1
|
Stampanoni Bassi M, Gilio L, Buttari F, Dolcetti E, Bruno A, Galifi G, Azzolini F, Borrelli A, Mandolesi G, Gentile A, De Vito F, Musella A, Simonelli I, Centonze D, Iezzi E. Preventive exercise and physical rehabilitation promote long-term potentiation-like plasticity expression in patients with multiple sclerosis. Eur J Neurol 2024; 31:e16071. [PMID: 37754770 PMCID: PMC11236037 DOI: 10.1111/ene.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND AND PURPOSE Loss of long-term potentiation (LTP) expression has been associated with a worse disease course in relapsing-remitting multiple sclerosis (RR-MS) and represents a pathophysiological hallmark of progressive multiple sclerosis (PMS). Exercise and physical rehabilitation are the most prominent therapeutic approaches to promote synaptic plasticity. We aimed to explore whether physical exercise is able to improve the expression of LTP-like plasticity in patients with multiple sclerosis (MS). METHODS In 46 newly diagnosed RR-MS patients, we explored the impact of preventive exercise on LTP-like plasticity as assessed by intermittent theta-burst stimulation. Patients were divided into sedentary or active, based on physical activity performed during the 6 months prior to diagnosis. Furthermore, in 18 patients with PMS, we evaluated the impact of an 8-week inpatient neurorehabilitation program on clinical scores and LTP-like plasticity explored using paired associative stimulation (PAS). Synaptic plasticity expression was compared in patients and healthy subjects. RESULTS Reduced LTP expression was found in RR-MS patients compared with controls. Exercising RR-MS patients showed a greater amount of LTP expression compared with sedentary patients. In PMS patients, LTP expression was reduced compared with controls and increased after 8 weeks of rehabilitation. In this group of patients, LTP magnitude at baseline predicted the improvement in hand dexterity. CONCLUSIONS Both preventive exercise and physical rehabilitation may enhance the expression of LTP-like synaptic plasticity in MS, with potential beneficial effects on disability accumulation.
Collapse
Affiliation(s)
| | - Luana Gilio
- IRCCS NeuromedPozzilliItaly
- Faculty of PsychologyUninettuno Telematic International UniversityRomeItaly
| | | | | | | | | | | | | | - Georgia Mandolesi
- Synaptic Immunopathology LabIRCCS San Raffaele RomaRomeItaly
- Department of Human Sciences and Quality of Life PromotionUniversity of Roma San RaffaeleRomeItaly
| | | | | | - Alessandra Musella
- Synaptic Immunopathology LabIRCCS San Raffaele RomaRomeItaly
- Department of Human Sciences and Quality of Life PromotionUniversity of Roma San RaffaeleRomeItaly
| | - Ilaria Simonelli
- Service of Medical Statistics and Information TechnologyFatebenefratelli Isola Tiberina – Gemelli IsolaRomeItaly
- Department of Biomedicine and PreventionTor Vergata UniversityRomeItaly
| | - Diego Centonze
- IRCCS NeuromedPozzilliItaly
- Department of Systems MedicineTor Vergata UniversityRomeItaly
| | | |
Collapse
|
2
|
Wang C, Zhou Y, Feinstein A. Neuro-immune crosstalk in depressive symptoms of multiple sclerosis. Neurobiol Dis 2023; 177:106005. [PMID: 36680805 DOI: 10.1016/j.nbd.2023.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Depressive disorders can occur in up to 50% of people with multiple sclerosis in their lifetime. If left untreated, comorbid major depressive disorders may not spontaneously remit and is associated with an increased morbidity and mortality. Conversely, epidemiological evidence supports increased psychiatric visit as a significant prodromal event prior to diagnosis of MS. Are there common molecular pathways that contribute to the co-development of MS and psychiatric illnesses? We discuss immune cells that are dysregulated in MS and how such dysregulation can induce or protect against depressive symptoms. This is not meant to be a comprehensive review of all molecular pathways but rather a framework to guide future investigations of immune responses in depressed versus euthymic people with MS. Currently, there is weak evidence supporting the use of antidepressant medication in comorbid MS patients. It is our hope that by better understanding the neuroimmune crosstalk in the context of depression in MS, we can enhance the potential for future therapeutic options.
