1
|
El-Kalyoubi S, Elbaramawi SS, Eissa AG, Al-Ageeli E, Hobani YH, El-Sharkawy AA, Mohamed HT, Al-Karmalawy AA, Abulkhair HS. Design and synthesis of novel uracil-linked Schiff bases as dual histone deacetylase type II/topoisomerase type I inhibitors with apoptotic potential. Future Med Chem 2023; 15:937-958. [PMID: 37381751 DOI: 10.4155/fmc-2023-0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Aim: The previously reported dual histone deacetylase type II (HDAC II) / topoisomerase type I (Topo I) inhibitors suffer pharmacokinetic limitations because of their huge molecular weights. Materials & methods: We report the design and synthesis of a smarter novel set of uracil-linked Schiff bases (19-30) as dual HDAC II/Topo I inhibitors keeping the essential pharmacophoric features. Cytotoxicity of all compounds was assessed against three cancer cell lines. Studies of their effects on the apoptotic BAX and antiapoptotic BCL2 genes, molecular docking studies, and absorption, distribution, metabolism and excretion studies were conducted. Results: Compounds 22, 25 and 30 exhibited significant activities. The bromophenyl derivative 22 displayed the best selectivity index, with IC50 values against HDAC II and Topo I of 1.12 and 13.44 μM, respectively. Conclusion: Compound 22 could be considered a lead HDAC II/Topo I inhibitor.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Samar S Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed G Eissa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Essam Al-Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, 82621, Saudi Arabia
| | - Yahya Hasan Hobani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 82621, Saudi Arabia
| | - Aya Ali El-Sharkawy
- Zoology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
- Faculty of Biotechnology, October University for Modern Sciences & Arts, Giza, 12451, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| |
Collapse
|
2
|
Effect of histone deacetylase 8 gene deletion on breast cancer cellular mechanism in vitro and in vivo study. Life Sci 2022; 311:121156. [DOI: 10.1016/j.lfs.2022.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
3
|
Contreras-Sanzón E, Prado-Garcia H, Romero-Garcia S, Nuñez-Corona D, Ortiz-Quintero B, Luna-Rivero C, Martínez-Cruz V, Carlos-Reyes Á. Histone deacetylases modulate resistance to the therapy in lung cancer. Front Genet 2022; 13:960263. [PMID: 36263432 PMCID: PMC9574126 DOI: 10.3389/fgene.2022.960263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/07/2022] [Indexed: 12/07/2022] Open
Abstract
The acetylation status of histones located in both oncogenes and tumor suppressor genes modulate cancer hallmarks. In lung cancer, changes in the acetylation status are associated with increased cell proliferation, tumor growth, migration, invasion, and metastasis. Histone deacetylases (HDACs) are a group of enzymes that take part in the elimination of acetyl groups from histones. Thus, HDACs regulate the acetylation status of histones. Although several therapies are available to treat lung cancer, many of these fail because of the development of tumor resistance. One mechanism of tumor resistance is the aberrant expression of HDACs. Specific anti-cancer therapies modulate HDACs expression, resulting in chromatin remodeling and epigenetic modification of the expression of a variety of genes. Thus, HDACs are promising therapeutic targets to improve the response to anti-cancer treatments. Besides, natural compounds such as phytochemicals have potent antioxidant and chemopreventive activities. Some of these compounds modulate the deregulated activity of HDACs (e.g. curcumin, apigenin, EGCG, resveratrol, and quercetin). These phytochemicals have been shown to inhibit some of the cancer hallmarks through HDAC modulation. The present review discusses the epigenetic mechanisms by which HDACs contribute to carcinogenesis and resistance of lung cancer cells to anticancer therapies.
