1
|
Meng K, Shi YC, Li WX, Wang J, Cheng BJ, Li TL, Li H, Jiang N, Liu R. Testosterone Mediates Reproductive Toxicity in Caenorhabditis elegans by Affecting Sex Determination in Germ Cells through nhr-69/ mpk-1/ fog-1/ 3. TOXICS 2024; 12:502. [PMID: 39058154 PMCID: PMC11281075 DOI: 10.3390/toxics12070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Testosterone (T), an environmental androgen, significantly disrupts endocrine systems in wildlife and ecosystems. Despite growing concern over its high levels in aquatic environments, the reproductive toxicity of testosterone and its mechanisms are not well understood. In this study, we investigated the reproductive toxicity and mechanisms of testosterone using Caenorhabditis elegans (C. elegans) and assessed its ecological toxicity through the benchmark dose (BMD) method. Our results indicate that T concentrations exceeding 0.01 μg/L significantly reduce the brood size, decrease germ cell counts, and prolong the generation time in C. elegans as T concentrations increase. Furthermore, to elucidate the specific mechanisms, we analyzed the expression of nhr-69, mpk-1, and other genes involved in sex determination. These findings suggest that the nhr-69-mediated reproductive toxicity of T primarily affects sperm formation and the offspring number by influencing its downstream targets, mpk-1 and fog-1/3, which are critical in the germ cell sex-determining pathway. Additionally, this study determined that the 10% lower boundary of the baseline dose (BMDL10) is 1.160 ng/L, offering a more protective reference dose for the ecological risk assessment of T. The present study suggests that nhr-69 mediates the reproductive toxicity of T by influencing mpk-1 and fog-1/3, critical genes at the end of the germ cell sex-determining pathway, thereby providing a basis for establishing reproductive toxicity thresholds for T.
Collapse
Affiliation(s)
- Ke Meng
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Ying-Chi Shi
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Wei-Xi Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Jia Wang
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Bei-Jing Cheng
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Tian-Lin Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Hui Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Nan Jiang
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Ran Liu
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| |
Collapse
|
2
|
Godini R, Handley A, Pocock R. Transcription Factors That Control Behavior-Lessons From C. elegans. Front Neurosci 2021; 15:745376. [PMID: 34646119 PMCID: PMC8503520 DOI: 10.3389/fnins.2021.745376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.
Collapse
|
3
|
Iwanicki T, Balcerzyk A, Kazek B, Emich-Widera E, Likus W, Iwanicka J, Kapinos-Gorczyca A, Kapinos M, Jarosz A, Grzeszczak W, Górczyńska-Kosiorz S, Niemiec P. Family-Based Cohort Association Study of PRKCB1, CBLN1 and KCNMB4 Gene Polymorphisms and Autism in Polish Population. J Autism Dev Disord 2021; 52:4213-4218. [PMID: 34562210 PMCID: PMC9508047 DOI: 10.1007/s10803-021-05291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
The aim of the study was to perform family-based association analysis of PRKCB1, CBLN1 and KCNMB4 gene polymorphisms and autism disorder. We comprised 206 Caucasian children with autistic spectrum disorder (ASD) and their biological parents. In transmission/disequilibrium test we observed that T-allele of the rs198198 polymorphism of the PRKCB1 gene was more often transmitted to affected children in the male subgroup (p = 0.010). Additionally, the T carrier state was significantly associated with hypotonia (p = 0.048). In the female subgroup, the T-allele carriers more often showed more mobile/vital behavior (p = 0.046). In conclusion, our study showed that the rs198198 of the PRKCB1 gene may be associated with ASD in men and with some features characteristic for the disorder.
Collapse
Affiliation(s)
- Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland
| | - Anna Balcerzyk
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland.