Collapse
Affiliation(s)
- Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yulin Zhou
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anthony Feinstein
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Gilio L, Fresegna D, Gentile A, Guadalupi L, Sanna K, De Vito F, Balletta S, Caioli S, Rizzo FR, Musella A, Iezzi E, Moscatelli A, Galifi G, Fantozzi R, Bellantonio P, Furlan R, Finardi A, Vanni V, Dolcetti E, Bruno A, Buttari F, Mandolesi G, Centonze D, Stampanoni Bassi M. Preventive exercise attenuates IL-2-driven mood disorders in multiple sclerosis. Neurobiol Dis 2022; 172:105817. [PMID: 35835361 DOI: 10.1016/j.nbd.2022.105817] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Elevated levels of specific proinflammatory molecules in the cerebrospinal fluid (CSF) have been associated with disability progression, enhanced neurodegeneration and higher incidence of mood disorders in people with multiple sclerosis (MS). Studies in animal models of MS suggest that preventive exercise may play an immunomodulatory activity, with beneficial effects on both motor deficits and behavioral alterations. Here we explored the impact of lifestyle physical activity on clinical presentation and associated central inflammation in a large group of newly diagnosed patients with MS. Furthermore, we addressed the causal link between exercise-mediated immunomodulation and mood symptoms in the animal setting. METHODS A cross-sectional study was conducted on 235 relapsing-remitting MS patients at the time of the diagnosis. Patients were divided into 3 groups ("sedentary", "lifestyle physical activity" and "exercise") according to the level of physical activity in the six months preceding the evaluation. Patients underwent clinical, neuropsychological and psychiatric evaluation, magnetic resonance imaging and lumbar puncture for diagnostic purposes. The CSF levels of proinflammatory and anti-inflammatory cytokines were analyzed and compared with a group of 80 individuals with non-inflammatory and non-degenerative diseases. Behavioral and electrophysiological studies were carried out in control mice receiving intracerebral injection of IL-2 or vehicle. Behavior was also assessed in mice with experimental autoimmune encephalomyelitis (EAE), animal model of MS, reared in standard (sedentary group) or running wheel-equipped (exercise group) cages. RESULTS In exercising MS patients, depression and anxiety were reduced compared to sedentary patients. The CSF levels of the interleukin-2 and 6 (IL-2, IL-6) were increased in MS patients compared with control individuals. In MS subjects exercise was associated with normalized CSF levels of IL-2. In EAE mice exercise started before disease onset reduced both behavioral alterations and striatal IL-2 expression. Notably, a causal role of IL-2 in mood disorders was shown. IL-2 administration in control healthy mice induced anxious- and depressive-like behaviors and impaired type-1 cannabinoid (CB1) receptor-mediated neurotransmission at GABAergic synapses, mimicking EAE-induced synaptic dysfunction. CONCLUSIONS Our results indicate an immunomodulatory effect of exercise in MS patients, associated with reduced CSF expression of IL-2, which might result in reduced mood disorders. These data suggest that exercise in the early stages may act as a disease-modifying therapy in MS although further longitudinal studies are needed to clarify this issue.
Collapse
Affiliation(s)
- Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | | | - Livia Guadalupi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Krizia Sanna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Sara Balletta
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy; Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, Tor Vergata University, Rome, Italy; Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | | | - Antonio Bruno
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli (IS), Italy; Department of Systems Medicine, Tor Vergata University, Rome, Italy.
