1
|
Lucchiari S, Fortunato F, Meola G, Mignarri A, Pagliarani S, Corti S, Comi GP, Ronchi D. Case report: Multiple approach analysis in a case of clinically assessed myotonia congenita. Front Genet 2024; 15:1486977. [PMID: 39712484 PMCID: PMC11659273 DOI: 10.3389/fgene.2024.1486977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Myotonia congenita, both in a dominant (Thomsen disease) and recessive form (Becker disease), is caused by molecular defects in CLCN1 that encodes the major skeletal muscle chloride channel, ClC-1. This channel is important for the normal repolarization of muscle action potentials and consequent relaxation of the muscle, and its dysfunction leads to impaired muscle relaxation after voluntary or evoked contraction and muscle stiffness. More than 300 CLCN1 pathogenic variants have been found in association with congenital myotonia, inherited as recessive or dominant traits (with complete or incomplete penetrance). In this study, we describe the case of a 44-year-old woman complaining of "leg stiffness" since the age of 20 years and presenting with transient muscle weakness, especially after sitting for several minutes, with grip myotonia and feet myotonia, cold-sensitive and warm-up. The strength was normal, but muscle hypertrophy in the lower limbs was evident. EMG myotonia was detected in all explored muscles. The patient's father had precocious cataract correction but did not show myotonic discharges at EMG. Examination of the patient's sons (aged 18 years and 12 years) was unremarkable. The patient started treatment with mexiletine, with improvement in grip myotonia and limb stiffness, but it was soon interrupted due to gastrointestinal disturbances. Direct sequencing of CLCN1 identified the previously described heterozygous intronic variant c.1471 + 1G > A, which resulted in the skipping of exon 13 in the CLCN1 muscle transcript. In addition, the rare heterozygous synonymous nucleotide change c.762C > T p.Cys254Cys was identified and predicted to alter physiological splicing. The detection of multiple splicing abnormalities leading to premature termination codons supported the in silico prediction. We developed a Western blot assay to assess the ClC-1 protein in muscle biopsy, and we observed that ClC-1 levels were consistently reduced in the patient's muscle, supporting the pathogenic behavior of the variants disclosed. Overall, we report a novel case of Becker myotonia and highlight the importance of multiple levels of analysis to achieve a firm molecular diagnosis.
Collapse
Affiliation(s)
- Sabrina Lucchiari
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesco Fortunato
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Department of Biomedical Sciences for Health, Fondazione Malattie Miotoniche ETS, University of Milan, Milan, Italy
| | - Andrea Mignarri
- Unit of Neurology and Neurometabolic Diseases, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Serena Pagliarani
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neuromuscular and Rare Disease Unit, Department of Neuroscience, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
2
|
Bertomeu JB, Fioravanço LP, Ramis TR, Godinho DB, Nascimento AS, Lima GC, Furian AF, Oliveira MS, Fighera MR, Royes LFF. The Role of Ion-Transporting Proteins on Crosstalk Between the Skeletal Muscle and Central Nervous Systems Elicited by Physical Exercise. Mol Neurobiol 2024:10.1007/s12035-024-04613-7. [PMID: 39578339 DOI: 10.1007/s12035-024-04613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
A paradigm shift in the understanding of bidirectional interactions between peripheral and central nervous systems is essential for development of rehabilitation and preventive interventions based on physical exercise. Although a causal relationship has not been completely established, modulation of voltage-dependent ion channels (Ca2+, Cl-, K+, Na+, lactate-, H+) in skeletal and neuronal cells provides opportunities to maintain force production during exercise and reduce the risk of disease. However, there are caveats to consider when interpreting the effects of physical exercise on this bidirectional axis, since exercise protocol details (e.g., duration and intensity) have variable effects on this crosstalk. Therefore, an integrative perspective of the skeletal muscle and brain's communication pathway is discussed, and the role of physical exercise on such communication highway is explained in this review.
Collapse
Affiliation(s)
- Judit Borràs Bertomeu
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Paiva Fioravanço
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Thiago Rozales Ramis
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Douglas Buchmann Godinho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alexandre Seixas Nascimento
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriel Corrêa Lima
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Graduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Graduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Laboratory of Experimental and Clinical Neuropsychiatry, Department of Neuropsychiatry, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Luiz Fernando Freire Royes
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Sports Methods and Techniques, Center of Physical Education and , Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
3
|
Marinakis NM, Svingou M, Papadimas GK, Papadopoulos C, Chroni E, Pons R, Pavlou E, Sarmas I, Kosma K, Apostolou P, Sofocleous C, Traeger-Synodinos J, Kekou K. Myotonia congenita in a Greek cohort: Genotype spectrum and impact of the CLCN1:c.501C > G variant as a genetic modifier. Muscle Nerve 2024; 70:240-247. [PMID: 38855810 DOI: 10.1002/mus.28180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION/AIMS Myotonia congenita (MC) is the most common hereditary channelopathy in humans. Characterized by muscle stiffness, MC may be transmitted as either an autosomal dominant (Thomsen) or a recessive (Becker) disorder. MC is caused by variants in the voltage-gated chloride channel 1 (CLCN1) gene, important for the normal repolarization of the muscle action potential. More than 250 disease-causing variants in the CLCN1 gene have been reported. This study provides an MC genotype-phenotype spectrum in a large cohort of Greek patients and focuses on novel variants and disease epidemiology, including additional insights for the variant CLCN1:c.501C > G. METHODS Sanger sequencing for the entire coding region of the CLCN1 gene was performed. Targeted segregation analysis of likely candidate variants in additional family members was performed. Variant classification was based on American College of Medical Genetics (ACMG) guidelines. RESULTS Sixty-one patients from 47 unrelated families were identified, consisting of 51 probands with Becker MC (84%) and 10 with Thomsen MC (16%). Among the different variants detected, 11 were novel and 16 were previously reported. The three most prevalent variants were c.501C > G, c.2680C > T, and c.1649C > G. Additionally, c.501C > G was detected in seven Becker cases in-cis with the c.1649C > G. DISCUSSION The large number of patients in whom a diagnosis was established allowed the characterization of genotype-phenotype correlations with respect to both previously reported and novel findings. For the c.501C > G (p.Phe167Leu) variant a likely nonpathogenic property is suggested, as it only seems to act as an aggravating modifying factor in cases in which a pathogenic variant triggers phenotypic expression.
Collapse
Affiliation(s)
- Nikolaos M Marinakis
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Svingou
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Giorgos-Konstantinos Papadimas
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Papadopoulos
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Rio-Patras, Greece
| | - Roser Pons
- First Department of Pediatrics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Pavlou
- Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, University General Hospital AHEPA, Thessaloniki, Greece
| | - Ioannis Sarmas
- Department of Neurology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Konstantina Kosma
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Apostolou
- Human Molecular Genetics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Elaraby NM, Ahmed HA, Dawoud H, Ashaat NA, Azmy A, Galal ER, Elhusseny Y, Awady HE, Metwally AM, Ashaat EA. Clinical and molecular characterization of myotonia congenita using whole-exome sequencing in Egyptian patients. Mol Biol Rep 2024; 51:766. [PMID: 38877370 DOI: 10.1007/s11033-024-09646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Myotonia Congenita (MC) is a rare disease classified into two major forms; Thomsen and Becker disease caused by mutations in the CLCN1 gene, which affects muscle excitability and encodes voltage-gated chloride channels (CLC-1). While, there are no data regarding the clinical and molecular characterization of myotonia in Egyptian patients. METHODS Herein, we report seven Egyptian MC patients from six unrelated families. Following the clinical diagnosis, whole-exome sequencing (WES) was performed for genetic diagnosis. Various in silico prediction tools were utilized to interpret variant pathogenicity. The candidate variants were then validated using Sanger sequencing technique. RESULTS In total, seven cases were recruited. The ages at the examination were ranged from eight months to nineteen years. Clinical manifestations included warm-up phenomenon, hand grip, and percussion myotonia. Electromyography was performed in all patients and revealed myotonic discharges. Molecular genetic analysis revealed five different variants. Of them, we identified two novel variants in the CLCN1 gene ( c.1583G > C; p.Gly528Ala and c.2203_2216del;p.Thr735ValfsTer57) and three known variants in the CLCN1 and SCN4A gene. According to in silico tools, the identified novel variants were predicted to have deleterious effects. CONCLUSIONS As the first study to apply WES among Egyptian MC patients, our findings reported two novel heterozygous variants that expand the CLCN1 mutational spectrum for MC diagnosis. These results further confirm that genetic testing is essential for early diagnosis of MC, which affects follow-up treatment and prognostic assessment in clinical practice.
