1
|
Almohmadi NH, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Abdelaziz AM, Jabir MS, Alexiou A, Papadakis M, Batiha GES. Glutamatergic dysfunction in neurodegenerative diseases focusing on Parkinson's disease: Role of glutamate modulators. Brain Res Bull 2025; 225:111349. [PMID: 40252703 DOI: 10.1016/j.brainresbull.2025.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder resulting from the degeneration of dopamenergic neurons in the substantia nigra pars compacta (SNpc). Research has predominantly centered on understanding the dysfunction of dopaminergic neurotransmission in PD. Recently, more studies discussed the potential role of other neurotransmitters in PD neuropathology. One of the most important non-dopaminergic neurotransmitters involved in the pathogenesis of PD is glutamate, which is widely involved in glutamatergic neurotransmission in different brain regions, including SNpc. The development and progression of PD neuropathology and levodopa-induced dyskinesias (LID) are associated with glutamate neurotoxicity. Therefore, this review seeks to explore the possible involvement of glutamatergic signaling in PD development and assess the therapeutic potential of glutamate receptor antagonists in treating the disorder.
Collapse
Affiliation(s)
- Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq; Jabir ibn Hayyan Medical University Al-Ameer Qu, Po. Box (13), Kufa, Najaf, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Arish Branch, Arish 45511, Egypt.
| | - Majid S Jabir
- Department of Applied Science, University of Technology-Iraq, Baghdad, Iraq.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, AlBeheira 22511, Egypt.
| |
Collapse
|
2
|
Capó T, Rebassa JB, Raïch I, Lillo J, Badia P, Navarro G, Reyes-Resina I. Future Perspectives of NMDAR in CNS Disorders. Molecules 2025; 30:877. [PMID: 40005187 PMCID: PMC11857888 DOI: 10.3390/molecules30040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's and Parkinson's diseases are among the leading causes of physical and cognitive disability across the globe. Fifty million people worldwide suffer these diseases, and that number is expected to rise as the population ages. Ictus is another pathology that also courses with neurodegeneration and is a leading cause of mortality and long-term disability in developed countries. Schizophrenia is not as common as other mental disorders, affecting approximately 24 million people worldwide. All these disorders have in common that still there is not an effective pharmacological treatment to cure them. The N-methyl-D-aspartate (NMDA) receptor (NMDAR) has attracted attention as a potential therapeutic target due to its important role in learning and memory and also due to its implication in excitotoxicity processes. Some drugs targeting NMDARs are already being used to treat symptoms of disorders affecting the central nervous system (CNS). Here, we aim to review the implications of NMDAR in these CNS pathologies, its role as a potential therapeutic target, and the future perspectives for developing new treatments focused on these receptors.
Collapse
Affiliation(s)
- Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Pau Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.C.); (J.B.R.); (I.R.); (P.B.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron171, 08035 Barcelona, Spain
| |
Collapse
|
3
|
Castillo-Vazquez SK, Massieu L, Rincón-Heredia R, García-de la Torre P, Quiroz-Baez R, Gomez-Verjan JC, Rivero-Segura NA. Glutamatergic Neurotransmission in Aging and Neurodegenerative Diseases: A Potential Target to Improve Cognitive Impairment in Aging. Arch Med Res 2024; 55:103039. [PMID: 38981341 DOI: 10.1016/j.arcmed.2024.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Paola García-de la Torre
- 4 Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City Mexico
| | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | | |
Collapse
|
4
|
Rafe MR, Saha P, Bello ST. Targeting NMDA receptors with an antagonist is a promising therapeutic strategy for treating neurological disorders. Behav Brain Res 2024; 472:115173. [PMID: 39097148 DOI: 10.1016/j.bbr.2024.115173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Glutamate activates the NMDARs, significantly affecting multiple processes such as learning, memory, synaptic integration, and excitatory transmission in the central nervous system. Uncontrolled activation of NMDARs is a significant contributor to synaptic dysfunction. Having a properly functioning NMDAR and synapse is crucial for maintaining neuronal communication. In addition, the dysfunction of NMDAR and synapse function could contribute to the development of neurological disorders at the neuronal level; hence, targeting NMDARs with antagonists in the fight against neurological disorders is a promising route. Recently published results from the animal study on different kinds of brain diseases like stroke, epilepsy, tinnitus, ataxia, Alzheimer's disease, Parkinson's disease, and spinal cord injury have demonstrated promising therapeutic scopes. Several NMDA receptor antagonists, such as memantine, MK801, ketamine, ifenprodil, gacyclidine, amantadine, agmatine, etc., showed encouraging results against different brain disease mouse models. Given the unique expression of different subunits of the well-organized NMDA receptor system by neurons. It could potentially lead to the development of medications specifically targeting certain receptor subtypes. For a future researcher, conducting more targeted research and trials is crucial to fully understand and develop highly specific medications with good clinical effects and potential neuroprotective properties.
Collapse
Affiliation(s)
- Md Rajdoula Rafe
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| | - Pranoy Saha
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| | - Stephen Temitayo Bello
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, New Territories, Hong Kong.
| |
Collapse
|
5
|
de Carvalho MB, Teixeira-Silva B, Marques SA, Silva AA, Cossenza M, da Cunha Faria-Melibeu A, Serfaty CA, Campello-Costa P. NMDA receptor remodeling and nNOS activation in mice after unilateral striatal injury with 6-OHDA. Heliyon 2024; 10:e34120. [PMID: 39130441 PMCID: PMC11315104 DOI: 10.1016/j.heliyon.2024.e34120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by selective dopaminergic loss. Non dopaminergic neurotransmitters such as glutamate are also involved in PD progression. NMDA receptor/postsynaptic density protein 95 (PSD-95)/neuronal nitric oxide synthase (nNOS) activation is involved in neuronal excitability in PD. Here, we are focusing on the evaluating these post-synaptic protein levels in the 6-OHDA model of PD. Adult male C57BL/6 mice subjected to unilateral striatal injury with 6-OHDA were assessed at 1-, 2-, or 4-weeks post-lesion. Animals were subjected to an apomorphine-induced rotation test followed by the analysis of protein content, synaptic structure, and NOx production. All biochemical analysis was performed comparing the control versus lesioned sides of the same animal. 6-OHDA mice exhibited contralateral rotation activity, difficulties in coordinating movements, and changes in Iba-1 and glial fibrillary acidic protein (GFAP) expression during the whole period. At one week of survival, the mice showed a shift in NMDA composition, favoring the GluN2A subunit and increased PSD95 and nNOS expression and NOx formation. After two-weeks, a decrease in the total number of synapses was observed in the lesioned side. However, the number of excitatory synapses was increased with a higher content of GluN1 subunit and PSD95. After four weeks, NMDA receptor subunits restored to control levels. Interestingly, NOx formation in the serum increased. This study reveals, for the first time, the temporal course of behavioral deficits and glutamatergic synaptic plasticity through NMDAr subunit shift. Together, these data demonstrate that dopamine depletion leads to a fine adaptive response over time, which can be used for further studies of therapeutic management adjustments with the progression of PD.