| | | |
Collapse
|
4
|
Exercise protects from hippocampal inflammation and neurodegeneration in experimental autoimmune encephalomyelitis. Brain Behav Immun 2021; 98:13-27. [PMID: 34391817 DOI: 10.1016/j.bbi.2021.08.212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise is increasingly recommended as a supportive therapy for people with Multiple Sclerosis (pwMS). While clinical research has still not disclosed the real benefits of exercise on MS disease, animal studies suggest a substantial beneficial effect on motor disability and pathological hallmarks such as central and peripheral dysregulated immune response. The hippocampus, a core area for memory formation and learning, is a brain region involved in MS pathophysiology. Human and rodent studies suggest that the hippocampus is highly sensitive to the effects of exercise, the impact of which on MS hippocampal damage is still elusive. Here we addressed the effects of chronic voluntary exercise on hippocampal function and damage in experimental autoimmune encephalomyelitis (EAE), animal model of MS. Mice were housed in standard or wheel-equipped cages starting from the day of immunization and throughout the disease course. Although running activity was reduced during the symptomatic phase, exercise significantly ameliorated motor disability. Exercise improved cognition that was assessed through the novel object recognition test and the nest building in presymptomatic and acute stages of the disease, respectively. In the acute phase exercise was shown to prevent EAE-induced synaptic plasticity abnormalities in the CA1 area, by promoting the survival of parvalbumin-positive (PV+) interneurons and by attenuating inflammation. Indeed, exercise significantly reduced microgliosis in the CA1 area, the expression of tumour necrosis factor (TNF) in microglia and, to a lesser extent, the hippocampal level of interleukin 1 beta (IL-1β), previously shown to contribute to aberrant synaptic plasticity in the EAE hippocampus. Notably, exercise exerted a precocious and long-lasting mitigating effect on microgliosis that preceded its neuroprotective action, likely underlying the improved cognitive function observed in both presymptomatic and acute phase EAE mice. Overall, these data provide evidence that regular exercise improves cognitive function and synaptic and neuronal pathology that typically affect EAE/MS brains.
Collapse
|
5
|
Valproic acid suppresses cuprizone-induced hippocampal demyelination and anxiety-like behavior by promoting cholesterol biosynthesis. Neurobiol Dis 2021; 158:105489. [PMID: 34461265 DOI: 10.1016/j.nbd.2021.105489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022] Open
Abstract
Myelin consists of several layers of tightly compacted membranes that form an insulating sheath around axons. These membranes are highly enriched in cholesterol, which is essential for the myelination process. Proper myelination is crucial for various neurophysiological functions while demyelination may cause CNS disease, such as multiple sclerosis (MS). Recent studies demonstrated that demyelination occurs not only in the white matter but also in the grey matter, such as the hippocampus, which may cause cognitive deficits and mental disorders. Valproic acid (VPA) is an anticonvulsant agent prescribed for the treatment of epilepsy and seizure. Recently, VPA was reported to alter cholesterol metabolism in neural cells, suggesting that it may play an important role in myelin biogenesis. Here in this study, we found significant demyelination in the hippocampus of the mouse cuprizone model, which is accompanied by reduced cholesterol biosynthesis and increased anxiety-like behavior. VPA treatment, however, suppressed cuprizone-induced hippocampal demyelination and anxiety-like behavior by promoting cholesterol biosynthesis. These data identify an important role of VPA in the hippocampal demyelination process and the hippocampal demyelination-related behavior deficit via regulation of cholesterol biosynthesis, which provides new insights into the mechanisms of VPA as a protective agent against CNS demyelination.