Collapse
Affiliation(s)
- Nesma M Elaraby
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Hoda A Ahmed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Heba Dawoud
- Pediatric Department, Tanta University, Gharbia, Egypt
| | - Neveen A Ashaat
- Professor of Human Genetics, Ain Shams University, Cairo, Egypt
| | - Ashraf Azmy
- Child Health Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Eman Reda Galal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Yasmine Elhusseny
- Lecturer of Medical Biochemistry and Molecular Biology, School of Medicine, Newgiza University, Giza, Egypt
| | - Heba El Awady
- Pediatric Department, Fayoum University Hospitals, Fayoum, Egypt
| | - Ammal M Metwally
- Community Medicine Research Department/Medical Research, Clinical Studies Institute/National Research Centre (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Qaisar R. Targeting neuromuscular junction to treat neuromuscular disorders. Life Sci 2023; 333:122186. [PMID: 37858716 DOI: 10.1016/j.lfs.2023.122186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The integrity and preservation of the neuromuscular junction (NMJ), the interface between the motor neuron and skeletal muscle, is critical for maintaining a healthy skeletal muscle. The structural and/or functional defects in the three cellular components of NMJ, namely the pre-synaptic terminal, synaptic cleft, and post-synaptic region, negatively affect skeletal muscle mass and/or strength. Therefore, NMJ repair appears to be an appropriate therapy for muscle disorders. Mouse models provide a detailed molecular characterization of various cellular components of NMJ with relevance to human diseases. This review discusses different molecular targets on the three cellular components of NMJ for treating muscle diseases. The potential effects of these therapies on NMJ morphology and motor performance, their therapeutic efficacy, and clinical relevance are discussed. Collectively, the available data supports targeting NMJ alone or as an adjunct therapy in treating muscle disorders. However, the potential impact of such interventions on human patients with muscle disorders requires further investigation.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Space Medicine Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
6
|
Micheli L, D'Andrea G, Creanza TM, Volpe D, Ancona N, Scardigli R, Tirone F. Transcriptome analysis reveals genes associated with stem cell activation by physical exercise in the dentate gyrus of aged p16Ink4a knockout mice. Front Cell Dev Biol 2023; 11:1270892. [PMID: 37928906 PMCID: PMC10621069 DOI: 10.3389/fcell.2023.1270892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Throughout adulthood neural stem cells divide in neurogenic niches-the dentate gyrus of the hippocampus and the subventricular zone-producing progenitor cells and new neurons. Stem cells self-renew, thus preserving their pool. Furthermore, the number of stem/progenitor cells in the neurogenic niches decreases with age. We have previously demonstrated that the cyclin-dependent kinase inhibitor p16Ink4a maintains, in aged mice, the pool of dentate gyrus stem cells by preventing their activation after a neurogenic stimulus such as exercise (running). We showed that, although p16Ink4a ablation by itself does not activate stem/progenitor cells, exercise strongly induced stem cell proliferation in p16Ink4a knockout dentate gyrus, but not in wild-type. As p16Ink4a regulates stem cell self-renewal during aging, we sought to profile the dentate gyrus transcriptome from p16Ink4a wild-type and knockout aged mice, either sedentary or running for 12 days. By pairwise comparisons of differentially expressed genes and by correlative analyses through the DESeq2 software, we identified genes regulated by p16Ink4a deletion, either without stimulus (running) added, or following running. The p16Ink4a knockout basic gene signature, i.e., in sedentary mice, involves upregulation of apoptotic, neuroinflammation- and synaptic activity-associated genes, suggesting a reactive cellular state. Conversely, another set of 106 genes we identified, whose differential expression specifically reflects the pattern of proliferative response of p16 knockout stem cells to running, are involved in processes that regulate stem cell activation, such as synaptic function, neurotransmitter metabolism, stem cell proliferation control, and reactive oxygen species level regulation. Moreover, we analyzed the regulation of these stem cell-specific genes after a second running stimulus. Surprisingly, the second running neither activated stem cell proliferation in the p16Ink4a knockout dentate gyrus nor changed the expression of these genes, confirming that they are correlated to the stem cell reactivity to stimulus, a process where they may play a role regulating stem cell activation.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Daniel Volpe
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- European Brain Research Institute (EBRI), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| |
Collapse
|
7
|
Brenes O, Pusch M, Morales F. ClC-1 Chloride Channel: Inputs on the Structure-Function Relationship of Myotonia Congenita-Causing Mutations. Biomedicines 2023; 11:2622. [PMID: 37892996 PMCID: PMC10604815 DOI: 10.3390/biomedicines11102622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 10/29/2023] Open
Abstract
Myotonia congenita is a hereditary muscle disease mainly characterized by muscle hyperexcitability, which leads to a sustained burst of discharges that correlates with the magnitude and duration of involuntary aftercontractions, muscle stiffness, and hypertrophy. Mutations in the chloride voltage-gated channel 1 (CLCN1) gene that encodes the skeletal muscle chloride channel (ClC-1) are responsible for this disease, which is commonly known as myotonic chloride channelopathy. The biophysical properties of the mutated channel have been explored and analyzed through in vitro approaches, providing important clues to the general function/dysfunction of the wild-type and mutated channels. After an exhaustive search for CLCN1 mutations, we report in this review more than 350 different mutations identified in the literature. We start discussing the physiological role of the ClC-1 channel in skeletal muscle functioning. Then, using the reported functional effects of the naturally occurring mutations, we describe the biophysical and structural characteristics of the ClC-1 channel to update the knowledge of the function of each of the ClC-1 helices, and finally, we attempt to point out some patterns regarding the effects of mutations in the different helices and loops of the protein.
Collapse
Affiliation(s)
- Oscar Brenes
- Departamento de Fisiología, Escuela de Medicina, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
- Centro de Investigación en Neurociencias (CIN), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Michael Pusch
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
8
|
Vicino A, Brugnoni R, Maggi L. Diagnostics in skeletal muscle channelopathies. Expert Rev Mol Diagn 2023; 23:1175-1193. [PMID: 38009256 DOI: 10.1080/14737159.2023.2288258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Skeletal muscle channelopathies (SMCs) are a heterogenous group of disorders, caused by mutations in skeletal ion channels leading to abnormal muscle excitability, resulting in either delayed muscle relaxation (myotonia) which characterizes non-dystrophic myotonias (NDMs), or membrane transient inactivation, causing episodic weakness, typical of periodic paralyses (PPs). AREAS COVERED SMCs include myotonia congenita, paramyotonia congenita, and sodium-channel myotonia among NDMs, and hyper-normokalemic, hypokalemic, or late-onset periodic paralyses among PPs. When suspecting an SMC, a structured diagnostic approach is required. Detailed personal and family history and clinical examination are essential, while neurophysiological tests should confirm myotonia and rule out alternative diagnosis. Moreover, specific electrodiagnostic studies are important to further define the phenotype of de novo cases and drive molecular analyses together with clinical data. Definite diagnosis is achieved through genetic testing, either with Sanger sequencing or multigene next-generation sequencing panel. In still unsolved patients, more advanced techniques, as exome-variant sequencing or whole-genome sequencing, may be considered in expert centers. EXPERT OPINION The diagnostic approach to SMC is still mainly based on clinical data; moreover, definite diagnosis is sometimes complicated by the difficulty to establish a proper genotype-phenotype correlation. Lastly, further studies are needed to allow the genetic characterization of unsolved patients.
Collapse
Affiliation(s)
- Alex Vicino
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Nerve-Muscle Unit, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raffaella Brugnoni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Maggi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
9
|
Ma T, Wang L, Chai A, Liu C, Cui W, Yuan S, Wing Ngor Au S, Sun L, Zhang X, Zhang Z, Lu J, Gao Y, Wang P, Li Z, Liang Y, Vogel H, Wang YT, Wang D, Yan K, Zhang H. Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42. Nat Commun 2023; 14:3424. [PMID: 37296152 PMCID: PMC10256776 DOI: 10.1038/s41467-023-39218-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
ClC-2 transports chloride ions across plasma membranes and plays critical roles in cellular homeostasis. Its dysfunction is involved in diseases including leukodystrophy and primary aldosteronism. AK-42 was recently reported as a specific inhibitor of ClC-2. However, experimental structures are still missing to decipher its inhibition mechanism. Here, we present cryo-EM structures of apo ClC-2 and its complex with AK-42, both at 3.5 Å resolution. Residues S162, E205 and Y553 are involved in chloride binding and contribute to the ion selectivity. The side-chain of the gating glutamate E205 occupies the putative central chloride-binding site, indicating that our structure represents a closed state. Structural analysis, molecular dynamics and electrophysiological recordings identify key residues to interact with AK-42. Several AK-42 interacting residues are present in ClC-2 but not in other ClCs, providing a possible explanation for AK-42 specificity. Taken together, our results experimentally reveal the potential inhibition mechanism of ClC-2 inhibitor AK-42.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- National Science and Technology Innovation 2030 Major Program (No. 2022ZD0211900)
- the Science and Technology Innovation Committee of Shenzhen(No. JCYJ20200109150700942), the Key-Area Research and Development Program of Guangdong Province (2019B030335001), the Shenzhen Fund for Guangdong Provincial High Level Clinical Key Specialties (No. SZGSP013), and the Shenzhen Key Medical Discipline Construction Fund (No. SZXK042)
- The Shenzhen Key Laboratory of Computer Aided Drug Discovery, Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China, Funding number: ZDSYS20201230165400001. The Chinese Academy of Science President’s International Fellowship Initiative (PIFI) (No. 2020FSB0003), Guangdong Retired Expert (granted by Guangdong Province), National Overseas High Level Talent Introduction Plan-Foreign Expert from Organization Department of the CPC Central Committee (1000 talent project), Shenzhen Pengcheng Scientist, NSFC-SNSF Funding (No. 32161133022), AlphaMol & SIAT Joint Laboratory, Shenzhen Government Top-talent Working Funding and Guangdong Province Academician Work Funding.
- NSFC-Guangdong Joint Fund-U20A6005, Shenzhen Key Laboratory of Translational Research for Brain Diseases (ZDSYS20200828154800001)
- Shenzhen Science and Technology Program (No. JCYJ20220530115214033 and No. KQTD20210811090115021)
Collapse
Affiliation(s)
- Tao Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Lei Wang
- School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Anping Chai
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, Shenzhen, Guangdong, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wenqiang Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuguang Yuan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Shannon Wing Ngor Au
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liang Sun
- Shenzhen Shuli Tech Co., Ltd, 518126, Shenzhen, Guangdong, China
| | - Xiaokang Zhang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, Shenzhen, Guangdong, China
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
| | - Zhenzhen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Yuanzhu Gao
- Cryo-EM Facility Center, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Peiyi Wang
- Cryo-EM Facility Center, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Zhifang Li
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Yu Tian Wang
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China.
| | - Daping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, China.
| | - Kaige Yan
- School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Huawei Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
10
|
Álvarez-Abril MC, García-Alcover I, Colonques-Bellmunt J, Garijo R, Pérez-Alonso M, Artero R, López-Castel A. Natural Compound Boldine Lessens Myotonic Dystrophy Type 1 Phenotypes in DM1 Drosophila Models, Patient-Derived Cell Lines, and HSA LR Mice. Int J Mol Sci 2023; 24:9820. [PMID: 37372969 PMCID: PMC10298378 DOI: 10.3390/ijms24129820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex rare disorder characterized by progressive muscle dysfunction, involving weakness, myotonia, and wasting, but also exhibiting additional clinical signs in multiple organs and systems. Central dysregulation, caused by an expansion of a CTG trinucleotide repeat in the DMPK gene's 3' UTR, has led to exploring various therapeutic approaches in recent years, a few of which are currently under clinical trial. However, no effective disease-modifying treatments are available yet. In this study, we demonstrate that treatments with boldine, a natural alkaloid identified in a large-scale Drosophila-based pharmacological screening, was able to modify disease phenotypes in several DM1 models. The most significant effects include consistent reduction in nuclear RNA foci, a dynamic molecular hallmark of the disease, and noteworthy anti-myotonic activity. These results position boldine as an attractive new candidate for therapy development in DM1.
Collapse
Affiliation(s)
| | - Irma García-Alcover
- Valentia BioPharma S.L., 46980 Paterna, Spain (R.A.)
- Human Translational Genomics Group, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Spain
| | | | - Raquel Garijo
- Valentia BioPharma S.L., 46980 Paterna, Spain (R.A.)
| | - Manuel Pérez-Alonso
- Valentia BioPharma S.L., 46980 Paterna, Spain (R.A.)
- Human Translational Genomics Group, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Spain
- Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Rubén Artero
- Valentia BioPharma S.L., 46980 Paterna, Spain (R.A.)