| | - Beata Kazek
- Child Development Support Center, Kępowa Street 56, 40- 583, Katowice, Poland
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia in Katowice, Medykow Street 16, 40-752, Katowice, Poland
| | - Wirginia Likus
- Department of Anatomy, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland
| | - Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland
| | | | - Maciej Kapinos
- CZP Feniks, Daily Ward for Children and Adolescents, Młyńska Street 8, 44-100, Gliwice, Poland
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland
| | - Władysław Grzeszczak
- Department of Internal Medicine, Diabetology, and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 3-go Maja Street 13-15, 41-800, Zabrze, Poland
| | - Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology, and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 3-go Maja Street 13-15, 41-800, Zabrze, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752, Katowice, Poland
| |
Collapse
|
4
|
Lee IS, Kim DW, Oh JH, Lee SK, Choi JY, Kim SG, Kim TW. Effects of 4-Hexylresorcinol on Craniofacial Growth in Rats. Int J Mol Sci 2021; 22:8935. [PMID: 34445640 PMCID: PMC8396282 DOI: 10.3390/ijms22168935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
4-Hexylresorcinol (4HR) has been used as a food additive, however, it has been recently demonstrated as a Class I histone deacetylase inhibitor (HDACi). Unlike other HDACi, 4HR can be taken through foods. Unfortunately, some HDACi have an influence on craniofacial growth, therefore, the purpose of this study was to evaluate the effects of 4HR on craniofacial growth. Saos-2 cells (osteoblast-like cells) were used for the evaluation of HDACi and its associated activities after 4HR administration. For the evaluation of craniofacial growth, 12.8 mg/kg of 4HR was administered weekly to 4 week old rats (male: 10, female: 10) for 12 weeks. Ten rats were used for untreated control (males: 5, females: 5). Body weight was recorded every week. Serum and head samples were collected at 12 weeks after initial administration. Craniofacial growth was evaluated by micro-computerized tomography. Serum was used for ELISA (testosterone and estrogen) and immunoprecipitation high-performance liquid chromatography (IP-HPLC). The administration of 4HR (1-100 μM) showed significant HDACi activity (p < 0.05). Body weight was significantly different in male rats (p < 0.05), and mandibular size was significantly smaller in 4HR-treated male rats with reduced testosterone levels. However, the mandibular size was significantly higher in 4HR treated female rats with increased growth hormone levels. In conclusion, 4HR had HDACi activity in Saos-2 cells. The administration of 4HR on growing rats showed different responses in body weight and mandibular size between sexes.
Collapse
Affiliation(s)
- In-Song Lee
- Department of Orthodontics, School of Dentistry, Seoul National University, Seoul 3080, Korea;
| | - Dae-Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Korea;
| | - Ji-Hyeon Oh
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Korea;
| | - Suk Keun Lee
- Institution of Hydrogen Magnetic Reaction Gene Regulation, Daejeon 34140, Korea;
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center (KMPC), School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Korea;
| | - Tae-Woo Kim
- Department of Orthodontics, School of Dentistry, Seoul National University, Seoul 3080, Korea;
| |
Collapse
|
5
|
Mendelski MN, Dölling R, Feller FM, Hoffmann D, Ramos Fangmeier L, Ludwig KC, Yücel O, Mährlein A, Paul RJ, Philipp B. Steroids originating from bacterial bile acid degradation affect Caenorhabditis elegans and indicate potential risks for the fauna of manured soils. Sci Rep 2019; 9:11120. [PMID: 31366938 PMCID: PMC6668416 DOI: 10.1038/s41598-019-47476-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/15/2019] [Indexed: 02/08/2023] Open
Abstract
Bile acids are steroid compounds from the digestive tracts of vertebrates that enter agricultural environments in unusual high amounts with manure. Bacteria degrading bile acids can readily be isolated from soils and waters including agricultural areas. Under laboratory conditions, these bacteria transiently release steroid compounds as degradation intermediates into the environment. These compounds include androstadienediones (ADDs), which are C19-steroids with potential hormonal effects. Experiments with Caenorhabditis elegans showed that ADDs derived from bacterial bile acid degradation had effects on its tactile response, reproduction rate, and developmental speed. Additional experiments with a deletion mutant as well as transcriptomic analyses indicated that these effects might be conveyed by the putative testosterone receptor NHR-69. Soil microcosms showed that the natural microflora of agricultural soil is readily induced for bile acid degradation accompanied by the transient release of steroid intermediates. Establishment of a model system with a Pseudomonas strain and C. elegans in sand microcosms indicated transient release of ADDs during the course of bile acid degradation and negative effects on the reproduction rate of the nematode. This proof-of-principle study points at bacterial degradation of manure-derived bile acids as a potential and so-far overlooked risk for invertebrates in agricultural soils.
Collapse
Affiliation(s)
- M N Mendelski
- Institute of Zoophysiology, University of Münster (WWU), Münster, Germany
| | - R Dölling
- Institute of Zoophysiology, University of Münster (WWU), Münster, Germany
| | - F M Feller
- Institute of Molecular Microbiology and Biotechnology, University of Münster (WWU), Münster, Germany
| | - D Hoffmann
- Institute of Zoophysiology, University of Münster (WWU), Münster, Germany
| | - L Ramos Fangmeier
- Institute of Zoophysiology, University of Münster (WWU), Münster, Germany
| | - K C Ludwig
- Institute of Molecular Microbiology and Biotechnology, University of Münster (WWU), Münster, Germany.,Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - O Yücel
- Institute of Molecular Microbiology and Biotechnology, University of Münster (WWU), Münster, Germany
| | - A Mährlein
- Institute of Molecular Microbiology and Biotechnology, University of Münster (WWU), Münster, Germany
| | - R J Paul
- Institute of Zoophysiology, University of Münster (WWU), Münster, Germany
| | - B Philipp
- Institute of Molecular Microbiology and Biotechnology, University of Münster (WWU), Münster, Germany.