Collapse
|
6
|
Peres DS, Theisen MC, Fialho MFP, Dalenogare DP, Rodrigues P, Kudsi SQ, Bernardes LDB, Ruviaro da Silva NA, Lückemeyer DD, Sampaio TB, Pereira GC, Mello FK, Ferreira J, Bochi GV, Oliveira SM, de David Antoniazzi CT, Trevisan G. TRPA1 involvement in depression- and anxiety-like behaviors in a progressive multiple sclerosis model in mice. Brain Res Bull 2021; 175:1-15. [PMID: 34280479 DOI: 10.1016/j.brainresbull.2021.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
Progressive multiple sclerosis (PMS) is a neurological disease associated with the development of depression and anxiety, but treatments available are unsatisfactory. The transient receptor potential ankyrin 1 (TRPA1) is a cationic channel activated by reactive compounds, and the blockage of this receptor can reduce depression- and anxiety-like behaviors in naive mice. Thus, we investigated the role of TRPA1 in depression- and anxiety-like behaviors in a PMS model in mice. PMS model was induced in C57BL/6 female mice by the experimental autoimmune encephalomyelitis (EAE). Nine days after the PMS-EAE induction, behavioral tests (tail suspension and elevated plus maze tests) were performed to verify the effects of sertraline (positive control), selective TRPA1 antagonist (A-967,079), and antioxidants (α-lipoic acid and apocynin). The prefrontal cortex and hippocampus were collected to evaluate biochemical and inflammatory markers. PMS-EAE induction did not cause locomotor changes but triggered depression- and anxiety-like behaviors, which were reversed by sertraline, A-967,079, α-lipoic acid, or apocynin treatments. The neuroinflammatory markers (AIF1, GFAP, IL-1β, IL-17, and TNF-α) were increased in mice's hippocampus. Moreover, this model did not alter TRPA1 RNA expression levels in the hippocampus but decrease TRPA1 levels in the prefrontal cortex. Moreover, PMS-EAE induced an increase in NADPH oxidase and superoxide dismutase activities and TRPA1 endogenous agonist levels (hydrogen peroxide and 4-hydroxynonenal). TRPA1 plays a fundamental role in depression- and anxiety-like behaviors in a PMS-EAE model; thus, it could be a possible pharmacological target for treating these symptoms in PMS.
Collapse
Affiliation(s)
- Diulle Spat Peres
- Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | | | | | - Patrícia Rodrigues
- Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Sabrina Qader Kudsi
- Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | | | | | | | | | | | - Juliano Ferreira
- Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | | | - Sara Marchesan Oliveira
- Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Gabriela Trevisan
- Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
7
|
Chen R, Weitzner AS, McKennon LA, Fonken LK. Light at night during development in mice has modest effects on adulthood behavior and neuroimmune activation. Behav Brain Res 2021; 405:113171. [PMID: 33577883 DOI: 10.1016/j.bbr.2021.113171] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/01/2021] [Accepted: 02/04/2021] [Indexed: 11/15/2022]
Abstract
Exposure to light at night (LAN) can disrupt the circadian system, thereby altering neuroimmune reactivity and related behavior. Increased exposure to LAN affects people of all ages - and could have particularly detrimental effects during early-life and adolescence. Despite this, most research on the behavioral and physiological effects of LAN has been conducted in adult animals. Here we evaluated the effects of dim LAN during critical developmental windows on adulthood neuroimmune function and affective/sickness behaviors. Male and female C57BL/6 J mice were exposed to dim LAN [12:12 light (150 lx)/dim (15 lx) cycle] during early life (PND10-24) or adolescence (PND30-44) [control: 12:12 light (150 lx)/dark (0 lx) cycle]. Behaviors were assessed during juvenile (PND 42-44) and adult (PND60) periods. Contrary to our hypothesis, juvenile mice that were exposed to dim LAN did not exhibit changes in anxiety- or depressive-like behaviors. By adulthood, adolescent LAN-exposed female mice showed a modest anxiety-like phenotype in one behavioral task but not another. Adolescent LAN exposure also induced depressive-like behavior in a forced swim task in adulthood in both male and female mice. Additionally, developmental LAN exacerbated the hippocampal cytokine response (IL-1β) following peripheral LPS in female, but not male mice. These results suggest female mice may be more susceptible to developmental LAN than male mice: LAN female mice had a modest anxiety-like phenotype in adulthood, and upon LPS challenge, higher hippocampal IL-1β expression. Taken together, developmental LAN exposure in mice promotes a modest increase in susceptibility to anxiety- and depressive-like symptoms.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Aidan S Weitzner
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Lara A McKennon