- Human Translational Genomics Group, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Spain
- Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Arturo López-Castel
- Valentia BioPharma S.L., 46980 Paterna, Spain (R.A.)
- Human Translational Genomics Group, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Spain
- Incliva Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
11
|
Progressive development of melanoma-induced cachexia differentially impacts organ systems in mice. Cell Rep 2023; 42:111934. [PMID: 36640353 PMCID: PMC9983329 DOI: 10.1016/j.celrep.2022.111934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
Cachexia is a systemic wasting syndrome that increases cancer-associated mortality. How cachexia progressively and differentially impacts distinct tissues is largely unknown. Here, we find that the heart and skeletal muscle undergo wasting at early stages and are the tissues transcriptionally most impacted by cachexia. We also identify general and organ-specific transcriptional changes that indicate functional derangement by cachexia even in tissues that do not undergo wasting, such as the brain. Secreted factors constitute a top category of cancer-regulated genes in host tissues, and these changes include upregulation of the angiotensin-converting enzyme (ACE). ACE inhibition with the drug lisinopril improves muscle force and partially impedes cachexia-induced transcriptional changes, although wasting is not prevented, suggesting that cancer-induced host-secreted factors can regulate tissue function during cachexia. Altogether, by defining prevalent and temporal and tissue-specific responses to cachexia, this resource highlights biomarkers and possible targets for general and tissue-tailored anti-cachexia therapies.
Collapse
|
12
|
Musa NH, Thilakavathy K, Mohamad NA, Kennerson ML, Inche Mat LN, Loh WC, Abdul Rashid AM, Baharin J, Ibrahim A, Wan Sulaiman WA, Hoo FK, Basri H, Yusof Khan AHK. Case report: Incomplete penetrance of autosomal dominant myotonia congenita caused by a rare CLCN1 variant c.1667T>A (p.I556N) in a Malaysian family. Front Genet 2023; 13:972007. [PMID: 36659963 PMCID: PMC9842662 DOI: 10.3389/fgene.2022.972007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 01/04/2023] Open
Abstract
Myotonia congenita (MC) is a rare neuromuscular disease caused by mutations within the CLCN1 gene encoding skeletal muscle chloride channels. MC is characterized by delayed muscle relaxation during contraction, resulting in muscle stiffness. There is a lack of MC case reports and data on the prevalence among Malaysians. We report a clinical case of a 50-year-old woman presents with muscle stiffness and cramp episodes that started in early childhood. She had difficulty initiating muscle movement and presented with transient muscle weakness after rest, which usually improved after repeated contraction (warm-up phenomenon). She was diagnosed with MC after myotonic discharge on electromyography (EMG). Her brother had similar symptoms; however, no additional family members showed MC symptoms. Serum creatine kinase levels were elevated in both the proband and her brother with 447 U/L and 228 U/L recorded, respectively. Genetic analysis by whole-exome sequencing (WES) revealed a previously reported pathogenic CLCN1 gene variant c.1667T>A (p.I556N). Genetic screening of all family members revealed that the same variant was observed in the children of both the proband and her brother; however, the children did not present with either clinical or electrophysiological MC symptoms. The multiplex ligation-dependent probe amplification (MLPA) analysis conducted identified neither exon deletion nor duplication in CLCN1. In conclusion, this report describes the first case of MC in Malaysia in which incomplete penetrance observed in this family is caused by a known pathogenic CLCN1 variant.
Collapse
Affiliation(s)
- Nurul Huda Musa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia,Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil, Selangor, Malaysia
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia,Genetics and Regenerative Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia,*Correspondence: Abdul Hanif Khan Yusof Khan, ; Karuppiah Thilakavathy,
| | - Nur Afiqah Mohamad
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia,Center for Foundation Studies, Foundation in Science, Lincoln University College, Petaling Jaya, Malaysia
| | - Marina L. Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wei Chao Loh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Anna Misyail Abdul Rashid
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Janudin Baharin
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azliza Ibrahim
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Fan Kee Hoo
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia,*Correspondence: Abdul Hanif Khan Yusof Khan, ; Karuppiah Thilakavathy,
| |
Collapse
|
13
|
Al-Sabri MH, Behare N, Alsehli AM, Berkins S, Arora A, Antoniou E, Moysiadou EI, Anantha-Krishnan S, Cosmen PD, Vikner J, Moulin TC, Ammar N, Boukhatmi H, Clemensson LE, Rask-Andersen M, Mwinyi J, Williams MJ, Fredriksson R, Schiöth HB. Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy: Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes. Cells 2022; 11:3528. [PMID: 36428957 PMCID: PMC9688544 DOI: 10.3390/cells11223528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.
Collapse
Affiliation(s)
- Mohamed H. Al-Sabri
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Neha Behare
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Ahmed M. Alsehli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, King Abdulaziz University and Hospital, Al Ehtifalat St., Jeddah 21589, Saudi Arabia
| | - Samuel Berkins
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Aadeya Arora
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eirini Antoniou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eleni I. Moysiadou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Sowmya Anantha-Krishnan
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Patricia D. Cosmen
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Johanna Vikner
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Thiago C. Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Sölvegatan 19, BMC F10, 221 84 Lund, Sweden
| | - Nourhene Ammar
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Laura E. Clemensson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Michael J. Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| |
Collapse
|
14
|
Cordenier A, Flamez A, de Ravel T, Gheldof A, Pannone L, De Asmundis C, Pappaert G, Bissay V. Case report: Coexistence of myotonia congenita and Brugada syndrome in one family. Front Neurol 2022; 13:1011956. [PMID: 36212636 PMCID: PMC9537820 DOI: 10.3389/fneur.2022.1011956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Myotonia congenita is a rare neuromuscular disorder caused by CLCN1 mutations resulting in delayed muscle relaxation. Extramuscular manifestations are not considered to be present in chloride skeletal channelopathies, although recently some cardiac manifestations have been described. We report a family with autosomal dominant myotonia congenita and Brugada syndrome. Bearing in mind the previously reported cases of cardiac arrhythmias in myotonia congenita patients, we discuss the possible involvement of the CLCN1-gene mutations in primary cardiac arrhythmia.
Collapse
Affiliation(s)
- Ann Cordenier
- Department of Neurology, Center for Neurosciences, Vrije Universiteit Brussel (VUB), UZ-Brussel, Brussels, Belgium
- *Correspondence: Ann Cordenier
| | - Anja Flamez
- Department of Neurology, Center for Neurosciences, Vrije Universiteit Brussel (VUB), UZ-Brussel, Brussels, Belgium
| | - Thomy de Ravel
- Center for Medical Genetics, Vrije Universiteit Brussel (VUB), UZ-Brussel, Brussels, Belgium
| | - Alexander Gheldof
- Center for Medical Genetics, Vrije Universiteit Brussel (VUB), UZ-Brussel, Brussels, Belgium
| | - Luigi Pannone
- Heart Rhythm Management Centre, Vrije Universiteit Brussel (VUB), UZ-Brussel, Brussels, Belgium
| | - Carlo De Asmundis
- Heart Rhythm Management Centre, Vrije Universiteit Brussel (VUB), UZ-Brussel, Brussels, Belgium
| | - Gudrun Pappaert
- Heart Rhythm Management Centre, Vrije Universiteit Brussel (VUB), UZ-Brussel, Brussels, Belgium
| | - Véronique Bissay
- Department of Neurology, Center for Neurosciences, Vrije Universiteit Brussel (VUB), UZ-Brussel, Brussels, Belgium
| |
Collapse
|
15
|
Wang Q, Zhao Z, Shen H, Bing Q, Li N, Hu J. The Clinical, Myopathological, and Genetic Analysis of 20 Patients With Non-dystrophic Myotonia. Front Neurol 2022; 13:830707. [PMID: 35350395 PMCID: PMC8957821 DOI: 10.3389/fneur.2022.830707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Non-dystrophic myotonias (NDMs) are skeletal muscle ion channelopathies caused by CLCN1 or SCN4A mutations. This study aimed to describe the clinical, myopathological, and genetic analysis of NDM in a large Chinese cohort. Methods We reviewed the clinical manifestations, laboratory results, electrocardiogram, electromyography, muscle biopsy, genetic analysis, treatment, and follow-up of 20 patients (from 18 families) with NDM. Results Cases included myotonia congenita (MC, 17/20) and paramyotonia congenita (PMC, 3/20). Muscle stiffness and hypertrophy, grip and percussion myotonia, and the warm-up phenomenon were frequently observed in MC and PMC patients. Facial stiffness, eye closure myotonia, and cold sensitivity were more common in PMC patients and could be accompanied by permanent weakness. Nine MC patients and two PMC patients had cardiac abnormalities, mainly manifested as cardiac arrhythmia, and the father of one patient died of sudden cardiac arrest. Myotonic runs in electromyography were found in all patients, and seven MC patients had mild myopathic changes. There was no difference in muscle pathology between MC and PMC patients, most of whom had abnormal muscle fiber type distribution or selective muscle fiber atrophy. Nineteen CLCN1 variants were found in 17 MC patients, among which c.795T>G (p.D265E) was a new variant, and two SCN4A variants were found in three PMC patients. The patients were treated with mexiletine and/or carbamazepine, and the symptoms of myotonia were partially improved. Conclusions MC and PMC have considerable phenotypic overlap. Genetic investigation contributes to identifying the subtype of NDM. The muscle pathology of NDM lacks specific changes.