Collapse
Affiliation(s)
- Michele Barboza de Carvalho
- Laboratory of Neuroplasticity, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Bruna Teixeira-Silva
- Laboratory of Neuroplasticity, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Suelen Adriani Marques
- Laboratory of Neural Regeneration and Function, Department of Neurobiology, Federal Fluminense University, Niteroi, RJ, Brazil
- Postgraduate School in Pathological Anatomy, Federal University of the State of Rio de Janeiro, Brazil
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Graduate Program in Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói, 24033-900, Rio de Janeiro, Brazil
| | - Marcelo Cossenza
- Laboratory of Molecular Pharmacology, Physiology and Pharmacology Department, Biomedical Institute, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Claudio Alberto Serfaty
- Laboratory of Neural Plasticity, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| |
Collapse
|
6
|
Reyes-Resina I, Lillo J, Raïch I, Rebassa JB, Navarro G. The Expression and Functionality of CB 1R-NMDAR Complexes Are Decreased in A Parkinson's Disease Model. Int J Mol Sci 2024; 25:3021. [PMID: 38474266 PMCID: PMC10931566 DOI: 10.3390/ijms25053021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the alteration in the expression and function of NMDA receptor (NMDAR) and cannabinoid receptor 1 (CB1R). The presence of CB1R-NMDAR complexes has been described in neuronal primary cultures. The activation of CB1R in CB1R-NMDAR complexes was suggested to counteract the detrimental NMDAR overactivation in an AD mice model. Thus, we aimed to explore the role of this receptor complex in PD. By using Bioluminescence Resonance Energy Transfer (BRET) assay, it was demonstrated that α-synuclein induces a reorganization of the CB1R-NMDAR complex in transfected HEK-293T cells. Moreover, α-synuclein treatment induced a decrease in the cAMP and MAP kinase (MAPK) signaling of both CB1R and NMDAR not only in transfected cells but also in neuronal primary cultures. Finally, the interaction between CB1R and NMDAR was studied by Proximity Ligation Assay (PLA) in neuronal primary cultures, where it was observed that the expression of CB1R-NMDAR complexes was decreased upon α-synuclein treatment. These results point to a role of CB1R-NMDAR complexes as a new therapeutic target in Parkinson's disease.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Molecular Neurobiology Laboratory, Department Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Vaidya B, Padhy DS, Joshi HC, Sharma SS, Singh JN. Ion Channels and Metal Ions in Parkinson's Disease: Historical Perspective to the Current Scenario. Methods Mol Biol 2024; 2761:529-557. [PMID: 38427260 DOI: 10.1007/978-1-0716-3662-6_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition linked to the deterioration of motor and cognitive performance. It produces degeneration of the dopaminergic neurons along the nigrostriatal pathway in the central nervous system (CNS), which leads to symptoms such as bradykinesias, tremors, rigidity, and postural instability. There are several medications currently approved for the therapy of PD, but a permanent cure for it remains elusive. With the aging population set to increase, a number of PD cases are expected to shoot up in the coming times. Hence, there is a need to look for new molecular targets that could be investigated both preclinically and clinically for PD treatment. Among these, several ion channels and metal ions are being studied for their effects on PD pathology and the functioning of dopaminergic neurons. Ion channels such as N-methyl-D-aspartate (NMDA), γ-aminobutyric acid A (GABAA), voltage-gated calcium channels, potassium channels, HCN channels, Hv1 proton channels, and voltage-gated sodium channels and metal ions such as mercury, zinc, copper, iron, manganese, calcium, and lead showed prominent involvement in PD. Pharmacological agents have been used to target these ion channels and metal ions to prevent or treat PD. Hence, in the present review, we summarize the pathophysiological events linked to PD with an emphasis on the role of ions and ion channels in PD pathology, and pharmacological agents targeting these ion channels have also been listed.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Dibya S Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Hem C Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| | - Jitendra Narain Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| |
Collapse
|
8
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
9
|
Kochoian BA, Bure C, Papa SM. Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia. Cells 2023; 12:2754. [PMID: 38067182 PMCID: PMC10706484 DOI: 10.3390/cells12232754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
A large body of work during the past several decades has been focused on therapeutic strategies to control L-DOPA-induced dyskinesias (LIDs), common motor complications of long-term L-DOPA therapy in Parkinson's disease (PD). Yet, LIDs remain a clinical challenge for the management of patients with advanced disease. Glutamatergic dysregulation of striatal projection neurons (SPNs) appears to be a key contributor to altered motor responses to L-DOPA. Targeting striatal hyperactivity at the glutamatergic neurotransmission level led to significant preclinical and clinical trials of a variety of antiglutamatergic agents. In fact, the only FDA-approved treatment for LIDs is amantadine, a drug with NMDAR antagonistic actions. Still, novel agents with improved pharmacological profiles are needed for LID therapy. Recently other therapeutic targets to reduce dysregulated SPN activity at the signal transduction level have emerged. In particular, mechanisms regulating the levels of cyclic nucleotides play a major role in the transduction of dopamine signals in SPNs. The phosphodiesterases (PDEs), a large family of enzymes that degrade cyclic nucleotides in a specific manner, are of special interest. We will review the research for antiglutamatergic and PDE inhibition strategies in view of the future development of novel LID therapies.
Collapse
Affiliation(s)
- Brik A. Kochoian
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Cassandra Bure
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Stella M. Papa
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| |
Collapse
|
10
|
Gautam D, Naik UP, Naik MU, Yadav SK, Chaurasia RN, Dash D. Glutamate Receptor Dysregulation and Platelet Glutamate Dynamics in Alzheimer's and Parkinson's Diseases: Insights into Current Medications. Biomolecules 2023; 13:1609. [PMID: 38002291 PMCID: PMC10669830 DOI: 10.3390/biom13111609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Two of the most prevalent neurodegenerative disorders (NDDs), Alzheimer's disease (AD) and Parkinson's disease (PD), present significant challenges to healthcare systems worldwide. While the etiologies of AD and PD differ, both diseases share commonalities in synaptic dysfunction, thereby focusing attention on the role of neurotransmitters. The possible functions that platelets may play in neurodegenerative illnesses including PD and AD are becoming more acknowledged. In AD, platelets have been investigated for their ability to generate amyloid-ß (Aß) peptides, contributing to the formation of neurotoxic plaques. Moreover, platelets are considered biomarkers for early AD diagnosis. In PD, platelets have been studied for their involvement in oxidative stress and mitochondrial dysfunction, which are key factors in the disease's pathogenesis. Emerging research shows that platelets, which release glutamate upon activation, also play a role in these disorders. Decreased glutamate uptake in platelets has been observed in Alzheimer's and Parkinson's patients, pointing to a systemic dysfunction in glutamate handling. This paper aims to elucidate the critical role that glutamate receptors play in the pathophysiology of both AD and PD. Utilizing data from clinical trials, animal models, and cellular studies, we reviewed how glutamate receptors dysfunction contributes to neurodegenerative (ND) processes such as excitotoxicity, synaptic loss, and cognitive impairment. The paper also reviews all current medications including glutamate receptor antagonists for AD and PD, highlighting their mode of action and limitations. A deeper understanding of glutamate receptor involvement including its systemic regulation by platelets could open new avenues for more effective treatments, potentially slowing disease progression and improving patient outcomes.
Collapse
Affiliation(s)
- Deepa Gautam
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Ulhas P. Naik
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Meghna U. Naik
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Santosh K. Yadav
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Rameshwar Nath Chaurasia
- The Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
11
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
12
|
Yang L, Wei M, Wang Y, Zhang J, Liu S, Liu M, Wang S, Li K, Dong Z, Zhang C. Rabphilin-3A undergoes phase separation to regulate GluN2A mobility and surface clustering. Nat Commun 2023; 14:379. [PMID: 36693856 PMCID: PMC9873702 DOI: 10.1038/s41467-023-36046-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are essential for excitatory neurotransmission and synaptic plasticity. GluN2A and GluN2B, two predominant Glu2N subunits of NMDARs in the hippocampus and the cortex, display distinct clustered distribution patterns and mobility at synaptic and extrasynaptic sites. However, how GluN2A clusters are specifically organized and stabilized remains poorly understood. Here, we found that the previously reported GluN2A-specific binding partner Rabphilin-3A (Rph3A) has the ability to undergo phase separation, which relies on arginine residues in its N-terminal domain. Rph3A phase separation promotes GluN2A clustering by binding GluN2A's C-terminal domain. A complex formed by Rph3A, GluN2A, and the scaffolding protein PSD95 promoted Rph3A phase separation. Disrupting Rph3A's phase separation suppressed the synaptic and extrasynaptic surface clustering, synaptic localization, stability, and synaptic response of GluN2A in hippocampal neurons. Together, our results reveal the critical role of Rph3A phase separation in determining the organization and stability of GluN2A in the neuronal surface.
