide information on the processes associated with dysfunctional cell–cell communication and summarize findings on pathological cross-talk between neurons and astroglia, and neurons and microglia, as well as on the spread of pathogenic factors. We also highlight the relevance of neurovascular disruption and exosome trafficking to ALS pathology. The harmful and beneficial influences of NG2 cells, oligodendrocytes and Schwann cells will be discussed as well. Insights into the complex intercellular perturbations underlying ALS, including target identification, will enhance our efforts to develop effective therapeutic approaches for preventing or reversing symptomatic progression of this devastating disease.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Ana R Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|