Collapse
Affiliation(s)
- Quanquan Wang
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Qilu Hospital of Shandong University, Qingdao, China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongrui Shen
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qi Bing
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nan Li
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Yarotskyy V, Lark ARS, Nass SR, Hahn YK, Marone MG, McQuiston AR, Knapp PE, Hauser KF. Chloride channels with ClC-1-like properties differentially regulate the excitability of dopamine receptor D1- and D2-expressing striatal medium spiny neurons. Am J Physiol Cell Physiol 2022; 322:C395-C409. [PMID: 35080921 PMCID: PMC8917939 DOI: 10.1152/ajpcell.00397.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamic chloride (Cl-) regulation is critical for synaptic inhibition. In mature neurons, Cl- influx and extrusion are primarily controlled by ligand-gated anion channels (GABAA and glycine receptors) and the potassium chloride cotransporter K+-Cl- cotransporter 2 (KCC2), respectively. Here, we report for the first time, to our knowledge, a presence of a new source of Cl- influx in striatal neurons with properties similar to chloride voltage-gated channel 1 (ClC-1). Using whole cell patch-clamp recordings, we detected an outwardly rectifying voltage-dependent current that was impermeable to the large anion methanesulfonate (MsO-). The anionic current was sensitive to the ClC-1 inhibitor 9-anthracenecarboxylic acid (9-AC) and the nonspecific blocker phloretin. The mean fractions of anionic current inhibition by MsO-, 9-AC, and phloretin were not significantly different, indicating that anionic current was caused by active ClC-1-like channels. In addition, we found that Cl- current was not sensitive to the transmembrane protein 16A (TMEM16A; Ano1) inhibitor Ani9 and that the outward Cl- rectification was preserved even at a very high intracellular Ca2+ concentration (2 mM), indicating that TMEM16B (Ano2) did not contribute to the total current. Western blotting and immunohistochemical analyses confirmed the presence of ClC-1 channels in the striatum mainly localized to the somata of striatal neurons. Finally, we found that 9-AC decreased action potential firing frequencies and increased excitability in medium spiny neurons (MSNs) expressing dopamine type 1 (D1) and type 2 (D2) receptors in the brain slices, respectively. We conclude that ClC-1-like channels are preferentially located at the somata of MSNs, are functional, and can modulate neuronal excitability.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Arianna R. S. Lark
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sara R. Nass
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Yun K. Hahn
- 2Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Michael G. Marone
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - A. Rory McQuiston
- 2Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Pamela E. Knapp
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia,2Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia,3Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Kurt F. Hauser
- 1Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia,2Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia,3Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Morris CE, Wheeler JJ, Joos B. The Donnan-dominated resting state of skeletal muscle fibers contributes to resilience and longevity in dystrophic fibers. J Gen Physiol 2022; 154:212743. [PMID: 34731883 PMCID: PMC8570295 DOI: 10.1085/jgp.202112914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked dystrophin-minus muscle-wasting disease. Ion homeostasis in skeletal muscle fibers underperforms as DMD progresses. But though DMD renders these excitable cells intolerant of exertion, sodium overloaded, depolarized, and spontaneously contractile, they can survive for several decades. We show computationally that underpinning this longevity is a strikingly frugal, robust Pump-Leak/Donnan (P-L/D) ion homeostatic process. Unlike neurons, which operate with a costly “Pump-Leak–dominated” ion homeostatic steady state, skeletal muscle fibers operate with a low-cost “Donnan-dominated” ion homeostatic steady state that combines a large chloride permeability with an exceptionally small sodium permeability. Simultaneously, this combination keeps fiber excitability low and minimizes pump expenditures. As mechanically active, long-lived multinucleate cells, skeletal muscle fibers have evolved to handle overexertion, sarcolemmal tears, ischemic bouts, etc.; the frugality of their Donnan dominated steady state lets them maintain the outsized pump reserves that make them resilient during these inevitable transient emergencies. Here, P-L/D model variants challenged with DMD-type insult/injury (low pump-strength, overstimulation, leaky Nav and cation channels) show how chronic “nonosmotic” sodium overload (observed in DMD patients) develops. Profoundly severe DMD ion homeostatic insult/injury causes spontaneous firing (and, consequently, unwanted excitation–contraction coupling) that elicits cytotoxic swelling. Therefore, boosting operational pump-strength and/or diminishing sodium and cation channel leaks should help extend DMD fiber longevity.
Collapse
Affiliation(s)
- Catherine E Morris
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada.,Center for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | | | - Béla Joos
- Center for Neural Dynamics, University of Ottawa, Ottawa, Canada.,Department of Physics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
18
|
Stephenson DG. ClC-1 Cl - channels as modulators of signal transmission at neuromuscular junction. Acta Physiol (Oxf) 2021; 233:e13718. [PMID: 34273251 DOI: 10.1111/apha.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. George Stephenson
- Department of Physiology, Anatomy and Microbiology School of Life Science La Trobe University Bundoora VIC Australia
| |
Collapse
|
19
|
Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review. Sports Med 2021; 51:1855-1874. [PMID: 33900579 DOI: 10.1007/s40279-021-01475-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Muscle glycogen is the main substrate during high-intensity exercise and large reductions can occur after relatively short durations. Moreover, muscle glycogen is stored heterogeneously and similarly displays a heterogeneous and fiber-type specific depletion pattern with utilization in both fast- and slow-twitch fibers during high-intensity exercise, with a higher degradation rate in the former. Thus, depletion of individual fast- and slow-twitch fibers has been demonstrated despite muscle glycogen at the whole-muscle level only being moderately lowered. In addition, muscle glycogen is stored in specific subcellular compartments, which have been demonstrated to be important for muscle function and should be considered as well as global muscle glycogen availability. In the present review, we discuss the importance of glycogen metabolism for single and intermittent bouts of high-intensity exercise and outline possible underlying mechanisms for a relationship between muscle glycogen and fatigue during these types of exercise. Traditionally this relationship has been attributed to a decreased ATP resynthesis rate due to inadequate substrate availability at the whole-muscle level, but emerging evidence points to a direct coupling between muscle glycogen and steps in the excitation-contraction coupling including altered muscle excitability and calcium kinetics.
Collapse
|
20
|
Jehasse K, Jacquerie K, de Froidmont A, Lemoine C, Grisar T, Stouffs K, Lakaye B, Seutin V. Functional analysis of the F337C mutation in the CLCN1 gene associated with dominant myotonia congenita reveals an alteration of the macroscopic conductance and voltage dependence. Mol Genet Genomic Med 2021; 9:e1588. [PMID: 33507632 PMCID: PMC8077071 DOI: 10.1002/mgg3.1588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Background Myotonia congenita (MC) is a common channelopathy affecting skeletal muscle and which is due to pathogenic variants within the CLCN1 gene. Various alterations in the function of the channel have been reported and we here illustrate a novel one. Methods A patient presenting the symptoms of myotonia congenita was shown to bear a new heterozygous missense variant in exon 9 of the CLCN1 gene (c.1010 T > G, p.(Phe337Cys)). Confocal imaging and patch clamp recordings of transiently transfected HEK293 cells were used to functionally analyze the effect of this variant on channel properties. Results Confocal imaging showed that the F337C mutant incorporated as well as the WT channel into the plasma membrane. However, in patch clamp, we observed a smaller conductance for F337C at −80 mV. We also found a marked reduction of the fast gating component in the mutant channels, as well as an overall reduced voltage dependence. Conclusion To our knowledge, this is the first report of a mixed alteration in the biophysical properties of hClC‐1 consisting of a reduced conductance at resting potential and an almost abolished voltage dependence.
Collapse
Affiliation(s)
- Kevin Jehasse
- Laboratory of NeurophysiologyGIGA InstituteLiegeBelgium
| | - Kathleen Jacquerie
- Department of Electrical Engineering and Computer ScienceLiège UniversityLiègeBelgium
| | | | | | - Thierry Grisar
- Laboratory of Molecular Regulation of NeurogenesisGIGA InstituteLiègeBelgium
| | - Katrien Stouffs
- Neurogenetics Research GroupVrije Universiteit Brussel (VUBUniversitair Ziekenhuis Brussel (UZ Brussel), Reproduction and GeneticsBrusselsBelgium
| | - Bernard Lakaye
- Laboratory of Molecular Regulation of NeurogenesisGIGA InstituteLiègeBelgium
| | | |
Collapse
|
21
|
Souza LS, Calyjur P, Ribeiro AF, Gurgel-Giannetti J, Pavanello RCM, Zatz M, Vainzof M. Association of Three Different Mutations in the CLCN1 Gene Modulating the Phenotype in a Consanguineous Family with Myotonia Congenita. J Mol Neurosci 2021; 71:2275-2280. [PMID: 33464536 DOI: 10.1007/s12031-020-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
Myotonia congenita is a genetic disease caused by mutations in the CLCN1 gene, which encodes for the major chloride skeletal channel ClC-1, involved in the normal repolarization of muscle action potentials and consequent relaxation of the muscle after contraction. Two allelic forms are recognized, depending on the phenotype and the inheritance pattern: the autosomal dominant Thomsen disease with milder symptoms and the autosomal recessive Becker disorder with a severe phenotype. Before the recent advances of molecular testing, the diagnosis and genetic counseling of families was a challenge due to the large number of mutations in the CLCN1 gene, found both in homozygous or in heterozygous state. Here, we studied a consanguineous family in which three members presented a variable phenotype of myotonia, associated to a combination of three different mutations in the CLCN1 gene. A pathogenic splicing site mutation which causes the skipping of exon 17 was present in homozygosis in one very severely affected son. This mutation was present in compound heterozygosis in the consanguineous parents, but interestingly it was associated to a different second variant in the other allele: c.1453 A > G in the mother and c.1842 G > C in the father. Both displayed variable, but less severe phenotypes than their homozygous son. These results highlight the importance of analyzing the combination of different variants in the same gene in particular in families with patients displaying different phenotypes. This approach may improve the diagnosis, prognosis, and genetic counseling of the involved families.
Collapse
Affiliation(s)
- Lucas Santos Souza
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Priscila Calyjur
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Antonio Fernando Ribeiro
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Juliana Gurgel-Giannetti
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Pediatrics Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mayana Zatz
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mariz Vainzof
- Human Genome and stem cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Stunnenberg BC, LoRusso S, Arnold WD, Barohn RJ, Cannon SC, Fontaine B, Griggs RC, Hanna MG, Matthews E, Meola G, Sansone VA, Trivedi JR, van Engelen BG, Vicart S, Statland JM. Guidelines on clinical presentation and management of nondystrophic myotonias. Muscle Nerve 2020; 62:430-444. [PMID: 32270509 PMCID: PMC8117169 DOI: 10.1002/mus.26887] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. In the absence of genetic confirmation, the diagnosis is supported by detailed electrophysiological testing, exclusion of other related disorders, and analysis of a variant of uncertain significance if present. Symptomatic treatment with a sodium channel blocker, such as mexiletine, is usually the first step in management, as well as educating patients about potential anesthetic complications.