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Bruno A, Dolcetti E, Rizzo FR, Fresegna D, Musella A, Gentile A, De Vito F, Caioli S, Guadalupi L, Bullitta S, Vanni V, Balletta S, Sanna K, Buttari F, Stampanoni Bassi M, Centonze D, Mandolesi G. Inflammation-Associated Synaptic Alterations as Shared Threads in Depression and Multiple Sclerosis. Front Cell Neurosci 2020; 14:169. [PMID: 32655374 PMCID: PMC7324636 DOI: 10.3389/fncel.2020.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
In the past years, several theories have been advanced to explain the pathogenesis of Major Depressive Disorder (MDD), a neuropsychiatric disease that causes disability in general population. Several theories have been proposed to define the MDD pathophysiology such as the classic "monoamine-theory" or the "glutamate hypothesis." All these theories have been recently integrated by evidence highlighting inflammation as a pivotal player in developing depressive symptoms. Proinflammatory cytokines have been indeed claimed to contribute to stress-induced mood disturbances and to major depression, indicating a widespread role of classical mediators of inflammation in emotional control. Moreover, during systemic inflammatory diseases, peripherally released cytokines circulate in the blood, reach the brain and cause anxiety, anhedonia, social withdrawal, fatigue, and sleep disturbances. Accordingly, chronic inflammatory disorders, such as the inflammatory autoimmune disease multiple sclerosis (MS), have been associated to higher risk of MDD, in comparison with overall population. Importantly, in both MS patients and in its experimental mouse model, Experimental Autoimmune Encephalomyelitis (EAE), the notion that depressive symptoms are reactive epiphenomenon to the MS pathology has been recently challenged by the evidence of their early manifestation, even before the onset of the disease. Furthermore, in association to such mood disturbance, inflammatory-dependent synaptic dysfunctions in several areas of MS/EAE brain have been observed independently of brain lesions and demyelination. This evidence suggests that a fine interplay between the immune and nervous systems can have a huge impact on several neurological functions, including depressive symptoms, in different pathological conditions. The aim of the present review is to shed light on common traits between MDD and MS, by looking at inflammatory-dependent synaptic alterations associated with depression in both diseases.
Collapse
Affiliation(s)
- Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| | | | - Francesca De Vito
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | - Silvia Caioli
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sara Balletta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Krizia Sanna
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | | | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| |
Collapse
|
9
|
Binzer S, McKay KA, Brenner P, Hillert J, Manouchehrinia A. Disability worsening among persons with multiple sclerosis and depression: A Swedish cohort study. Neurology 2019; 93:e2216-e2223. [PMID: 31704791 PMCID: PMC6937491 DOI: 10.1212/wnl.0000000000008617] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Depression is common in multiple sclerosis (MS), but its impact on disability worsening has not yet been determined. We explored the risk of disability worsening associated with depression in a nationwide longitudinal cohort. METHODS This retrospective cohort study used linked data from 3 Swedish nationwide registries: the MS Register, National Patient Register, and Prescribed Drug Register. Two incident cohorts were developed: cohort 1 included all registered cases of MS in the MS Registry (2001-2014) with depression defined as ≥1 ICD-10 code for depression; and cohort 2 comprised all cases of MS in the MS Registry (2005-2014) with depression defined as ≥1 prescription filled for an antidepressant. Cox regression models were used to compare the risk of reaching sustained disability milestone scores of 3.0, 4.0, and 6.0 on the Expanded Disability Status Scale (EDSS) between persons with MS with and without depression. RESULTS Cohort 1 included 5,875 cases; 502 (8.5%) had depression. Cohort 2 had 3,817 cases; 1,289 (33.8%) were prescribed an antidepressant. Persons with depression were at a significantly higher risk of reaching sustained EDSS scores of 3.0, 4.0, and 6.0, with hazard ratios of 1.50 (95% confidence interval [CI] 1.20-1.87), 1.79 (95% CI 1.40-2.29), and 1.89 (95% CI 1.38-2.57), respectively. A similar increased risk among persons exposed to antidepressants was observed, with hazard ratios of 1.37 (95% CI 1.18-1.60), 1.93 (95% CI 1.61-2.31), and 1.86 (95% CI 1.45-2.40) for sustained EDSS scores of 3.0, 4.0, and 6.0, respectively. CONCLUSION Persons with MS and comorbid depression had a significantly increased risk of disability worsening. This finding highlights the need for early recognition and appropriate treatment of depression in persons with MS.