Collapse
Affiliation(s)
- Lei Yang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yangzhen Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingtao Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Mengna Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shanshan Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ke Li
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zhaoqi Dong
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China. .,Chinese Institute for Brain Research, Beijing, 102206, China. .,State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, 210000, Jiangsu, China. .,Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
13
|
Niu M, Yang X, Li Y, Sun Y, Wang L, Ha J, Xie Y, Gao Z, Tian C, Wang L, Sun Y. Progresses in GluN2A-containing NMDA Receptors and their Selective Regulators. Cell Mol Neurobiol 2023; 43:139-153. [PMID: 34978648 PMCID: PMC11415211 DOI: 10.1007/s10571-021-01185-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/18/2021] [Indexed: 01/07/2023]
Abstract
NMDA receptors play an important physiological role in regulating synaptic plasticity, learning and memory. GluN2A subunits are the most abundant functional subunits of NMDA receptors expressed in mature brain, and their dysfunction is related to various neurological diseases. According to subunit composition, GluN2A-containing NMDA receptors can be divided into two types: diheteromeric and triheteromeric receptors. In this review, the expression, functional and pharmacological properties of different kinds of GluN2A-containing NMDA receptors as well as selective GluN2A regulators were described to further understand this type of NMDA receptors.
Collapse
Affiliation(s)
- Menghan Niu
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Xin Yang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Fangxing Road 88, Shijiazhuang, 050026, Hebei, China
- Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China
| | - Yuanyuan Li
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Yanping Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, USA
| | - Jing Ha
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Changzheng Tian
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Donggang Road 89, Shijiazhuang, 050000, Hebei, China.
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Fangxing Road 88, Shijiazhuang, 050026, Hebei, China.
- Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China.
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China.
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China.
| |
Collapse
|
14
|
Hattori N, Kamei T, Ishida T, Suzuki I, Nomoto M, Tsuboi Y. Long-term effects of safinamide adjunct therapy on levodopa-induced dyskinesia in Parkinson's disease: post-hoc analysis of a Japanese phase III study. J Neural Transm (Vienna) 2022; 129:1277-1287. [PMID: 36001147 PMCID: PMC9468087 DOI: 10.1007/s00702-022-02532-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
This post-hoc analysis investigated the long-term effects of safinamide on the course of dyskinesia and efficacy outcomes using data from a phase III, open-label 52-week study of safinamide 50 or 100 mg/day in Japanese patients with Parkinson’s disease (PD) with wearing-off. Patients (N = 194) were grouped using the UPDRS Part IV item 32: with and without pre-existing dyskinesia (pre-D subgroup; item 32 > 0 at baseline [n = 81], without pre-D subgroup; item 32 = 0 at baseline [n = 113]). ON-time with troublesome dyskinesia (ON-TD) increased significantly from baseline to Week 4 in the pre-D subgroup (+ 0.25 ± 0.11 h [mean ± SE], p = 0.0355) but gradually decreased up to Week 52 (change from baseline: − 0.08 ± 0.17 h, p = 0.6224); ON-TD did not change significantly in the Without pre-D subgroup. UPDRS Part IV item 32 score increased significantly at Week 52 compared with baseline in the Without pre-D subgroup, but no UPDRS Part IV dyskinesia related-domains changed in the pre-D subgroup. Both subgroups improved in ON-time without TD, UPDRS Part III, and Part II [OFF-phase] scores. The cumulative incidence of new or worsening dyskinesia (adverse drug reaction) at Week 52 was 32.5 and 5.0% in the pre-D and Without pre-D subgroups, respectively. This study suggested that safinamide led to short-term increasing dyskinesia but may be not associated with marked dyskinesia at 1-year follow-up in patients with pre-existing dyskinesia, and that it improved motor symptoms regardless of the presence or absence of dyskinesia at baseline. Further studies are warranted to investigate this association in more details. Trial registration: JapicCTI-153057 (Registered: 2015/11/02).
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Takanori Kamei
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Takayuki Ishida
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Ippei Suzuki
- Medicine Development, Deep Human Biology Learning, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Masahiro Nomoto
- Saiseikai Imabari Center for Health and Welfare, 7-6-1 Kitamura, Imabari, Ehime, 799-1592, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
15
|
A positive allosteric modulator of mGlu4 receptors restores striatal plasticity in an animal model of l-Dopa-induced dyskinesia. Neuropharmacology 2022; 218:109205. [DOI: 10.1016/j.neuropharm.2022.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
|
16
|
NMDA and AMPA Receptors at Synapses: Novel Targets for Tau and α-Synuclein Proteinopathies. Biomedicines 2022; 10:biomedicines10071550. [PMID: 35884851 PMCID: PMC9313101 DOI: 10.3390/biomedicines10071550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
A prominent feature of neurodegenerative diseases is synaptic dysfunction and spine loss as early signs of neurodegeneration. In this context, accumulation of misfolded proteins has been identified as one of the most common causes driving synaptic toxicity at excitatory glutamatergic synapses. In particular, a great effort has been placed on dissecting the interplay between the toxic deposition of misfolded proteins and synaptic defects, looking for a possible causal relationship between them. Several studies have demonstrated that misfolded proteins could directly exert negative effects on synaptic compartments, altering either the function or the composition of pre- and post-synaptic receptors. In this review, we focused on the physiopathological role of tau and α-synuclein at the level of postsynaptic glutamate receptors. Tau is a microtubule-associated protein mainly expressed by central nervous system neurons where it exerts several physiological functions. In some cases, it undergoes aberrant post-translational modifications, including hyperphosphorylation, leading to loss of function and toxic aggregate formation. Similarly, aggregated species of the presynaptic protein α-synuclein play a key role in synucleinopathies, a group of neurological conditions that includes Parkinson’s disease. Here, we discussed how tau and α-synuclein target the postsynaptic compartment of excitatory synapses and, specifically, AMPA- and NMDA-type glutamate receptors. Notably, recent studies have reported their direct functional interactions with these receptors, which in turn could contribute to the impaired glutamatergic transmission observed in many neurodegenerative diseases.