Collapse
Affiliation(s)
- Bas C. Stunnenberg
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Samantha LoRusso
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - W. David Arnold
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Richard J. Barohn
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
| | - Stephen C. Cannon
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Bertrand Fontaine
- Assistance Publique-Hôpitaix de Paris, Sorbonne Université, INSERM, Service of Neuro-Myology and UMR 974, Institute of Myology, University Hospital Pitié-Salpêtrière, Paris, France
| | - Robert C. Griggs
- Department of Neurology, University of Rochester, Rochester, New York
| | - Michael G. Hanna
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular diseases, UCL Queen Square Institute of Neurology, United Kingdom
| | - Emma Matthews
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular diseases, UCL Queen Square Institute of Neurology, United Kingdom
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Valeria A. Sansone
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Neurorehabilitation Unit, University of Milan, NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milan, Italy
| | - Jaya R. Trivedi
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, Texas
| | | | - Savine Vicart
- Assistance Publique-Hôpitaix de Paris, Sorbonne Université, INSERM, Service of Neuro-Myology and UMR 974, Institute of Myology, University Hospital Pitié-Salpêtrière, Paris, France
| | - Jeffrey M. Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
23
|
Vivekanandam V, Männikkö R, Matthews E, Hanna MG. Improving genetic diagnostics of skeletal muscle channelopathies. Expert Rev Mol Diagn 2020; 20:725-736. [PMID: 32657178 DOI: 10.1080/14737159.2020.1782195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Skeletal muscle channelopathies are rare inherited conditions that cause significant morbidity and impact on quality of life. Some subsets have a mortality risk. Improved genetic methodology and understanding of phenotypes have improved diagnostic accuracy and yield. AREAS COVERED We discuss diagnostic advances since the advent of next-generation sequencing and the role of whole exome and genome sequencing. Advances in genotype-phenotype-functional correlations have improved understanding of inheritance and phenotypes. We outline new phenotypes, particularly in the pediatric setting and consider co-existing mutations that may act as genetic modifiers. We also discuss four newly identified genes associated with skeletal muscle channelopathies. EXPERT OPINION Next-generation sequencing using gene panels has improved diagnostic rates, identified new mutations, and discovered patients with co-existing pathogenic mutations ('double trouble'). This field has previously focussed on single genes, but we are now beginning to understand interactions between co-existing mutations, genetic modifiers, and their role in pathomechanisms. New genetic observations in pediatric presentations of channelopathies broadens our understanding of the conditions. Genetic and mechanistic advances have increased the potential to develop treatments.
Collapse
Affiliation(s)
- Vinojini Vivekanandam
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| | - Roope Männikkö
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| | - Emma Matthews
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| | - Michael G Hanna
- Queen Square Centre for Neuromuscular Diseases and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, UCL and National Hospital for Neurology and Neurosurgery , London, UK
| |
Collapse
|
24
|
Conte E, Fonzino A, Cibelli A, De Benedictis V, Imbrici P, Nicchia GP, Pierno S, Camerino GM. Changes in Expression and Cellular Localization of Rat Skeletal Muscle ClC-1 Chloride Channel in Relation to Age, Myofiber Phenotype and PKC Modulation. Front Pharmacol 2020; 11:714. [PMID: 32499703 PMCID: PMC7243361 DOI: 10.3389/fphar.2020.00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
The ClC-1 chloride channel 1 is important for muscle function as it stabilizes resting membrane potential and helps to repolarize the membrane after action potentials. We investigated the contribution of ClC-1 to adaptation of skeletal muscles to needs induced by the different stages of life. We analyzed the ClC-1 gene and protein expression as well as mRNA levels of protein kinase C (PKC) alpha and theta involved in ClC-1 modulation, in soleus (SOL) and extensor digitorum longus (EDL) muscles of rats in all stage of life. The cellular localization of ClC-1 in relation to age was also investigated. Our data show that during muscle development ClC-1 expression differs according to phenotype. In fast-twitch EDL muscles ClC-1 expression increased 10-fold starting at 7 days up to 8 months of life. Conversely, in slow-twitch SOL muscles ClC-1 expression remained constant until 33 days of life and subsequently increased fivefold to reach the adult value. Aging induced a downregulation of gene and protein ClC-1 expression in both muscle types analyzed. The mRNA of PKC-theta revealed the same trend as ClC-1 except in old age, whereas the mRNA of PKC-alpha increased only after 2 months of age. Also, we found that the ClC-1 is localized in both membrane and cytoplasm, in fibers of 12-day-old rats, becoming perfectly localized on the membrane in 2-month-old rats. This study could represent a point of comparison helpful for the identification of accurate pharmacological strategies for all the pathological situations in which ClC-1 protein is altered.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Cibelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Vito De Benedictis
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
25
|
Zhao C, Tang D, Huang H, Tang H, Yang Y, Yang M, Luo Y, Tao H, Tang J, Zhou X, Shi X. Myotonia congenita and periodic hypokalemia paralysis in a consanguineous marriage pedigree: Coexistence of a novel CLCN1 mutation and an SCN4A mutation. PLoS One 2020; 15:e0233017. [PMID: 32407401 PMCID: PMC7224471 DOI: 10.1371/journal.pone.0233017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/26/2020] [Indexed: 11/18/2022] Open
Abstract
Myotonia congenita and hypokalemic periodic paralysis type 2 are both rare genetic channelopathies caused by mutations in the CLCN1 gene encoding voltage-gated chloride channel CLC-1 and the SCN4A gene encoding voltage-gated sodium channel Nav1.4. The patients with concomitant mutations in both genes manifested different unique symptoms from mutations in these genes separately. Here, we describe a patient with myotonia and periodic paralysis in a consanguineous marriage pedigree. By using whole-exome sequencing, a novel F306S variant in the CLCN1 gene and a known R222W mutation in the SCN4A gene were identified in the pedigree. Patch clamp analysis revealed that the F306S mutant reduced the opening probability of CLC-1 and chloride conductance. Our study expanded the CLCN1 mutation database. We emphasized the value of whole-exome sequencing for differential diagnosis in atypical myotonic patients.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - DongFang Tang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hui Huang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyan Tang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Intensive Care Unit, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Yang
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingying Luo
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huai Tao
- Depatment of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- * E-mail: (XZ); (XLS)
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (XZ); (XLS)
| |
Collapse
|
26
|
Altamura C, Desaphy JF, Conte D, De Luca A, Imbrici P. Skeletal muscle ClC-1 chloride channels in health and diseases. Pflugers Arch 2020; 472:961-975. [PMID: 32361781 DOI: 10.1007/s00424-020-02376-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
In 1970, the study of the pathomechanisms underlying myotonia in muscle fibers isolated from myotonic goats highlighted the importance of chloride conductance for skeletal muscle function; 20 years later, the human ClC-1 chloride channel has been cloned; last year, the crystal structure of human protein has been solved. Over the years, the efforts of many researchers led to significant advances in acknowledging the role of ClC-1 in skeletal muscle physiology and the mechanisms through which ClC-1 dysfunctions lead to impaired muscle function. The wide spectrum of pathophysiological conditions associated with modification of ClC-1 activity, either as the primary cause, such as in myotonia congenita, or as a secondary adaptive mechanism in other neuromuscular diseases, supports the idea that ClC-1 is relevant to preserve not only for skeletal muscle excitability, but also for skeletal muscle adaptation to physiological or harmful events. Improving this understanding could open promising avenues toward the development of selective and safe drugs targeting ClC-1, with the aim to restore normal muscle function. This review summarizes the most relevant research on ClC-1 channel physiology, associated diseases, and pharmacology.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Diana Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
27
|
Skitchenko RK, Usoltsev D, Uspenskaya M, Kajava AV, Guskov A. Census of halide-binding sites in protein structures. Bioinformatics 2020; 36:3064-3071. [PMID: 32022861 PMCID: PMC7214031 DOI: 10.1093/bioinformatics/btaa079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/02/2022] Open
Abstract
Motivation Halides are negatively charged ions of halogens, forming fluorides (F−), chlorides (Cl−), bromides (Br−) and iodides (I−). These anions are quite reactive and interact both specifically and non-specifically with proteins. Despite their ubiquitous presence and important roles in protein function, little is known about the preferences of halides binding to proteins. To address this problem, we performed the analysis of halide–protein interactions, based on the entries in the Protein Data Bank. Results We have compiled a pipeline for the quick analysis of halide-binding sites in proteins using the available software. Our analysis revealed that all of halides are strongly attracted by the guanidinium moiety of arginine side chains, however, there are also certain preferences among halides for other partners. Furthermore, there is a certain preference for coordination numbers in the binding sites, with a correlation between coordination numbers and amino acid composition. This pipeline can be used as a tool for the analysis of specific halide–protein interactions and assist phasing experiments relying on halides as anomalous scatters. Availability and implementation All data described in this article can be reproduced via complied pipeline published at https://github.com/rostkick/Halide_sites/blob/master/README.md. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Dmitrii Usoltsev
- Institute BioEngineering, ITMO University, Saint-Petersburg 197101, Russia
| | - Mayya Uspenskaya
- Institute BioEngineering, ITMO University, Saint-Petersburg 197101, Russia
| | - Andrey V Kajava
- Institute BioEngineering, ITMO University, Saint-Petersburg 197101, Russia.,Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Universite Montpellier, Montpellier 34293, France
| | - Albert Guskov
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen 9747 AG, the Netherlands
| |
Collapse
|
28
|
Desaphy JF, Farinato A, Altamura C, De Bellis M, Imbrici P, Tarantino N, Caccia C, Melloni E, Padoani G, Vailati S, Keywood C, Carratù MR, De Luca A, Conte D, Pierno S. Safinamide's potential in treating nondystrophic myotonias: Inhibition of skeletal muscle voltage-gated sodium channels and skeletal muscle hyperexcitability in vitro and in vivo. Exp Neurol 2020; 328:113287. [PMID: 32205118 DOI: 10.1016/j.expneurol.2020.113287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022]
Abstract
The antiarrhythmic sodium-channel blocker mexiletine is used to treat patients with myotonia. However, around 30% of patients do not benefit from mexiletine due to poor tolerability or suboptimal response. Safinamide is an add-on therapy to levodopa for Parkinson's disease. In addition to MAOB inhibition, safinamide inhibits neuronal sodium channels, conferring anticonvulsant activity in models of epilepsy. Here, we investigated the effects of safinamide on skeletal muscle hNav1.4 sodium channels and in models of myotonia, in-vitro and in-vivo. Using patch-clamp, we showed that safinamide reversibly inhibited sodium currents in HEK293T cells transfected with hNav1.4. At the holding potential (hp) of -120 mV, the half-maximum inhibitory concentrations (IC50) were 160 and 33 μM at stimulation frequencies of 0.1 and 10 Hz, respectively. The calculated affinity constants of safinamide were dependent on channel state: 420 μM for closed channels and 9 μM for fast-inactivated channels. The p.F1586C mutation in hNav1.4 greatly impaired safinamide inhibition, suggesting that the drug binds to the local anesthetic receptor site in the channel pore. In a condition mimicking myotonia, i.e. hp. of -90 mV and 50-Hz stimulation, safinamide inhibited INa with an IC50 of 6 μM, being two-fold more potent than mexiletine. Using the two-intracellular microelectrodes current-clamp method, action potential firing was recorded in vitro in rat skeletal muscle fibers in presence of the chloride channel blocker, 9-anthracene carboxylic acid (9-AC), to increase excitability. Safinamide counteracted muscle fiber hyperexcitability with an IC50 of 13 μM. In vivo, oral safinamide was tested in the rat model of myotonia. In this model, intraperitoneal injection of 9-AC greatly increased the time of righting reflex (TRR) due to development of muscle stiffness. Safinamide counteracted 9-AC induced TRR increase with an ED50 of 1.2 mg/kg, which is 7 times lower than that previously determined for mexiletine. In conclusion, safinamide is a potent voltage and frequency dependent blocker of skeletal muscle sodium channels. Accordingly, the drug was able to counteract abnormal muscle hyperexcitability induced by 9-AC, both in vitro and in vivo. Thus, this study suggests that safinamide may have potential in treating myotonia and warrants further preclinical and human studies to fully evaluate this possibility.