Collapse
Affiliation(s)
- Stefanie Binzer
- From the Department of Clinical Neuroscience (S.B., K.A.M., J.H., A.M.), Department of Medicine Solna (P.B.), and Karolinska Neuroimmunology & Multiple Sclerosis Centre and Centre for Molecular Medicine (A.M.) Karolinska Institutet, Stockholm, Sweden, Odense University Hospital (S.B.), Department of Neurology, Denmark; and Karolinska University Hospital (J.H.), Stockholm, Sweden.
| | - Kyla A McKay
- From the Department of Clinical Neuroscience (S.B., K.A.M., J.H., A.M.), Department of Medicine Solna (P.B.), and Karolinska Neuroimmunology & Multiple Sclerosis Centre and Centre for Molecular Medicine (A.M.) Karolinska Institutet, Stockholm, Sweden, Odense University Hospital (S.B.), Department of Neurology, Denmark; and Karolinska University Hospital (J.H.), Stockholm, Sweden
| | - Philip Brenner
- From the Department of Clinical Neuroscience (S.B., K.A.M., J.H., A.M.), Department of Medicine Solna (P.B.), and Karolinska Neuroimmunology & Multiple Sclerosis Centre and Centre for Molecular Medicine (A.M.) Karolinska Institutet, Stockholm, Sweden, Odense University Hospital (S.B.), Department of Neurology, Denmark; and Karolinska University Hospital (J.H.), Stockholm, Sweden
| | - Jan Hillert
- From the Department of Clinical Neuroscience (S.B., K.A.M., J.H., A.M.), Department of Medicine Solna (P.B.), and Karolinska Neuroimmunology & Multiple Sclerosis Centre and Centre for Molecular Medicine (A.M.) Karolinska Institutet, Stockholm, Sweden, Odense University Hospital (S.B.), Department of Neurology, Denmark; and Karolinska University Hospital (J.H.), Stockholm, Sweden
| | - Ali Manouchehrinia
- From the Department of Clinical Neuroscience (S.B., K.A.M., J.H., A.M.), Department of Medicine Solna (P.B.), and Karolinska Neuroimmunology & Multiple Sclerosis Centre and Centre for Molecular Medicine (A.M.) Karolinska Institutet, Stockholm, Sweden, Odense University Hospital (S.B.), Department of Neurology, Denmark; and Karolinska University Hospital (J.H.), Stockholm, Sweden
| |
Collapse
|
10
|
Intracerebroventricular administration of lupus serum induces microglia activation and leukocyte adhesion in the cerebromicrovasculature of mice. J Neuroimmunol 2019; 334:576994. [PMID: 31207553 DOI: 10.1016/j.jneuroim.2019.576994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/28/2019] [Accepted: 06/09/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Central nervous system (CNS) involvement is commonly seen in the patients with system lupus erythematosus (SLE). Mechanisms underlying CNS damage in SLE remain largely unknown. Accumulating evidence suggest that activation of microglia in CNS plays an important role in the inflammatory responses in neurological diseases. The aim of this study is to examine the involvement of microglia in the CNS inflammatory responses induced by circulating serum of SLE patients. METHODS We performed intracerebroventricular (ICV) injection of serums collected from SLE patients or healthy controls to mice, and examined phenotypic changes of microglia, the levels of cytokines, chemokine and adhesion molecules in the brain. Intravital microscopy was used to observe leukocyte rolling and adhesion in the cerebromicrovasculature. We further examined whether minocycline can block inflammatory responses induced by SLE serum. In vitro experiments were conducted to examine whether IgGs from the sera of SLE patients or healthy control can activate the primary cultured microglia. RESULTS We found that ICV injection of SLE serum increases morphological activation of microglia in the cortex and hippocampus. Inflammatory mediators including pro-inflammatory cytokines (IL-1, IL-6 and TNF-α), chemokine (CCL2 and CCL5) and adhesion molecules (P-selectin and ICAM-1) were significantly elevated in the brains of SLE-serum-treated mice. Using intravital microscopy, we demonstrated that SLE serum promotes leukocyte rolling and adhesion. Furthermore, suppression of microglia activation by systemically using minocycline could decrease the levels of inflammatory molecular, and prevent leukocyte rolling and adhesion. The in vitro experiments revealed that IgG from SLE sera could be engulfed by microglia and stimulated the microglia to secret pro-inflammatory cytokines. CONCLUSION Our data suggest that the activation of microglia, which promotes leukocyte adhesion to the brain microvasculature, is an important pathological mechanism of CNS involvement in SLE.