Collapse
|
17
|
Cerebral metabolic pattern associated with progressive parkinsonism in non-human primates reveals early cortical hypometabolism. Neurobiol Dis 2022; 167:105669. [DOI: 10.1016/j.nbd.2022.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
|
18
|
Kolmančič K, Zupančič NK, Trošt M, Flisar D, Kramberger MG, Pirtošek Z, Kojović M. Continuous Dopaminergic Stimulation Improves Cortical Maladaptive Changes in Advanced Parkinson's Disease. Mov Disord 2022; 37:1465-1473. [PMID: 35436354 DOI: 10.1002/mds.29028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND With the progression of Parkinson's disease (PD), pulsatile treatment with oral levodopa causes maladaptive changes within basal ganglia-thalamo-cortical circuits, which are clinically expressed as motor fluctuations and dyskinesias. At the level of the motor cortex, these changes may be detected using transcranial magnetic stimulation (TMS), as abnormal corticospinal and intracortical excitability and absent response to plasticity protocols. OBJECTIVE We investigated the effect of continuous dopaminergic stimulation on cortical maladaptive changes related to oral levodopa treatment. METHODS Twenty patients with advanced PD were tested using TMS within 1 week before and again 6 months after the introduction of levodopa-carbidopa intestinal gel. We measured resting and active motor thresholds, input/output curve, short interval intracortical inhibition curve, cortical silent period, and response to intermittent theta burst stimulation. Patients were clinically assessed with Part III and Part IV of the Movement Disorders Society Unified Parkinson's Disease Rating Scale. RESULTS Six months after the introduction of levodopa-carbidopa intestinal gel, motor fluctuations scores (P = 0.001) and dyskinesias scores (P < 0.001) were reduced. Resting and active motor threshold (P = 0.012 and P = 0.015) and x-intercept of input/output curve (P = 0.005) were also decreased, while short-interval intracortical inhibition and response to intermittent theta bust stimulation were improved (P = 0.026 and P = 0.031, respectively). Changes in these parameters correlated with clinical improvement. CONCLUSIONS In patients with advanced PD, switching from intermittent to continuous levodopa delivery increased corticospinal excitability and improved deficient intracortical inhibition and abnormal motor cortex plasticity, along with amelioration of motor fluctuations and dyskinesias. Continuous dopaminergic stimulation ameliorates maladaptive changes inflicted by chronic pulsatile dopaminergic stimulation. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kaja Kolmančič
- Department of Nuclear Medicine, University Clinical Centre, Ljubljana, Slovenia.,Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Nina K Zupančič
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dušan Flisar
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Milica G Kramberger
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| |
Collapse
|
19
|
Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiol Dis 2022; 168:105697. [DOI: 10.1016/j.nbd.2022.105697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
|
20
|
Bove F, Calabresi P. Plasticity, genetics, and epigenetics in l-dopa-induced dyskinesias. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:167-184. [PMID: 35034732 DOI: 10.1016/b978-0-12-819410-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a frequent complication in l-dopa-treated patients affected by Parkinson's disease (PD). In the last years, several progresses in the knowledge of LIDs mechanisms have led to the identification of several molecular and electrophysiologic events. A complex cascade of intracellular events underlies the pathophysiology of LIDs, and, among these, aberrant plasticity in the cortico-basal ganglia system, at striatal and cortical level, plays a key role. Furthermore, several recent studies have investigated genetic susceptibility and epigenetic modifications in LIDs pathophysiology that might have future relevance in clinical practice and pharmacologic research. These progresses might lead to the development of specific strategies not only to treat, but also to prevent or delay the development of LIDs in PD.
Collapse
Affiliation(s)
- Francesco Bove
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
21
|
Zhang X, Chen W, Wu Y, Zeng W, Yuan Y, Cheng C, Yang X, Wang J, Yang X, Xu Y, Lei H, Cao X, Xu Y. Histological Correlates of Neuroanatomical Changes in a Rat Model of Levodopa-Induced Dyskinesia Based on Voxel-Based Morphometry. Front Aging Neurosci 2021; 13:759934. [PMID: 34776935 PMCID: PMC8581620 DOI: 10.3389/fnagi.2021.759934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022] Open
Abstract
Long-term therapy with levodopa (L-DOPA) in patients with Parkinson’s disease (PD) often triggers motor complications termed as L-DOPA-induced dyskinesia (LID). However, few studies have explored the pathogenesis of LID from the perspective of neuroanatomy. This study aimed to investigate macroscopic structural changes in a rat model of LID and the underlying histological mechanisms. First, we established the hemiparkinsonism rat model through stereotaxic injection of 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle, followed by administration of saline (PD) or L-DOPA to induce LID. Magnetic resonance imaging (MRI) and behavioral evaluations were performed at different time points. Histological analysis was conducted to assess the correlations between MRI signal changes and cellular contributors. Voxel-based morphometry (VBM) analysis revealed progressive bilateral volume reduction in the cortical and subcortical areas in PD rats compared with the sham rats. These changes were partially reversed by chronic L-DOPA administration; moreover, there was a significant volume increase mainly in the dorsolateral striatum, substantia nigra, and piriform cortex of the lesioned side compared with that of PD rats. At the striatal cellular level, glial fibrillary acidic protein-positive (GFAP+) astrocytes were significantly increased in the lesioned dorsolateral striatum of PD rats compared with the intact side and the sham group. Prolonged L-DOPA treatment further increased GFAP levels. Neither 6-OHDA damage nor L-DOPA treatment influenced the striatal expression of vascular endothelial growth factor (VEGF). Additionally, there was a considerable increase in synapse-associated proteins (SYP, PSD95, and SAP97) in the lesioned striatum of LID rats relative to the PD rats. Golgi-Cox staining analysis of the dendritic spine morphology revealed an increased density of dendritic spines after chronic L-DOPA treatment. Taken together, our findings suggest that striatal volume changes in LID rats involve astrocyte activation, enrichment of synaptic ultrastructure and signaling proteins in the ipsilateral striatum. Meanwhile, the data highlight the enormous potential of structural MRI, especially VBM analysis, in determining the morphological phenotype of rodent models of LID.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Yuan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Daniel NH, Aravind A, Thakur P. Are ion channels potential therapeutic targets for Parkinson's disease? Neurotoxicology 2021; 87:243-257. [PMID: 34699791 DOI: 10.1016/j.neuro.2021.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is primarily associated with the progressive neurodegeneration of the dopaminergic neurons in the substantia nigra region of the brain. The resulting motor symptoms are managed with the help of dopamine replacement therapies. However, these therapeutics do not prevent the neurodegeneration underlying the disease and therefore lose their effectiveness in managing disease symptoms over time. Thus, there is an urgent need to develop newer therapeutics for the benefit of patients. The release of dopamine and the firing activity of substantia nigra neurons is regulated by several ion channels that act in concert. Dysregulations of these channels cause the aberrant movement of various ions in the intracellular milieu. This eventually leads to disruption of intracellular signalling cascades, alterations in cellular homeostasis, and bioenergetic deficits. Therefore, ion channels play a central role in driving the high vulnerability of dopaminergic neurons to degenerate during PD. Targeting ion channels offers an attractive mechanistic strategy to combat the process of neurodegeneration. In this review, we highlight the evidence pointing to the role of various ion channels in driving the PD processes. In addition, we also discuss the various drugs or compounds that target the ion channels and have shown neuroprotective potential in the in-vitro and in-vivo models of PD. We also discuss the current clinical status of various drugs targeting the ion channels in the context of PD.
Collapse
Affiliation(s)
- Neha Hanna Daniel
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India
| | - Ananya Aravind
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India
| | - Poonam Thakur
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
23
|
Alpha-Synuclein as a Prominent Actor in the Inflammatory Synaptopathy of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126517. [PMID: 34204581 PMCID: PMC8234932 DOI: 10.3390/ijms22126517] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is considered the most common disorder of synucleinopathy, which is characterised by intracellular inclusions of aggregated and misfolded α-synuclein (α-syn) protein in various brain regions, and the loss of dopaminergic neurons. During the early prodromal phase of PD, synaptic alterations happen before cell death, which is linked to the synaptic accumulation of toxic α-syn specifically in the presynaptic terminals, affecting neurotransmitter release. The oligomers and protofibrils of α-syn are the most toxic species, and their overexpression impairs the distribution and activation of synaptic proteins, such as the SNARE complex, preventing neurotransmitter exocytosis and neuronal synaptic communication. In the last few years, the role of the immune system in PD has been increasingly considered. Microglial and astrocyte activation, the gene expression of proinflammatory factors, and the infiltration of immune cells from the periphery to the central nervous system (CNS) represent the main features of the inflammatory response. One of the actors of these processes is α-syn accumulation. In light of this, here, we provide a systematic review of PD-related α-syn and inflammation inter-players.