Collapse
Affiliation(s)
- Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Alessandro Farinato
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Nancy Tarantino
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Carla Caccia
- Open R&D Department, Zambon S.p.A., Bresso, MI, Italy
| | - Elsa Melloni
- Open R&D Department, Zambon S.p.A., Bresso, MI, Italy
| | | | | | | | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Diana Conte
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
29
|
Jeng CJ, Fu SJ, You CY, Peng YJ, Hsiao CT, Chen TY, Tang CY. Defective Gating and Proteostasis of Human ClC-1 Chloride Channel: Molecular Pathophysiology of Myotonia Congenita. Front Neurol 2020; 11:76. [PMID: 32117034 PMCID: PMC7026490 DOI: 10.3389/fneur.2020.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/22/2020] [Indexed: 01/17/2023] Open
Abstract
The voltage-dependent ClC-1 chloride channel, whose open probability increases with membrane potential depolarization, belongs to the superfamily of CLC channels/transporters. ClC-1 is almost exclusively expressed in skeletal muscles and is essential for stabilizing the excitability of muscle membranes. Elucidation of the molecular structures of human ClC-1 and several CLC homologs provides important insight to the gating and ion permeation mechanisms of this chloride channel. Mutations in the human CLCN1 gene, which encodes the ClC-1 channel, are associated with a hereditary skeletal muscle disease, myotonia congenita. Most disease-causing CLCN1 mutations lead to loss-of-function phenotypes in the ClC-1 channel and thus increase membrane excitability in skeletal muscles, consequently manifesting as delayed relaxations following voluntary muscle contractions in myotonic subjects. The inheritance pattern of myotonia congenita can be autosomal dominant (Thomsen type) or recessive (Becker type). To date over 200 myotonia-associated ClC-1 mutations have been identified, which are scattered throughout the entire protein sequence. The dominant inheritance pattern of some myotonia mutations may be explained by a dominant-negative effect on ClC-1 channel gating. For many other myotonia mutations, however, no clear relationship can be established between the inheritance pattern and the location of the mutation in the ClC-1 protein. Emerging evidence indicates that the effects of some mutations may entail impaired ClC-1 protein homeostasis (proteostasis). Proteostasis of membrane proteins comprises of biogenesis at the endoplasmic reticulum (ER), trafficking to the surface membrane, and protein turn-over at the plasma membrane. Maintenance of proteostasis requires the coordination of a wide variety of different molecular chaperones and protein quality control factors. A number of regulatory molecules have recently been shown to contribute to post-translational modifications of ClC-1 and play critical roles in the ER quality control, membrane trafficking, and peripheral quality control of this chloride channel. Further illumination of the mechanisms of ClC-1 proteostasis network will enhance our understanding of the molecular pathophysiology of myotonia congenita, and may also bring to light novel therapeutic targets for skeletal muscle dysfunction caused by myotonia and other pathological conditions.
Collapse
Affiliation(s)
- Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ying You
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jheng Peng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Yu Chen
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
30
|
Orsini C, Petillo R, D'Ambrosio P, Ergoli M, Picillo E, Scutifero M, Passamano L, De Luca A, Politano L. CLCN1 Molecular Characterization in 19 South-Italian Patients With Dominant and Recessive Type of Myotonia Congenita. Front Neurol 2020; 11:63. [PMID: 32117024 PMCID: PMC7016095 DOI: 10.3389/fneur.2020.00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/17/2020] [Indexed: 11/13/2022] Open
Abstract
Myotonia congenita is a genetic disease characterized by impaired muscle relaxation after forceful contraction (myotonia). It is caused by mutations in the CLCN1 gene, encoding the voltage-gated chloride channel of skeletal muscle, ClC-1. According to the pattern of inheritance, two distinct clinical forms have been described, Thomsen disease, inherited as an autosomal dominant trait and Becker disease inherited as an autosomal recessive trait. We report genetic and clinical data concerning 19 patients−13 familial and six isolated cases—all but one originating from the Campania Region, in southern Italy. Twelve patients (63.2%) present Becker type myotonia and 7 (36.8%) Thomsen type. Sex ratio M:F in Becker type is 6:6, while in Thomsen myotonia 4:3. The age of onset of the disease ranged from 2 to 15 years in Becker patients, and from 4 to 20 years in Thomsen. Overall 18 mutations were identified, 10 located in the coding part of the gene (exons 1, 3, 4, 5, 7, 8, 13, 15, 21, 22), and four in the intron part (introns 1, 2, 10, 18). All the exon mutations but two were missense mutations. Some of them, such as c.2551 G > A, c.817G > A and c.86A > C recurred more frequently. About 70% of mutations was inherited with an autosomal recessive pattern, two (c.86A and c.817G>A) with both mechanisms. Three novel mutations were identified, never described in the literature: p.Gly276Ser, p.Phe486Ser, and p.Gln812*, associated with Becker phenotype. Furthermore, we identified three CLCN1 mutations—c.86A>C + c.2551G > A, c.313C > T + c.501C > G and 899G > A + c.2284+5C > T, two of them inherited in cis on the same allele, in three unrelated families. The concomitant occurrence of both clinical pictures—Thomsen and Becker—was observed in one family. Intra-familial phenotypic variability was observed in two families, one with Becker phenotype, and one with Thomsen disease. In the latter an incomplete penetrance was hypothesized.
Collapse
Affiliation(s)
- Chiara Orsini
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberta Petillo
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola D'Ambrosio
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Ergoli
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Esther Picillo
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marianna Scutifero
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigia Passamano
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro De Luca
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
31
|
Morales F, Pusch M. An Up-to-Date Overview of the Complexity of Genotype-Phenotype Relationships in Myotonic Channelopathies. Front Neurol 2020; 10:1404. [PMID: 32010054 PMCID: PMC6978732 DOI: 10.3389/fneur.2019.01404] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Myotonic disorders are inherited neuromuscular diseases divided into dystrophic myotonias and non-dystrophic myotonias (NDM). The latter is a group of dominant or recessive diseases caused by mutations in genes encoding ion channels that participate in the generation and control of the skeletal muscle action potential. Their altered function causes hyperexcitability of the muscle membrane, thereby triggering myotonia, the main sign in NDM. Mutations in the genes encoding voltage-gated Cl− and Na+ channels (respectively, CLCN1 and SCN4A) produce a wide spectrum of phenotypes, which differ in age of onset, affected muscles, severity of myotonia, degree of hypertrophy, and muscle weakness, disease progression, among others. More than 200 CLCN1 and 65 SCN4A mutations have been identified and described, but just about half of them have been functionally characterized, an approach that is likely extremely helpful to contribute to improving the so-far rather poor clinical correlations present in NDM. The observed poor correlations may be due to: (1) the wide spectrum of symptoms and overlapping phenotypes present in both groups (Cl− and Na+ myotonic channelopathies) and (2) both genes present high genotypic variability. On the one hand, several mutations cause a unique and reproducible phenotype in most patients. On the other hand, some mutations can have different inheritance pattern and clinical phenotypes in different families. Conversely, different mutations can be translated into very similar phenotypes. For these reasons, the genotype-phenotype relationships in myotonic channelopathies are considered complex. Although the molecular bases for the clinical variability present in myotonic channelopathies remain obscure, several hypotheses have been put forward to explain the variability, which include: (a) differential allelic expression; (b) trans-acting genetic modifiers; (c) epigenetic, hormonal, or environmental factors; and (d) dominance with low penetrance. Improvements in clinical tests, the recognition of the different phenotypes that result from particular mutations and the understanding of how a mutation affects the structure and function of the ion channel, together with genetic screening, is expected to improve clinical correlation in NDMs.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud, Universidad de Costa, San José, Costa Rica
| | | |
Collapse
|
32
|
Wei Z, Huaxing M, Xiaomei W, Juan W, Xueli C, Jing Z, Junhong G. Identification of two novel compound heterozygous CLCN1 mutations associated with autosomal recessive myotonia congenita. Neurol Res 2019; 41:1069-1074. [PMID: 31566103 DOI: 10.1080/01616412.2019.1672392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objectives: Myotonia congenita (MC) is a rare genetic muscular disorder caused by CLCN1 mutations, which codes for skeletal muscle chloride channel CLC1. MC is characterized by impaired muscle relaxation after contraction resulting in muscle stiffness. This study aimed to identify the genetic etiology of a Chinese family affected with recessive MC. Methods: Whole exome sequencing was performed to identify the disease-associated variants. The candidate causal genes discovered by WES were then confirmed by Sanger sequencing and co-segregation analyses were also conducted. Results: Two novel compound heterozygous mutations in CLCN1 gene, p.D94Y (paternal allele) and p.Y206* (maternal allele), were successfully identified as the pathogenic mutations by whole-exome sequencing (WES). The mutations were confirmed with Sanger sequencing in the family members and cosegregated with the MC phenotype. The two mutations have not been reported in the HGMD, dbSNP, 1000 Genomes project, ClinVar database, ExAC, and gnomAD previously. Mutation p.D94Y is predicted to be deleterious by using in silico tools and p.Y206* is a nonsense mutation, causing protein synthesis termination. Conclusions: Molecular genetics analysis offers an accurate method for diagnosing MC. Our results expand the mutational spectrum of recessive MC.