Collapse
|
11
|
Stampanoni Bassi M, Gilio L, Maffei P, Dolcetti E, Bruno A, Buttari F, Centonze D, Iezzi E. Exploiting the Multifaceted Effects of Cannabinoids on Mood to Boost Their Therapeutic Use Against Anxiety and Depression. Front Mol Neurosci 2018; 11:424. [PMID: 30515077 PMCID: PMC6256035 DOI: 10.3389/fnmol.2018.00424] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid system (ECS) has been recently recognized as a prominent promoter of the emotional homeostasis, mediating the effects of different environmental signals including rewarding and stressing stimuli. The ECS modulates the rewarding effects of environmental stimuli, influencing synaptic transmission in the dopaminergic projections to the limbic system, and mediates the neurophysiological and behavioral consequences of stress. Notably, the individual psychosocial context is another key element modulating the activity of the ECS. Finally, inflammation represents an additional factor that could alter the cannabinoid signaling in the CNS inducing a "sickness behavior," characterized by anxiety, anhedonia, and depressive symptoms. The complex influences of the ECS on both the environmental and internal stimuli processing, make the cannabinoid-based drugs an appealing option to treat different psychiatric conditions. Although ample experimental evidence shows beneficial effects of ECS modulation on mood, scarce clinical indication limits the use of cannabis-based treatments. To better define the possible clinical indications of cannabinoid-based drugs in psychiatry, a number of issues should be better addressed, including genetic variability and psychosocial factors possibly affecting the individual response. In particular, better knowledge of the multifaceted effects of cannabinoids could help to understand how to boost their therapeutic use in anxiety and depression treatment.
Collapse
Affiliation(s)
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Pierpaolo Maffei
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Ettore Dolcetti
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
12
|
Dey A, Hankey Giblin PA. Insights into Macrophage Heterogeneity and Cytokine-Induced Neuroinflammation in Major Depressive Disorder. Pharmaceuticals (Basel) 2018; 11:E64. [PMID: 29941796 PMCID: PMC6160985 DOI: 10.3390/ph11030064] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022] Open
Abstract
Over 350 million individuals suffer from depression, a psychiatric illness classified as major depressive disorder (MDD) with symptoms that include a loss of interest or pleasure in life accompanied by depressed mood. The present understanding of major depressive disorder does not encompass a systematic characterization of the neurobiological processes that drive the behavioral physiology in patients diagnosed with major depressive disorder. Psychiatric illness is a complex intersection between genetics, physiology, immunology and environmental stress. The increased attention to the relevance of depression has led to new discoveries that highlight the biological significance of ‘neuroinflammation’ and immunity underlying a spectrum of psychiatric illnesses. The process of neuroinflammation involves sentinel immune cells in the central nervous system (CNS). The activation and polarization of microglia, CNS-resident macrophages, modulates the production and secretion of pro-inflammatory cytokines implicated in the etiology of major depressive disorder, and this phenomenon has been aptly titled the ‘macrophage theory of depression’. Of particular interest are three hallmark cytokines, IL-6, TNFα and IL-1β, which have been studied extensively in basic research, cell-receptor signaling and drug development. The field of inflammasome-mediated neuroinflammation is an emerging area of MDD research that is providing new cellular insight into how macrophages mechanistically support cytokine-associated neuropathology, particularly in the case of IL-1β-associated inflammation in MDD. With the increasing number of individuals identified with depression, a comprehensive understanding of macrophage-cytokine signaling pathways in the CNS in depression is necessary for developing effective anti-depressant therapeutics.
Collapse
Affiliation(s)
- Adwitia Dey
- Center for Molecular Immunology and Infectious Diseases, The Pennsylvania State University, University Park, State College, PA 16802, USA.
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA.
| | - Pamela A Hankey Giblin
- Center for Molecular Immunology and Infectious Diseases, The Pennsylvania State University, University Park, State College, PA 16802, USA.