Collapse
|
24
|
Fabbrini A, Guerra A. Pathophysiological Mechanisms and Experimental Pharmacotherapy for L-Dopa-Induced Dyskinesia. J Exp Pharmacol 2021; 13:469-485. [PMID: 33953618 PMCID: PMC8092630 DOI: 10.2147/jep.s265282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
L-dopa-induced dyskinesia (LID) is the most frequent motor complication associated with chronic L-dopa treatment in Parkinson’s disease (PD). Recent advances in the understanding of the pathophysiological mechanisms underlying LID suggest that abnormalities in multiple neurotransmitter systems, in addition to dopaminergic nigrostriatal denervation and altered dopamine release and reuptake dynamics at the synaptic level, are involved in LID development. Increased knowledge of neurobiological LID substrates has led to the development of several drug candidates to alleviate this motor complication. However, with the exception of amantadine, none of the pharmacological therapies tested in humans have demonstrated clinically relevant beneficial effects. Therefore, LID management is still one of the most challenging problems in the treatment of PD patients. In this review, we first describe the known pathophysiological mechanisms of LID. We then provide an updated report of experimental pharmacotherapies tested in clinical trials of PD patients and drugs currently under study to alleviate LID. Finally, we discuss available pharmacological LID treatment approaches and offer our opinion of possible issues to be clarified and future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
25
|
Calmodulin and Its Binding Proteins in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22063016. [PMID: 33809535 PMCID: PMC8001340 DOI: 10.3390/ijms22063016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that manifests with rest tremor, muscle rigidity and movement disturbances. At the microscopic level it is characterized by formation of specific intraneuronal inclusions, called Lewy bodies (LBs), and by a progressive loss of dopaminergic neurons in the striatum and substantia nigra. All living cells, among them neurons, rely on Ca2+ as a universal carrier of extracellular and intracellular signals that can initiate and control various cellular processes. Disturbances in Ca2+ homeostasis and dysfunction of Ca2+ signaling pathways may have serious consequences on cells and even result in cell death. Dopaminergic neurons are particularly sensitive to any changes in intracellular Ca2+ level. The best known and studied Ca2+ sensor in eukaryotic cells is calmodulin. Calmodulin binds Ca2+ with high affinity and regulates the activity of a plethora of proteins. In the brain, calmodulin and its binding proteins play a crucial role in regulation of the activity of synaptic proteins and in the maintenance of neuronal plasticity. Thus, any changes in activity of these proteins might be linked to the development and progression of neurodegenerative disorders including PD. This review aims to summarize published results regarding the role of calmodulin and its binding proteins in pathology and pathogenesis of PD.
Collapse
|
26
|
Ugale V, Dhote A, Narwade R, Khadse S, Reddy PN, Shirkhedkar A. GluN2B/N-methyl-D-aspartate Receptor Antagonists: Advances in Design, Synthesis, and Pharmacological Evaluation Studies. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:822-862. [PMID: 33687902 DOI: 10.2174/1871527320666210309141627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
Selective GluN2B/N-methyl-D-aspartate receptor (NMDAR) antagonists have exposed their clinical effectiveness in a cluster of neurodegenerative diseases, such as epilepsy, Alzheimer's disease, Parkinson's disease, pain, and depression. Hence, GluN2B/NMDARs are considered to be a prospective target for the management of neurodegenerative diseases. Here, we have discussed the current results and significance of subunit selective GluN2B/NMDAR antagonists to pave the way for the establishment of new, safe, and economical drug candidates in the near future. By using summarized data of selective GluN2B/NMDAR antagonists, medicinal chemists are certainly a step closer to the goal of improving the therapeutic and side effect profile of selective antagonists. Outlined summary of designing strategies, synthetic schemes, and pharmacological evaluation studies reinvigorate efforts to identify, modify, and synthesize novel GluN2B/NMDAR antagonists for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Ashish Dhote
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Rushikesh Narwade
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - P Narayana Reddy
- Department of Chemistry, Gitam School of Technology, Gitam University, Hyderabad (T.S), India
| | - Atul Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| |
Collapse
|
27
|
Dhuriya YK, Sharma D. Neuronal Plasticity: Neuronal Organization is Associated with Neurological Disorders. J Mol Neurosci 2020; 70:1684-1701. [PMID: 32504405 DOI: 10.1007/s12031-020-01555-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Stimuli from stressful events, attention in the classroom, and many other experiences affect the functionality of the brain by changing the structure or reorganizing the connections between neurons and their communication. Modification of the synaptic transmission is a vital mechanism for generating neural activity via internal or external stimuli. Neuronal plasticity is an important driving force in neuroscience research, as it is the basic process underlying learning and memory and is involved in many other functions including brain development and homeostasis, sensorial training, and recovery from brain injury. Indeed, neuronal plasticity has been explored in numerous studies, but it is still not clear how neuronal plasticity affects the physiology and morphology of the brain. Thus, unraveling the molecular mechanisms of neuronal plasticity is essential for understanding the operation of brain functions. In this timeline review, we discuss the molecular mechanisms underlying different forms of synaptic plasticity and their association with neurodegenerative/neurological disorders as a consequence of alterations in neuronal plasticity.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India.
- CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology-Delhi (IIT-D), Delhi, 110016, India.
| |
Collapse
|
28
|
NMDA receptors are altered in the substantia nigra pars reticulata and their blockade ameliorates motor deficits in experimental parkinsonism. Neuropharmacology 2020; 174:108136. [DOI: 10.1016/j.neuropharm.2020.108136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
|
29
|
Olanow CW, Calabresi P, Obeso JA. Continuous Dopaminergic Stimulation as a Treatment for Parkinson's Disease: Current Status and Future Opportunities. Mov Disord 2020; 35:1731-1744. [DOI: 10.1002/mds.28215] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- C. Warren Olanow
- Department of Neurology and Department of Neuroscience Mount Sinai School of Medicine New York New York USA
- Clintrex Research Corporation Sarasota Florida USA
| | - Paolo Calabresi
- Neurology Fondazione Policlinico Universitario Agostino Gemelli IRCCS Rome Italy
- Dipartimento Neuroscienze Università Cattolica del Sacro Cuore Rome Italy
| | - Jose A. Obeso
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU‐San Pablo Móstoles Madrid Spain
- CIBERNED, Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
30
|
Calabrese V, Di Maio A, Marino G, Cardinale A, Natale G, De Rosa A, Campanelli F, Mancini M, Napolitano F, Avallone L, Calabresi P, Usiello A, Ghiglieri V, Picconi B. Rapamycin, by Inhibiting mTORC1 Signaling, Prevents the Loss of Striatal Bidirectional Synaptic Plasticity in a Rat Model of L-DOPA-Induced Dyskinesia. Front Aging Neurosci 2020; 12:230. [PMID: 32848709 PMCID: PMC7431470 DOI: 10.3389/fnagi.2020.00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Levodopa (L-DOPA) treatment is the main gold-standard therapy for Parkinson disease (PD). Besides good antiparkinsonian effects, prolonged use of this drug is associated to the development of involuntary movements known as L-DOPA-induced dyskinesia (LID). L-DOPA-induced dyskinesia is linked to a sensitization of dopamine (DA) D1 receptors located on spiny projection neurons (SPNs) of the dorsal striatum. Several evidences have shown that the emergence of LID can be related to striatal D1/cAMP/PKA/DARPP-32 and extracellular signal-regulated kinases (ERK1/2) pathway overactivation associated to aberrant N-methyl-d-aspartate (NMDA) receptor function. In addition, within striatum, ERK1/2 is also able to modulate in a D1 receptor-dependent manner the activity of the mammalian target of rapamycin complex 1 (mTORC1) pathway under DA depletion and L-DOPA therapy. Consistently, increased mTORC1 signaling appears during chronic administration of L-DOPA and shows a high correlation with the severity of dyskinesia. Furthermore, the abnormal activation of the D1/PKA/DARPP-32 cascade is paralleled by increased phosphorylation of the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor at the PKA Ser845 site. The GluA1 promotes excitatory AMPA receptor-mediated transmission and may be implicated in the alterations found at the corticostriatal synapses of dyskinetic animals. In our study, we investigated the role of mTORC1 pathway activation in modulating bidirectional striatal synaptic plasticity in L-DOPA-treated parkinsonian rats. Inhibition of mTORC1 by coadministration of rapamycin to L-DOPA was able to limit the magnitude of LID expression, accounting for a therapeutic effect of this drug. In particular, behavioral data showed that, in L-DOPA-treated rats, rapamycin administration induced a selective decrease of distinct components of abnormal involuntary movements (i.e., axial and orolingual dyskinesia). Furthermore, ex vivo patch clamp and intracellular recordings of SPNs revealed that pharmacological inhibition of mTORC1 also resulted associated with a physiological bidirectional plasticity, when compared to dyskinetic rats treated with L-DOPA alone. This study uncovers the important role of mTORC1 inhibition to prevent the loss of striatal bidirectional plasticity under chronic L-DOPA treatment in rodent models of PD.