| |
Collapse
|
6
|
Jeong J, Kim H, Choi J. In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and Androgen Receptors. Int J Mol Sci 2019; 20:ijms20051209. [PMID: 30857347 PMCID: PMC6429066 DOI: 10.3390/ijms20051209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
Molecular docking is used to analyze structural complexes of a target with its ligand for understanding the chemical and structural basis of target specificity. This method has the potential to be applied for discovering molecular initiating events (MIEs) in the Adverse Outcome Pathway framework. In this study, we aimed to develop in silico–in vivo combined approach as a tool for identifying potential MIEs. We used environmental chemicals from Tox21 database to identify potential endocrine-disrupting chemicals (EDCs) through molecular docking simulation, using estrogen receptor (ER), androgen receptor (AR) and their homology models in the nematode Caenorhabditis elegans (NHR-14 and NHR-69, respectively). In vivo validation was conducted on the selected EDCs with C. elegans reproductive toxicity assay using wildtype N2, nhr-14, and nhr-69 loss-of-function mutant strains. The chemicals showed high binding affinity to tested receptors and showed the high in vivo reproductive toxicity, and this was further confirmed using the mutant strains. The present study demonstrates that the binding affinity from the molecular docking potentially correlates with in vivo toxicity. These results prove that our in silico–in vivo combined approach has the potential to be applied for identifying MIEs. This study also suggests the potential of C. elegans as useful in the in vivo model for validating the in silico approach.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea.
| | - Hunbeen Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea.
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea.
| |
Collapse
|
7
|
Osuna-Luque J, Rodríguez-Ramos Á, Gámez-Del-Estal MDM, Ruiz-Rubio M. Behavioral Mechanisms That Depend on Dopamine and Serotonin in Caenorhabditis elegans Interact With the Antipsychotics Risperidone and Aripiprazole. J Exp Neurosci 2018; 12:1179069518798628. [PMID: 30245571 PMCID: PMC6144587 DOI: 10.1177/1179069518798628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022] Open
Abstract
The neurotransmitters dopamine and serotonin participate in specific behavioral neuromuscular mechanisms in the nematode Caenorhabditis elegans. Dopamine is involved in the gentle touch response and serotonin in the pharyngeal pumping rate. In its genome, the worm presents genes encoding dopamine and serotonin receptors orthologous to those of human genes. Risperidone and aripiprazole are a class of drugs known as atypical antipsychotics commonly used to treat schizophrenia, bipolar disorder, and irritability associated with autism. Risperidone is an antagonist of the dopamine D2 and serotonin 5-HT2A receptors. Aripiprazole functions as a partial agonist of the dopamine D2 receptor and as a partial agonist and antagonist of 5-HT1A and 5-HT2A serotonin receptors, respectively. Our results show that risperidone and aripiprazole alter the touch response and pharyngeal pumping in wild-type worm animals. Furthermore, in the presence of the drugs, both behaviors change to varying degrees in dopamine (dop-1, dop-2, and dop-3), serotonin (ser-1), and tyramine (ser-2) receptor-deficient mutants. This variation in response reveals specific targets for these antipsychotics in the nematode. Interestingly, their effect on behavior persisted to some extent in successive generations, indicating that they might induce epigenetic changes throughout development. Sodium butyrate, a histone deacetylase inhibitor, eliminated the consecutive generation effect of both drugs. In addition, these transgenerational effects were also abolished after the dauer stage. These observations suggest that risperidone and aripiprazole, in addition to interacting with specific receptors impairing the function of the nervous system of the nematode, may lead to the deposition of long-lasting epigenetic marks.