Collapse
Affiliation(s)
- Zhang Wei
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Meng Huaxing
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Wang Xiaomei
- Department of Geological Engineering, Shanxi Institute of Enegy , Taiyuan , China
| | - Wang Juan
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Chang Xueli
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Zhang Jing
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Guo Junhong
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| |
Collapse
|
33
|
Turck D, Castenmiller J, de Henauw S, Hirsch-Ernst KI, Kearney J, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aggett P, Fairweather-Tait S, Martin A, Przyrembel H, de Sesmaisons-Lecarré A, Naska A. Dietary reference values for chloride. EFSA J 2019; 17:e05779. [PMID: 32626426 PMCID: PMC7009052 DOI: 10.2903/j.efsa.2019.5779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) has derived dietary reference values (DRVs) for chloride. There are no appropriate biomarkers of chloride status, no balance studies and no adequate evidence on the relationship between chloride intake and health outcomes that can be used to set DRVs for chloride. There is a close relationship between sodium and chloride balances in the body. Sodium chloride is the main source of both electrolytes in European diets and similar urinary excretion levels of sodium and chloride (on a molar basis) are typically observed in Western populations. Hence, the Panel considered that reference values for chloride can be set at values equimolar to the reference values for sodium for all population groups, and are as follows: 1.7 g/day for children aged 1-3 years, 2.0 g/day for children aged 4-6 years, 2.6 g/day for children aged 7-10 years, 3.1 g/day for children aged 11-17 years and 3.1 g/day for adults including pregnant and lactating women. Consistent with the reference values for sodium, these levels of chloride intake are considered to be safe and adequate for the general EU population, under the consideration that the main dietary source of chloride intake is sodium chloride. For infants aged 7-11 months, an adequate intake of 0.3 g/day is set.
Collapse
|
34
|
Turck D, Castenmiller J, de Henauw S, Hirsch-Ernst KI, Kearney J, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aggett P, Fairweather-Tait S, Martin A, Przyrembel H, Ciccolallo L, de Sesmaisons-Lecarré A, Valtueña Martinez S, Martino L, Naska A. Dietary reference values for sodium. EFSA J 2019; 17:e05778. [PMID: 32626425 PMCID: PMC7009309 DOI: 10.2903/j.efsa.2019.5778] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) derived dietary reference values (DRVs) for sodium. Evidence from balance studies on sodium and on the relationship between sodium intake and health outcomes, in particular cardiovascular disease (CVD)-related endpoints and bone health, was reviewed. The data were not sufficient to enable an average requirement (AR) or population reference intake (PRI) to be derived. However, by integrating the available evidence and associated uncertainties, the Panel considers that a sodium intake of 2.0 g/day represents a level of sodium for which there is sufficient confidence in a reduced risk of CVD in the general adult population. In addition, a sodium intake of 2.0 g/day is likely to allow most of the general adult population to maintain sodium balance. Therefore, the Panel considers that 2.0 g sodium/day is a safe and adequate intake for the general EU population of adults. The same value applies to pregnant and lactating women. Sodium intakes that are considered safe and adequate for children are extrapolated from the value for adults, adjusting for their respective energy requirement and including a growth factor, and are as follows: 1.1 g/day for children aged 1-3 years, 1.3 g/day for children aged 4-6 years, 1.7 g/day for children aged 7-10 years and 2.0 g/day for children aged 11-17 years, respectively. For infants aged 7-11 months, an Adequate Intake (AI) of 0.2 g/day is proposed based on upwards extrapolation of the estimated sodium intake in exclusively breast-fed infants aged 0-6 months.
Collapse
|
35
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Becker's myotonia: novel mutations and clinical variability in patients born to consanguineous parents. Acta Neurol Belg 2018; 118:567-572. [PMID: 29480456 DOI: 10.1007/s13760-018-0893-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 02/05/2018] [Indexed: 01/30/2023]
Abstract
Myotonia congenita is an inherited muscle disease present from childhood that is characterized by impaired muscle relaxation after contraction resulting in muscle stiffness; moreover, skeletal striated muscle groups may be involved. Myotonia congenita occurs due to chloride (Cl) channel mutations that reduce the stabilizing Cl conductance, and it is caused by mutations in the CLCN1 gene. This paper describes four patients from two different healthy consanguineous Turkish families with muscle stiffness and easy fatigability. A genetic investigation was performed. Mutation analyses showed a homozygous p.Tyr150* (c.450C > A) mutation in patients 1, 2 and 3 and a homozygous p.Leu159Cysfs*11 (c.475delC) mutation in patient 4 in the CLCN1 gene. These mutations have never been reported before and in silico analyses showed that the mutations were disease causing. They may be predicted to cause nonsense-mediated mRNA decay. Our data expand the spectrum of CLCN1 mutations and provide insights for genotype-phenotype correlations of myotonia congenita.
Collapse
|
37
|
Kir2.2 p.Thr140Met: a genetic susceptibility to sporadic periodic paralysis. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2018; 37:193-203. [PMID: 30838349 PMCID: PMC6390110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Periodic paralyses (PP) are recurrent episodes of flaccid limb muscle weakness. Next to autosomal dominant forms, sporadic PP (SPP) cases are known but their genetics are unclear. METHODS In a patient with hypokalemic SPP, we performed exome sequencing to identify a candidate gene. We sequenced this gene in 263 unrelated PP patients without any known causative mutations. Then we performed functional analysis of all variants found and molecular modelling for interpretation. RESULTS Exome sequencing in the proband yielded three heterozygous variants predicted to be linked to disease. These encoded p.Thr140Met in the Kir2.2 potassium channel, p.Asp229Asn in protein kinase C theta, and p.Thr15943Ile in titin. Since all hitherto known causative PP genes code for ion channels, we studied the Kir2.2-encoding gene, KCNJ12, for involvement in PP pathogenesis. KCNJ12 screening in 263 PP patients revealed three further variants, each in a single individual and coding for p.Gly419Ser, p.Cys75Tyr, and p.Ile283Val. All four Kir2.2 variants were functionally expressed. Only p.Thr140Met displayed relevant functional alterations, i.e. homo-tetrameric channels produced almost no current, and hetero-tetrameric channels suppressed co-expressed wildtype Kir2.1 in a dominant-negative manner. Molecular modelling showed Kir2.2 p.Thr140Met to reduce movement of potassium ions towards binding sites in the hetero-tetramer pore compatible with a reduced maximal current. MD simulations revealed loss of hydrogen bonding with the p.Thr140Met substitution. DISCUSSION The electrophysiological findings of p.Thr140Met are similar to those found in thyrotoxic PP caused by Kir2.6 mutations. Also, the homologous Thr140 residue is mutated in Kir2.6. This supports the idea that Kir2.2 p.Thr140Met conveys susceptibility to SPP and should be included in genetic screening.
Collapse
|
38
|
Altamura C, Lucchiari S, Sahbani D, Ulzi G, Comi GP, D'Ambrosio P, Petillo R, Politano L, Vercelli L, Mongini T, Dotti MT, Cardani R, Meola G, Lo Monaco M, Matthews E, Hanna MG, Carratù MR, Conte D, Imbrici P, Desaphy JF. The analysis of myotonia congenita mutations discloses functional clusters of amino acids within the CBS2 domain and the C-terminal peptide of the ClC-1 channel. Hum Mutat 2018; 39:1273-1283. [PMID: 29935101 DOI: 10.1002/humu.23581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/10/2022]
Abstract
Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30 mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Sabrina Lucchiari
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Dalila Sahbani
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Gianna Ulzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola D'Ambrosio
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Roberta Petillo
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Liliana Vercelli
- Neuromuscular Unit, Department of Neurosciences, Hospital Città della Salute e della Scienza of Torino, University of Torino, Turin, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neurosciences, Hospital Città della Salute e della Scienza of Torino, University of Torino, Turin, Italy
| | - Maria Teresa Dotti
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Milan, Italy
| | - Mauro Lo Monaco
- Institute of Neurology, Catholic University of Sacred Heart, Polyclinic Gemelli, Rome, Italy.,MiA Onlus ("Miotonici in Associazione"), Portici, Italy
| | - Emma Matthews
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Polyclinic, Bari, Italy
| | - Diana Conte
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Polyclinic, Bari, Italy
| |
Collapse
|
39
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
40
|
Rahmati N, Hoebeek FE, Peter S, De Zeeuw CI. Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Front Cell Neurosci 2018; 12:101. [PMID: 29765304 PMCID: PMC5938380 DOI: 10.3389/fncel.2018.00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
The intraneuronal ionic composition is an important determinant of brain functioning. There is growing evidence that aberrant homeostasis of the intracellular concentration of Cl- ([Cl-]i) evokes, in addition to that of Na+ and Ca2+, robust impairments of neuronal excitability and neurotransmission and thereby neurological conditions. More specifically, understanding the mechanisms underlying regulation of [Cl-]i is crucial for deciphering the variability in GABAergic and glycinergic signaling of neurons, in both health and disease. The homeostatic level of [Cl-]i is determined by various regulatory mechanisms, including those mediated by plasma membrane Cl- channels and transporters. This review focuses on the latest advances in identification, regulation and characterization of Cl- channels and transporters that modulate neuronal excitability and cell volume. By putting special emphasis on neurons of the olivocerebellar system, we establish that Cl- channels and transporters play an indispensable role in determining their [Cl-]i and thereby their function in sensorimotor coordination.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- NIDOD Institute, Wilhelmina Children's Hospital, University Medical Center Utrecht and Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
41
|
Abstract
CLC proteins are a ubiquitously expressed family of chloride-selective ion channels and transporters. A dearth of pharmacological tools for modulating CLC gating and ion conduction limits investigations aimed at understanding CLC structure/function and physiology. Herein, we describe the design, synthesis, and evaluation of a collection of N-arylated benzimidazole derivatives (BIMs), one of which (BIM1) shows unparalleled (>20-fold) selectivity for CLC-Ka over CLC-Kb, the two most closely related human CLC homologs. Computational docking to a CLC-Ka homology model has identified a BIM1 binding site on the extracellular face of the protein near the chloride permeation pathway in a region previously identified as a binding site for other less selective inhibitors. Results from site-directed mutagenesis experiments are consistent with predictions of this docking model. The residue at position 68 is 1 of only ∼20 extracellular residues that differ between CLC-Ka and CLC-Kb. Mutation of this residue in CLC-Ka and CLC-Kb (N68D and D68N, respectively) reverses the preference of BIM1 for CLC-Ka over CLC-Kb, thus showing the critical role of residue 68 in establishing BIM1 selectivity. Molecular docking studies together with results from structure-activity relationship studies with 19 BIM derivatives give insight into the increased selectivity of BIM1 compared with other inhibitors and identify strategies for further developing this class of compounds.