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA.
| |
Collapse
|
13
|
Multiple Sclerosis and Obesity: Possible Roles of Adipokines. Mediators Inflamm 2016; 2016:4036232. [PMID: 27721574 PMCID: PMC5046034 DOI: 10.1155/2016/4036232] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/22/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disorder of the Central Nervous System that has been associated with several environmental factors, such as diet and obesity. The possible link between MS and obesity has become more interesting in recent years since the discovery of the remarkable properties of adipose tissue. Once MS is initiated, obesity can contribute to increased disease severity by negatively influencing disease progress and treatment response, but, also, obesity in early life is highly relevant as a susceptibility factor and causally related risk for late MS development. The aim of this review was to discuss recent evidence about the link between obesity, as a chronic inflammatory state, and the pathogenesis of MS as a chronic autoimmune and inflammatory disease. First, we describe the main cells involved in MS pathogenesis, both from neural tissue and from the immune system, and including a new participant, the adipocyte, focusing on their roles in MS. Second, we concentrate on the role of several adipokines that are able to participate in the mediation of the immune response in MS and on the possible cross talk between the latter. Finally, we explore recent therapy that involves the transplantation of adipocyte precursor cells for the treatment of MS.
Collapse
|
14
|
Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, Piras E, Gargano F, Borsellino G, Battistini L, Schubart A, Mandolesi G, Centonze D. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation 2016; 13:207. [PMID: 27566665 PMCID: PMC5002118 DOI: 10.1186/s12974-016-0686-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background Data from multiple sclerosis (MS) and the MS rodent model, experimental autoimmune encephalomyelitis (EAE), highlighted an inflammation-dependent synaptopathy at the basis of the neurodegenerative damage causing irreversible disability in these disorders. This synaptopathy is characterized by an imbalance between glutamatergic and GABAergic transmission and has been proposed to be a potential therapeutic target. Siponimod (BAF312), a selective sphingosine 1-phosphate1,5 receptor modulator, is currently under investigation in a clinical trial in secondary progressive MS patients. We investigated whether siponimod, in addition to its peripheral immune modulation, may exert direct neuroprotective effects in the central nervous system (CNS) of mice with chronic progressive EAE. Methods Minipumps allowing continuous intracerebroventricular (icv) infusion of siponimod for 4 weeks were implanted into C57BL/6 mice subjected to MOG35-55-induced EAE. Electrophysiology, immunohistochemistry, western blot, qPCR experiments, and peripheral lymphocyte counts were performed. In addition, the effect of siponimod on activated microglia was assessed in vitro to confirm the direct effect of the drug on CNS-resident immune cells. Results Siponimod administration (0.45 μg/day) induced a significant beneficial effect on EAE clinical scores with minimal effect on peripheral lymphocyte counts. Siponimod rescued defective GABAergic transmission in the striatum of EAE, without correcting the EAE-induced alterations of glutamatergic transmission. We observed a significant attenuation of astrogliosis and microgliosis together with reduced lymphocyte infiltration in the striatum of EAE mice treated with siponimod. Interestingly, siponimod reduced the release of IL-6 and RANTES from activated microglial cells in vitro, which might explain the reduced lymphocyte infiltration. Furthermore, the loss of parvalbumin-positive (PV+) GABAergic interneurons typical of EAE brains was rescued by siponimod treatment, providing a plausible explanation of the selective effects of this drug on inhibitory synaptic transmission. Conclusions Altogether, our results show that siponimod has neuroprotective effects in the CNS of EAE mice, which are likely independent of its peripheral immune effect, suggesting that this drug could be effective in limiting neurodegenerative pathological processes in MS.
Collapse
Affiliation(s)
- Antonietta Gentile
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Alessandra Musella
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy
| | - Diego Fresegna
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Francesca De Vito
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Roberta Fantozzi
- Unit of Neurology and Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Eleonora Piras
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | - Francesca Gargano
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | - Anna Schubart
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Georgia Mandolesi
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.
| | - Diego Centonze
- Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy.,Unit of Neurology and Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| |
Collapse
|