Collapse
Affiliation(s)
- Valeria Calabrese
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Gioia Marino
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Antonella Cardinale
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Medicine, University of Perugia, Perugia, Italy
| | - Giuseppina Natale
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Arianna De Rosa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Campanelli
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Maria Mancini
- Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Napolitano
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Veronica Ghiglieri
- Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,Università Telematica San Raffaele, Rome, Italy
| |
Collapse
|
31
|
A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur J Med Chem 2020; 200:112447. [DOI: 10.1016/j.ejmech.2020.112447] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
|
32
|
|
33
|
Chen X, Wang Y, Wu H, Cheng C, Le W. Research advances on L-DOPA-induced dyskinesia: from animal models to human disease. Neurol Sci 2020; 41:2055-2065. [DOI: 10.1007/s10072-020-04333-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
|
34
|
Sciaccaluga M, Mazzocchetti P, Bastioli G, Ghiglieri V, Cardinale A, Mosci P, Caccia C, Keywood C, Melloni E, Padoani G, Vailati S, Picconi B, Calabresi P, Tozzi A. Effects of safinamide on the glutamatergic striatal network in experimental Parkinson's disease. Neuropharmacology 2020; 170:108024. [PMID: 32142791 DOI: 10.1016/j.neuropharm.2020.108024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate electrophysiological effects of safinamide on the intrinsic and synaptic properties of striatal spiny projection neurons (SPNs) and to characterize the possible therapeutic antiparkinsonian effect of this drug in dopamine (DA) denervated rats before and during levodopa (l-DOPA) treatment. BACKGROUND Current therapeutic options in Parkinson's disease (PD) are primarily DA replacement strategies that usually cause progressive motor fluctuations and l-DOPA-induced dyskinesia (LIDs) as a consequence of SPNs glutamate-induced hyperactivity. As a reversible and use-dependent inhibitor of voltage-gated sodium channels, safinamide reduces the release of glutamate and possibly optimize the effect of l-DOPA therapy in PD. METHODS Electrophysiological effects of safinamide (1-100 μM) were investigated by patch-clamp recordings in striatal slices of naïve, 6-hydroxydopamine (6-OHDA)-lesioned DA-denervated rats and DA-denervated animals chronically treated with l-DOPA. LIDs were assessed in vivo with and without chronic safinamide treatment and measured by scoring the l-DOPA-induced abnormal involuntary movements (AIMs). Motor deficit was evaluated with the stepping test. RESULTS Safinamide reduced the SPNs firing rate and glutamatergic synaptic transmission in all groups, showing a dose-dependent effect with half maximal inhibitory concentration (IC50) values in the therapeutic range (3-5 μM). Chronic co-administration of safinamide plus l-DOPA in DA-denervated animals favored the recovery of corticostriatal long-term synaptic potentiation (LTP) and depotentiation of excitatory synaptic transmission also reducing motor deficits before the onset of LIDs. CONCLUSIONS Safinamide, at a clinically relevant dose, optimizes the effect of l-DOPA therapy in experimental PD reducing SPNs excitability and modulating synaptic transmission. Co-administration of safinamide and l-DOPA ameliorates motor deficits.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Petra Mazzocchetti
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Guendalina Bastioli
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy
| | - Veronica Ghiglieri
- Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Piazza G. Ermini, 1, 06123, Perugia, Italy; Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Antonella Cardinale
- Neurological Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, via Gambuli, 1, 06132, Perugia, Italy; Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy
| | - Paolo Mosci
- Department of Veterinary, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| | - Carla Caccia
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Charlotte Keywood
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Elsa Melloni
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Gloria Padoani
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Silvia Vailati
- Open R&D Department, Zambon SpA, Via Lillo del Duca, 10, 20091, Bresso, Milan, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Via Val Cannuta 247, 00166, Rome, Italy; University San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli, 8, 00168, Roma, Italy
| | - Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, via Gambuli, 1, 06132, Perugia, Italy.
| |
Collapse
|
35
|
Durante V, de Iure A, Loffredo V, Vaikath N, De Risi M, Paciotti S, Quiroga-Varela A, Chiasserini D, Mellone M, Mazzocchetti P, Calabrese V, Campanelli F, Mechelli A, Di Filippo M, Ghiglieri V, Picconi B, El-Agnaf OM, De Leonibus E, Gardoni F, Tozzi A, Calabresi P. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain 2020; 142:1365-1385. [PMID: 30927362 DOI: 10.1093/brain/awz065] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 01/07/2019] [Accepted: 01/25/2019] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by altered striatal dopaminergic signalling that leads to motor and cognitive deficits. Parkinson's disease is also characterized by abnormal presence of soluble toxic forms of α-synuclein that, when clustered into Lewy bodies, represents one of the pathological hallmarks of the disease. However, α-synuclein oligomers might also directly affect synaptic transmission and plasticity in Parkinson's disease models. Accordingly, by combining electrophysiological, optogenetic, immunofluorescence, molecular and behavioural analyses, here we report that α-synuclein reduces N-methyl-d-aspartate (NMDA) receptor-mediated synaptic currents and impairs corticostriatal long-term potentiation of striatal spiny projection neurons, of both direct (D1-positive) and indirect (putative D2-positive) pathways. Intrastriatal injections of α-synuclein produce deficits in visuospatial learning associated with reduced function of GluN2A NMDA receptor subunit indicating that this protein selectively targets this subunit both in vitro and ex vivo. Interestingly, this effect is observed in spiny projection neurons activated by optical stimulation of either cortical or thalamic glutamatergic afferents. We also found that treatment of striatal slices with antibodies targeting α-synuclein prevents the α-synuclein-induced loss of long-term potentiation and the reduced synaptic localization of GluN2A NMDA receptor subunit suggesting that this strategy might counteract synaptic dysfunction occurring in Parkinson's disease.
Collapse
Affiliation(s)
- Valentina Durante
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Antonio de Iure
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy.,Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Vittorio Loffredo
- Institute of Cellular Biology and Neurobiology, National Research Council, Monterotondo (Rome), Italy.,PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Italy
| | - Nishant Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Maria De Risi
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (NA), Italy
| | - Silvia Paciotti
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Ana Quiroga-Varela
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Manuela Mellone
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Petra Mazzocchetti
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Valeria Calabrese
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy.,Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Federica Campanelli
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Alessandro Mechelli
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Massimiliano Di Filippo
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Veronica Ghiglieri
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Perugia, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy.,University of San Raffaele, Rome, Italy
| | - Omar M El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Elvira De Leonibus
- Institute of Cellular Biology and Neurobiology, National Research Council, Monterotondo (Rome), Italy.,Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (NA), Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Paolo Calabresi
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| |
Collapse
|
36
|
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21041538. [PMID: 32102377 PMCID: PMC7073220 DOI: 10.3390/ijms21041538] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.