Collapse
|
42
|
Altamura C, Mangiatordi GF, Nicolotti O, Sahbani D, Farinato A, Leonetti F, Carratù MR, Conte D, Desaphy JF, Imbrici P. Mapping ligand binding pockets in chloride ClC-1 channels through an integrated in silico and experimental approach using anthracene-9-carboxylic acid and niflumic acid. Br J Pharmacol 2018; 175:1770-1780. [PMID: 29500929 DOI: 10.1111/bph.14192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Although chloride channels are involved in several physiological processes and acquired diseases, the availability of compounds selectively targeting CLC proteins is limited. ClC-1 channels are responsible for sarcolemma repolarization after an action potential in skeletal muscle and have been associated with myotonia congenita and myotonic dystrophy as well as with other muscular physiopathological conditions. To date only a few ClC-1 blockers have been discovered, such as anthracene-9-carboxylic acid (9-AC) and niflumic acid (NFA), whereas no activator exists. The absence of a ClC-1 structure and the limited information regarding the binding pockets in CLC channels hamper the identification of improved modulators. EXPERIMENTAL APPROACH Here we provide an in-depth characterization of drug binding pockets in ClC-1 through an integrated in silico and experimental approach. We first searched putative cavities in a homology model of ClC-1 built upon an eukaryotic CLC crystal structure, and then validated in silico data by measuring the blocking ability of 9-AC and NFA on mutant ClC-1 channels expressed in HEK 293 cells. KEY RESULTS We identified four putative binding cavities in ClC-1. 9-AC appears to interact with residues K231, R421 and F484 within the channel pore. We also identified one preferential binding cavity for NFA and propose R421 and F484 as critical residues. CONCLUSIONS AND IMPLICATIONS This study represents the first effort to delineate the binding sites of ClC-1. This information is fundamental to discover compounds useful in the treatment of ClC-1-associated dysfunctions and might represent a starting point for specifically targeting other CLC proteins.
Collapse
Affiliation(s)
- C Altamura
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - G F Mangiatordi
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - O Nicolotti
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - D Sahbani
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - A Farinato
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - F Leonetti
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - M R Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - D Conte
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - J-F Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - P Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
43
|
|
44
|
Mandai S, Furukawa S, Kodaka M, Hata Y, Mori T, Nomura N, Ando F, Mori Y, Takahashi D, Yoshizaki Y, Kasagi Y, Arai Y, Sasaki E, Yoshida S, Furuichi Y, Fujii NL, Sohara E, Rai T, Uchida S. Loop diuretics affect skeletal myoblast differentiation and exercise-induced muscle hypertrophy. Sci Rep 2017; 7:46369. [PMID: 28417963 PMCID: PMC5394462 DOI: 10.1038/srep46369] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Muscle wasting or sarcopenia contributes to morbidity and mortality in patients with cancer, renal failure, or heart failure, and in elderly individuals. Na+-K+-2Cl− cotransporter 1 (NKCC1) is highly expressed in mammalian skeletal muscle, where it contributes to the generation of membrane ion currents and potential. However, the physiologic function of NKCC1 in myogenesis is unclear. We investigated this issue using the NKCC1 inhibitors bumetanide and furosemide, which are commonly used loop diuretics. NKCC1 protein levels increased during C2C12 murine skeletal myoblast differentiation, similarly to those of the myogenic markers myogenin and myosin heavy chain (MHC). NKCC1 inhibitors markedly suppressed myoblast fusion into myotubes and the expression of myogenin and MHC. Furthermore, phosphorylated and total NKCC1 levels were elevated in mouse skeletal muscles after 6 weeks’ voluntary wheel running. Immunofluorescence analyses of myofiber cross-sections revealed more large myofibers after exercise, but this was impaired by daily intraperitoneal bumetanide injections (0.2 or 10 mg/kg/day). NKCC1 plays an essential role in myogenesis and exercise-induced skeletal muscle hypertrophy, and sarcopenia in patients with renal or heart failure may be attributable to treatment with loop diuretics.
Collapse
Affiliation(s)
- Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Susumu Furukawa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Manami Kodaka
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yuki Yoshizaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yuri Kasagi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yohei Arai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Sayaka Yoshida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji City, Tokyo 192-0397, Tokyo, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji City, Tokyo 192-0397, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| |
Collapse
|
45
|
Ferradini V, Cassone M, Nuovo S, Bagni I, D'Apice MR, Botta A, Novelli G, Sangiuolo F. Targeted Next Generation Sequencing in patients with Myotonia Congenita. Clin Chim Acta 2017; 470:1-7. [PMID: 28427807 DOI: 10.1016/j.cca.2017.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Myotonia Congenita (MC) is a nondystrophic skeletal muscle disease characterized by muscle stiffness, weakness, delayed skeletal relaxation and hypertrophic muscle. The disease can be inherited as dominant or recessive. More than 130 mutations in CLCN1 gene have been identified. MATERIALS AND METHODS We analyzed the entire coding region and exon-intron boundaries of the CLCN1 gene in 40 MC patients. Samples already Sanger-sequenced were successively evaluated by Next Generation Sequencing (NGS), on Ion Torrent PGM. Moreover, additional 15 patients were sequenced directly by NGS. RESULTS NGS allowed us to identify all CLCN1 mutations except those located within exon 3, demonstrating a 96% of sensitivity. Due to primer design, one SNP (exactly rs7794560) also failed to be detected. Our results enlarge the spectrum of CLCN1 mutations and showed a novel approach for molecular analysis of MC.
Collapse
Affiliation(s)
- Valentina Ferradini
- Dept of Biomedicine and Prevention, Tor Vergata University, via Montpellier, 1, 00133 Rome, Italy
| | - Marco Cassone
- Dept of Biomedicine and Prevention, Tor Vergata University, via Montpellier, 1, 00133 Rome, Italy
| | - Sara Nuovo
- Dept of Biomedicine and Prevention, Tor Vergata University, via Montpellier, 1, 00133 Rome, Italy
| | - Ilaria Bagni
- Dept of Biomedicine and Prevention, Tor Vergata University, via Montpellier, 1, 00133 Rome, Italy
| | - Maria Rosaria D'Apice
- Dept of Biomedicine and Prevention, Tor Vergata University, via Montpellier, 1, 00133 Rome, Italy
| | - Annalisa Botta
- Dept of Biomedicine and Prevention, Tor Vergata University, via Montpellier, 1, 00133 Rome, Italy
| | - Giuseppe Novelli
- Dept of Biomedicine and Prevention, Tor Vergata University, via Montpellier, 1, 00133 Rome, Italy
| | - Federica Sangiuolo
- Dept of Biomedicine and Prevention, Tor Vergata University, via Montpellier, 1, 00133 Rome, Italy.
| |
Collapse
|
46
|
Poroca DR, Pelis RM, Chappe VM. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies. Front Pharmacol 2017; 8:151. [PMID: 28386229 PMCID: PMC5362633 DOI: 10.3389/fphar.2017.00151] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 02/04/2023] Open
Abstract
The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter's syndrome (types 3 and 4), Dent's disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models.
Collapse
Affiliation(s)
- Diogo R Poroca
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax NS, Canada
| | - Valérie M Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| |
Collapse
|
47
|
The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity. Genetics 2017; 203:35-63. [PMID: 27183565 DOI: 10.1534/genetics.116.189357] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022] Open
Abstract
The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal's life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes.
Collapse
|
48
|
The choroid plexus as a sex hormone target: Functional implications. Front Neuroendocrinol 2017; 44:103-121. [PMID: 27998697 DOI: 10.1016/j.yfrne.2016.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
The choroid plexuses (CPs) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF). In recent years, novel functions have been attributed to this tissue such as in immune and chemical surveillance of the central nervous system, brain development, adult neurogenesis and circadian rhythm regulation. Sex hormones (SH) are widely recognized as modulators in several neurodegenerative diseases, and there is evidence that estrogens and androgens regulate several fundamental biological functions in the CPs. Therefore, SH are likely to affect the composition of the CSF impacting on brain homeostasis. This review will look at implications of the CPs' sex-related specificities.
Collapse
|
49
|
Seong JY, Ha K, Hong C, Myeong J, Lim HH, Yang D, So I. Helix O modulates voltage dependency of CLC-1. Pflugers Arch 2016; 469:183-193. [PMID: 27921211 DOI: 10.1007/s00424-016-1907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/14/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022]
Abstract
The chloride channel (CLC) family of proteins consists of channels and transporters that share similarities in architecture and play essential roles in physiological functions. Among the CLC family, CLC-1 channels have the representative homodimeric double-barreled structure carrying two gating processes. One is protopore gating that acts on each pore independently by glutamate residue (Eext). The other is common gating that closes both pores simultaneously in association with large conformational changes across each subunit. In skeletal muscle, CLC-1 is associated with maintaining normal sarcolemmal excitability, and a number of myotonic mutants were reported to modify the channel gating of CLC-1. In this study, we characterized highly conserved helix O as a key determinant of structural stability in CLC-1. Supporting this hypothesis, myotonic mutant (G523D) at N-terminal of helix O showed the activation at hyperpolarizing membrane potentials with a reversed voltage dependency. However, introducing glutamate at serine residue (S537) at the C-terminal of the helix O on G523D restored WT-like voltage dependency of the common gate and showed proton insensitive voltage dependency. To further validate this significant site, site-specific mutagenesis experiments was performed on V292 that is highly conserved as glutamate in antiporter and closely located to S537 and showed that this area is essential for channel function. Taken together, the results of our study suggest the importance of helix O as the main contributor for stable structure of evolutionary conserved CLC proteins and its key role in voltage dependency of the CLC-1. Furthermore, the C-terminal of the helix O can offer a clue for possible proton involvement in CLC-1 channel.
Collapse
Affiliation(s)
- Ju Yong Seong
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Jongyun Myeong
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea
| | - Hyun-Ho Lim
- Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon, 461-701, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University, College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
50
|
Mori Y, Yamashita S, Kato M, Masuda T, Takamatsu K, Kumamoto T, Sasaki R, Ando Y. Thomsen disease with ptosis and abnormal MR findings. Neuromuscul Disord 2016; 26:805-808. [PMID: 27666773 DOI: 10.1016/j.nmd.2016.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/03/2016] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
Abstract
Myotonia congenita is a non-dystrophic skeletal muscle disorder characterized by muscle stiffness and an inability of the muscle to relax after voluntary contraction caused by a mutation in the gene encoding skeletal muscle chloride channel-1 (CLCN1). We encountered a case of Thomsen disease with ptosis. A short tau inversion recovery MR imaging demonstrated high-intensity lesions in the levator palpebrae superioris muscles. Molecular genetic testing revealed a heterozygosity for the c.1439C>A (p.P480H) mutation in the CLCN1 gene. The expression level of ClC-1 was significantly reduced on the sarcolemma of the biceps brachii muscle from the patient, compared with that from healthy volunteer. Functional analysis of the p.P480H mutation is required for further elucidating the pathogenesis of Thomsen disease.
Collapse
Affiliation(s)
- Yukiko Mori
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Mai Kato
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Teruaki Masuda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Koutaro Takamatsu
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Toshihide Kumamoto
- Department of Nursing, Kyushu University of Nursing and Social Welfare, 888 Tomio, Tamana 865-0062, Japan
| | - Ryogen Sasaki
- Department of Neurology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|