Collapse
Affiliation(s)
- Jaime Osuna-Luque
- Department of Genetics, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía, Córdoba, Spain
| | - Ángel Rodríguez-Ramos
- Department of Genetics, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía, Córdoba, Spain
| | - María Del Mar Gámez-Del-Estal
- Department of Genetics, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía, Córdoba, Spain
| | - Manuel Ruiz-Rubio
- Department of Genetics, University of Córdoba, Córdoba, Spain.,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,University Hospital Reina Sofía, Córdoba, Spain
| |
Collapse
|
8
|
Weinhouse C, Truong L, Meyer JN, Allard P. Caenorhabditis elegans as an emerging model system in environmental epigenetics. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:560-575. [PMID: 30091255 PMCID: PMC6113102 DOI: 10.1002/em.22203] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 05/19/2023]
Abstract
The roundworm Caenorhabitis elegans has been an established model organism for the study of genetics and developmental biology, including studies of transcriptional regulation, since the 1970s. This model organism has continued to be used as a classical model system as the field of transcriptional regulation has expanded to include scientific advances in epigenetics and chromatin biology. In the last several decades, C. elegans has emerged as a powerful model for environmental toxicology, particularly for the study of chemical genotoxicity. Here, we outline the utility and applicability of C. elegans as a powerful model organism for mechanistic studies of environmental influences on the epigenome. Our goal in this article is to inform the field of environmental epigenetics of the strengths and limitations of the well-established C. elegans model organism as an emerging model for medium-throughput, in vivo exploration of the role of exogenous chemical stimuli in transcriptional regulation, developmental epigenetic reprogramming, and epigenetic memory and inheritance. As the field of environmental epigenetics matures, and research begins to map mechanisms underlying observed associations, new toolkits and model systems, particularly manipulable, scalable in vivo systems that accurately model human transcriptional regulatory circuits, will provide an essential experimental bridge between in vitro biochemical experiments and mammalian model systems. Environ. Mol. Mutagen. 59:560-575, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caren Weinhouse
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Lisa Truong
- UCLA Human Genetics and Genomic Analysis Training Program, University of California, Los Angeles; Los Angeles, California
| | - Joel N. Meyer
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Patrick Allard
- Institute for Society and Genetics, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Neurodevelopmental disorders disproportionately affect males. The mechanisms underlying male vulnerability or female protection are not known and remain understudied. Determining the processes involved is crucial to understanding the etiology and advancing treatment of neurodevelopmental disorders. Here, we review current findings and theories that contribute to male preponderance of neurodevelopmental disorders, with a focus on autism. RECENT FINDINGS Recent work on the biological basis of the male preponderance of autism and other neurodevelopmental disorders includes discussion of a higher genetic burden in females and sex-specific gene mutations or epigenetic changes that differentially confer risk to males or protection to females. Other mechanisms discussed are sex chromosome and sex hormone involvement. Specifically, fetal testosterone is involved in many aspects of development and may interact with neurotransmitter, neuropeptide, or immune pathways to contribute to male vulnerability. Finally, the possibilities of female underdiagnosis and a multi-hit hypothesis are discussed. This review highlights current theories of male bias in developmental disorders. Topics include environmental, genetic, and epigenetic mechanisms; theories of sex chromosomes, hormones, neuroendocrine, and immune function; underdiagnosis of females; and a multi-hit hypothesis.
Collapse
Affiliation(s)
- Sarah L. Ferri
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA 52242 USA
| | - Ted Abel
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA 52242 USA
| | - Edward S. Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2202, Philadelphia, PA 19104-3403 USA
| |
Collapse
|
10
|
Wang H, Doering LC. Autism spectrum disorders: emerging mechanisms and mechanism-based treatment. Front Cell Neurosci 2015; 9:183. [PMID: 26029053 PMCID: PMC4428121 DOI: 10.3389/fncel.2015.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/27/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Laurie C Doering
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University Hamilton, ON, Canada
| |
Collapse
|
11
|
Rissman EF, Adli M. Minireview: transgenerational epigenetic inheritance: focus on endocrine disrupting compounds. Endocrinology 2014; 155:2770-80. [PMID: 24885575 PMCID: PMC4098001 DOI: 10.1210/en.2014-1123] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The idea that what we eat, feel, and experience influences our physical and mental state and can be transmitted to our offspring and even to subsequent generations has been in the popular realm for a long time. In addition to classic gene mutations, we now recognize that some mechanisms for inheritance do not require changes in DNA. The field of epigenetics has provided a new appreciation for the variety of ways biological traits can be transmitted to subsequent generations. Thus, transgenerational epigenetic inheritance has emerged as a new area of research. We have four goals for this minireview. First, we describe the topic and some of the nomenclature used in the literature. Second, we explain the major epigenetic mechanisms implicated in transgenerational inheritance. Next, we examine some of the best examples of transgenerational epigenetic inheritance, with an emphasis on those produced by exposing the parental generation to endocrine-disrupting compounds (EDCs). Finally, we discuss how whole-genome profiling approaches can be used to identify aberrant epigenomic features and gain insight into the mechanism of EDC-mediated transgenerational epigenetic inheritance. Our goal is to educate readers about the range of possible epigenetic mechanisms that exist and encourage researchers to think broadly and apply multiple genomic and epigenomic technologies to their work.
Collapse
Affiliation(s)
- Emilie F Rissman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | |
Collapse
|