Collapse
|
37
|
Alpha-synuclein differentially reduces surface expression of N-methyl-d-aspartate receptors in the aging human brain. Neurobiol Aging 2020; 90:24-32. [PMID: 32171588 DOI: 10.1016/j.neurobiolaging.2020.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 01/22/2023]
Abstract
The aging brain is associated with reduced cell surface expression of N-methyl-d-aspartate receptors (NMDARs), but the mechanism remains poorly understood. In the present study, we showed that in the striatum and hippocampus but not the cerebellum and parietal cortex, levels of α-synuclein monomers and oligomers increased with age, which correlated negatively with the expression of GluN1, and positively with the expression of total Rab5B. The oligomer-α-synuclein exhibited a stronger correlation with the expression of surface GluN1 and total Rab5B. In MES23.5 cells, the monomer- or oligomer-α-synuclein were shown to increase in a manner dependent on the concentrations of the added monomers and oligomers. Again, the oligomer-α-synuclein showed more potent effects than the monomer-α-synuclein on surface GluN1 and total Rab5B expression. Accordingly, the oligomer-treated cells showed a greater reduction in NMDA-evoked Ca2+ influx than the monomer-treated cells, which was largely inhibited by pistop2, a clathrin inhibitor. These results suggest that the age-dependent accumulation of α-synuclein monomers and oligomers differentially contributes to the reduction in surface NMDAR expression in selective brain regions.
Collapse
|
38
|
Calabresi P, Standaert DG. Dystonia and levodopa-induced dyskinesias in Parkinson's disease: Is there a connection? Neurobiol Dis 2019; 132:104579. [PMID: 31445160 PMCID: PMC6834901 DOI: 10.1016/j.nbd.2019.104579] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
Dystonia and levodopa-induced dyskinesia (LID) are both hyperkinetic movement disorders. Dystonia arises most often spontaneously, although it may be seen after stroke, injury, or as a result of genetic causes. LID is associated with Parkinson's disease (PD), emerging as a consequence of chronic therapy with levodopa, and may be either dystonic or choreiform. LID and dystonia share important phenomenological properties and mechanisms. Both LID and dystonia are generated by an integrated circuit involving the cortex, basal ganglia, thalamus and cerebellum. They also share dysregulation of striatal cholinergic signaling and abnormalities of striatal synaptic plasticity. The long duration nature of both LID and dystonia suggests that there may be underlying epigenetic dysregulation as a proximate cause. While both may improve after interventions such as deep brain stimulation (DBS), neither currently has a satisfactory medical therapy, and many people are disabled by the symptoms of dystonia and LID. Further study of the fundamental mechanisms connecting these two disorders may lead to novel approaches to treatment or prevention.
Collapse
Affiliation(s)
- Paolo Calabresi
- Neurological Clinic, Department of Medicine, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia 06132, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
39
|
Leta V, Jenner P, Chaudhuri KR, Antonini A. Can therapeutic strategies prevent and manage dyskinesia in Parkinson’s disease? An update. Expert Opin Drug Saf 2019; 18:1203-1218. [DOI: 10.1080/14740338.2019.1681966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina Leta
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, London, UK
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, School of Cancer and Pharmaceutical Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - K. Ray Chaudhuri
- King’s College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, London, UK
| | - Angelo Antonini
- Department of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
40
|
Deb S, Dutta A, Phukan BC, Manivasagam T, Justin Thenmozhi A, Bhattacharya P, Paul R, Borah A. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson's disease therapeutics. Neurochem Int 2019; 129:104478. [DOI: 10.1016/j.neuint.2019.104478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
|
41
|
Roles of Glutamate Receptors in Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20184391. [PMID: 31500132 PMCID: PMC6769661 DOI: 10.3390/ijms20184391] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder resulting from the degeneration of pigmented dopaminergic neurons in the substantia nigra pars compacta. It induces a series of functional modifications in the circuitry of the basal ganglia nuclei and leads to severe motor disturbances. The amino acid glutamate, as an excitatory neurotransmitter, plays a key role in the disruption of normal basal ganglia function regulated through the interaction with its receptor proteins. It has been proven that glutamate receptors participate in the modulation of neuronal excitability, transmitter release, and long-term synaptic plasticity, in addition to being related to the altered neurotransmission in Parkinson's disease. Therefore, they are considered new targets for improving the therapeutic strategies used to treat Parkinson's disease. In this review, we discuss the biological characteristics of these receptors and demonstrate the receptor-mediated neuroprotection in Parkinson's disease. Pharmacological manipulation of these receptors during anti-Parkinsonian processes in both experimental studies and clinical trials are also summarized.
Collapse
|
42
|
Linking NMDA Receptor Synaptic Retention to Synaptic Plasticity and Cognition. iScience 2019; 19:927-939. [PMID: 31518901 PMCID: PMC6742927 DOI: 10.1016/j.isci.2019.08.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022] Open
Abstract
NMDA receptor (NMDAR) subunit composition plays a pivotal role in synaptic plasticity at excitatory synapses. Still, the mechanisms responsible for the synaptic retention of NMDARs following induction of plasticity need to be fully elucidated. Rabphilin3A (Rph3A) is involved in the stabilization of NMDARs at synapses through the formation of a complex with GluN2A and PSD-95. Here we used different protocols to induce synaptic plasticity in the presence or absence of agents modulating Rph3A function. The use of Forskolin/Rolipram/Picrotoxin cocktail to induce chemical LTP led to synaptic accumulation of Rph3A and formation of synaptic GluN2A/Rph3A complex. Notably, Rph3A silencing or use of peptides interfering with the GluN2A/Rph3A complex blocked LTP induction. Moreover, in vivo disruption of GluN2A/Rph3A complex led to a profound alteration of spatial memory. Overall, our results demonstrate a molecular mechanism needed for NMDAR stabilization at synapses after plasticity induction and to trigger downstream signaling events necessary for cognitive behavior. LTP induces trafficking of Rph3A at synapses and formation of GluN2A/Rph3A complex Disruption of Rph3A/GluN2A complex leads to LTP impairment Rph3A/GluN2A complex is needed for modifications of dendritic spines induced by LTP Disruption of Rph3A/GluN2A complex leads to spatial memory impairment
Collapse
|
43
|
He Y, Mu L, Ametamey SM, Schibli R. Recent progress in allosteric modulators for GluN2A subunit and development of GluN2A-selective nuclear imaging probes. J Labelled Comp Radiopharm 2019; 62:552-560. [DOI: 10.1002/jlcr.3744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Yingfang He
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ; Institute of Pharmaceutical Sciences; Zurich Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ; Institute of Pharmaceutical Sciences; Zurich Switzerland
- Department of Nuclear Medicine, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ; University Hospital Zurich; Zurich Switzerland
| | - Simon M. Ametamey
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ; Institute of Pharmaceutical Sciences; Zurich Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ; Institute of Pharmaceutical Sciences; Zurich Switzerland
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institut; Villigen-PSI Switzerland
| |
Collapse
|
44
|
The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson's disease patients. Sci Rep 2019; 9:8898. [PMID: 31222058 PMCID: PMC6586824 DOI: 10.1038/s41598-019-45419-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/03/2019] [Indexed: 01/31/2023] Open
Abstract
Dysfunction of NMDA receptor (NMDAR)-mediated transmission is supposed to contribute to the motor and non-motor symptoms of Parkinson’s Disease (PD), and to L-DOPA-induced dyskinesia. Besides the main agonist L-glutamate, two other amino acids in the atypical D-configuration, D-serine and D-aspartate, activate NMDARs. In the present work, we investigated the effect of dopamine depletion on D-amino acids metabolism in the brain of MPTP-lesioned Macaca mulatta, and in the serum and cerebrospinal fluid of PD patients. We found that MPTP treatment increases D-aspartate and D-serine in the monkey putamen while L-DOPA rescues both D-amino acids levels. Conversely, dopaminergic denervation is associated with selective D-serine reduction in the substantia nigra. Such decrease suggests that the beneficial effect of D-serine adjuvant therapy previously reported in PD patients may derive from the normalization of endogenous D-serine levels and consequent improvement of nigrostriatal hypoglutamatergic transmission at glycine binding site. We also found reduced D-serine concentration in the cerebrospinal fluid of L-DOPA-free PD patients. These results further confirm the existence of deep interaction between dopaminergic and glutamatergic neurotransmission in PD and disclose a possible direct influence of D-amino acids variations in the changes of NMDAR transmission occurring under dopamine denervation and L-DOPA therapy.
Collapse
|
45
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|
46
|
McFarthing K, Prakash N, Simuni T. CLINICAL TRIAL HIGHLIGHTS - DYSKINESIA. JOURNAL OF PARKINSON'S DISEASE 2019; 9:449-465. [PMID: 31356217 PMCID: PMC6704371 DOI: 10.3233/jpd-199002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Neha Prakash
- Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tanya Simuni
- Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
47
|
Mellone M, Zianni E, Stanic J, Campanelli F, Marino G, Ghiglieri V, Longhi A, Thiolat ML, Li Q, Calabresi P, Bezard E, Picconi B, Di Luca M, Gardoni F. NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiol Dis 2019; 121:338-349. [DOI: 10.1016/j.nbd.2018.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022] Open
|
48
|
Gardoni F, Morari M, Kulisevsky J, Brugnoli A, Novello S, Pisanò CA, Caccia C, Mellone M, Melloni E, Padoani G, Sosti V, Vailati S, Keywood C. Safinamide Modulates Striatal Glutamatergic Signaling in a Rat Model of Levodopa-Induced Dyskinesia. J Pharmacol Exp Ther 2018; 367:442-451. [PMID: 30291173 DOI: 10.1124/jpet.118.251645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/17/2018] [Indexed: 03/08/2025] Open
Abstract
Safinamide (Xadago) is a novel dual-mechanism drug that has been approved in the European Union and United States as add-on treatment to levodopa in Parkinson's disease therapy. In addition to its selective and reversible monoamine oxidase B inhibition, safinamide through use-dependent sodium channel blockade reduces overactive glutamatergic transmission in basal ganglia, which is believed to contribute to motor symptoms and complications including levodopa-induced dyskinesia (LID). The present study investigated the effects of safinamide on the development of LID in 6-hydroxydopamine (6-OHDA)-lesioned rats, evaluating behavioral, molecular, and neurochemical parameters associated with LID appearance. 6-OHDA-lesioned rats were treated with saline, levodopa (6 mg/kg), or levodopa plus safinamide (15 mg/kg) for 21 days. Abnormal involuntary movements, motor performance, molecular composition of the striatal glutamatergic synapse, glutamate, and GABA release were analyzed. In the striatum, safinamide prevented the rearrangement of the subunit composition of N-methyl-d-aspartate receptors and the levodopa-induced increase of glutamate release associated with dyskinesia without affecting the levodopa-stimulated motor performance and dyskinesia. Overall, these findings suggest that the striatal glutamate-modulating component of safinamide's activity may contribute to its clinical effects, where its long-term use as levodopa add-on therapy significantly improves motor function and "on" time without troublesome dyskinesia.
Collapse
Affiliation(s)
- F Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - M Morari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - J Kulisevsky
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - A Brugnoli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - S Novello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - C A Pisanò
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - C Caccia
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - M Mellone
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - E Melloni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - G Padoani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - V Sosti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - S Vailati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| | - C Keywood
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy (F.G., M.Me.); Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy (M.Mo., A.B., S.N., C.A.P.); Sant Pau Institute of Biomedical Research, Barcelona, Spain (J.K.); Universitat Autònoma de Barcelona, Universitat Oberta de Catalunya, Barcelona, Spain (J.K.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain (J.K., V.S.); Department of R&D, Zambon SpA, Bresso, Milan, Italy (C.C., E.M., G.P., S.V., C.K.); and Neuropsychopharmacology Laboratory, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (V.S.)
| |
Collapse
|
49
|
Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH, Bezard E, Picconi B, Calabresi P, Lang AE. Levodopa-induced dyskinesia in Parkinson disease: Current and evolving concepts. Ann Neurol 2018; 84:797-811. [DOI: 10.1002/ana.25364] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Alberto J. Espay
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Francesca Morgante
- Institute of Molecular and Clinical Sciences; St George's University of London; London United Kingdom
| | - Aristide Merola
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| | - Luca Marsili
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Susan H. Fox
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| | - Erwan Bezard
- University of Bordeaux, Institute of Neurodegenerative Diseases; Bordeaux France
- National Center for Scientific Research, Institute of Neurodegenerative Diseases; Bordeaux France
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory; IRCCS San Raffaele Pisana, University San Raffaele; Rome Italy
| | - Paolo Calabresi
- Neurological Clinic; University of Perugia, Santa Maria della Misericordia Hospital; Perugia Italy
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| |
Collapse
|
50
|
Lassus B, Naudé J, Faure P, Guedin D, Von Boxberg Y, Mannoury la Cour C, Millan MJ, Peyrin JM. Glutamatergic and dopaminergic modulation of cortico-striatal circuits probed by dynamic calcium imaging of networks reconstructed in microfluidic chips. Sci Rep 2018; 8:17461. [PMID: 30498197 PMCID: PMC6265304 DOI: 10.1038/s41598-018-35802-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 11/07/2018] [Indexed: 11/21/2022] Open
Abstract
Although the prefrontal cortex and basal ganglia are functionally interconnected by parallel loops, cellular substrates underlying their interaction remain poorly understood. One novel approach for addressing this issue is microfluidics, a methodology which recapitulates several intrinsic and synaptic properties of cortico-subcortical networks. We developed a microfluidic device where cortical neurons projected onto striatal neurons in a separate compartment. We exploited real-time (low-resolution/high-output) calcium imaging to register network dynamics and characterize the response to glutamatergic and dopaminergic agents. Reconstructed cortico-striatal networks revealed the progressive appearance of cortical VGLUT1 clusters on striatal dendrites, correlating with the emergence of spontaneous and synchronous glutamatergic responses of striatal neurons to concurrent cortical stimulation. Striatal exposure to the NMDA receptor GluN2A subunit antagonist TCN201 did not affect network rhythm, whereas the GluN2B subunit antagonist RO256981 significantly decreased striatal activity. Dopamine application or the D2/D3 receptor agonist, quinpirole, decreased cortico-striatal synchrony whereas the D1 receptor agonist, SKF38393, was ineffective. These data show that cortico-striatal networks reconstructed in a microfluidic environment are synchronized and present characteristics close to those of their in situ counterparts. They should prove instructive for deciphering the molecular substrates of CNS disorders and evaluating the actions of novel therapeutic agents.
Collapse
Affiliation(s)
- Benjamin Lassus
- CNRS UMR 8256, Biological Adaptation and Ageing, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Jérémie Naudé
- CNRS UMR 8246, Neurosciences, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Philippe Faure
- CNRS UMR 8246, Neurosciences, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Denis Guedin
- Servier Biotechnology, Chemogenetic Laboratory @ ICM Brain & Spine Institue, Pitié-Salpétrière Hospital, 52 boulevard Vincent Auriol, 75013, Paris, France
| | - Ysander Von Boxberg
- CNRS UMR 8246, Neurosciences, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France
| | - Clotilde Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290, Croissy-sur-Seine, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290, Croissy-sur-Seine, France
| | - Jean-Michel Peyrin
- CNRS UMR 8246, Neurosciences, Paris, 75005, France. .,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, 75005, Paris, France.
| |
Collapse
|