Collapse
Affiliation(s)
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Susana Romero-Garcia
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David Nuñez-Corona
- Posgrado de Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Blanca Ortiz-Quintero
- Departamento de Investigación en Bioquímica, Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Cesar Luna-Rivero
- Servicio de Patología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Victor Martínez-Cruz
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
- *Correspondence: Ángeles Carlos-Reyes,
| |
Collapse
|
4
|
8a, a New Acridine Antiproliferative and Pro-Apoptotic Agent Targeting HDAC1/DNMT1. Int J Mol Sci 2021; 22:ijms22115516. [PMID: 34073721 PMCID: PMC8197214 DOI: 10.3390/ijms22115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Epigenetic therapy using histone deacetylase (HDAC) inhibitors has become an attractive project in new drug development. However, DNA methylation and histone acetylation are important epigenetic ways to regulate the occurrence and development of leukemia. Given previous studies, N-(2-aminophenyl)benzamide acridine (8a), as a histone deacetylase 1 (HDAC1) inhibitor, induces apoptosis and shows significant anti-proliferative activity against histiocytic lymphoma U937 cells. HDAC1 plays a role in the nucleus, which we confirmed by finding that 8a entered the nucleus. Subsequently, we verified that 8a mainly passes through the endogenous (mitochondrial) pathway to induce cell apoptosis. From the protein interaction data, we found that 8a also affected the expression of DNA methyltransferase 1 (DNMT1). Therefore, an experiment was performed to assess the binding of 8a to DNMT1 at the molecular and cellular levels. We found that the binding strength of 8a to DNMT1 enhanced in a dose-dependent manner. Additionally, 8a inhibits the expression of DNMT1 mRNA and its protein. These findings suggested that the anti-proliferative and pro-apoptotic activities of 8a against leukemia cells were achieved by targeting HDAC1 and DNMT1.
Collapse
|
5
|
Huang L, Fang HB, Cheng HH, Mei SL, Cheng YP, Lv Y, Meng QT, Xia ZY. Epigenetic modulation of the MAPK pathway prevents isoflurane-induced neuronal apoptosis and cognitive decline in aged rats. Exp Ther Med 2020; 20:35. [PMID: 32952626 PMCID: PMC7480129 DOI: 10.3892/etm.2020.9162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Isoflurane is a broadly used inhalation anesthetic that causes cognitive impairment in rodent models as well as humans. Although previous studies suggested an association between isoflurane exposure and neuro-inflammation, apoptosis and mitochondrial dysfunction, the pathogenesis of isoflurane-induced cognitive decline remains elusive. In the present study, 22-month-old male Sprague-Dawley male rats (n=96) were divided into three groups: Control (Cont), isoflurane (ISO) and MS-275 pre-treated groups. The rats were sacrificed following exposure to isoflurane and a cognitive test. The hippocampus of each animal was harvested for quantitative PCR, TUNEL staining and western blot analysis. Histone deacetylases (HDAC)-1, -2 and -3 exhibited a significant increase at the gene and protein expression levels, whereas negligible mRNA expressions were observed for genes HDAC 4-11 (P>0.05; compared with Cont). Pre-treatment with the HDAC inhibitor MS-275 significantly inhibited the increase in TUNEL-positive cells induced by isoflurane exposure (70.72% decrease; P<0.001; compared with ISO). Furthermore, MS-275 significantly decreased caspase-3 and Bax expression levels while increasing Bcl-2 protein expression. The isoflurane-induced changes in the MAPK pathway signaling proteins ERK1/2, JNK and p38 were also reversed with MS-275 pre-treatment. Finally, in a Morris water maze test, the time to find a hidden platform was reduced in MS-275 pre-treated rats, compared with the ISO group. Therefore, the present study provided insight into the effect of isoflurane exposure on neuronal apoptosis pathways, as well as cognitive decline via epigenetic programming of MAPK signaling in aged rats.
Collapse
Affiliation(s)
- Lei Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hai-Bin Fang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui-Hui Cheng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng-Lan Mei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yun-Ping Cheng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yao Lv
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
6
|
Sanna S, Esposito S, Masala A, Sini P, Nieddu G, Galioto M, Fais M, Iaccarino C, Cestra G, Crosio C. HDAC1 inhibition ameliorates TDP-43-induced cell death in vitro and in vivo. Cell Death Dis 2020; 11:369. [PMID: 32409664 PMCID: PMC7224392 DOI: 10.1038/s41419-020-2580-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
TDP-43 pathology is a disease hallmark that characterizes both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). TDP-43 undergoes several posttranslational modifications that can change its biological activities and its aggregative propensity, which is a common hallmark of different neurodegenerative conditions. New evidence is provided by the current study pointing at TDP-43 acetylation in ALS cellular models. Using both in vitro and in vivo approaches, we demonstrate that TDP-43 interacts with histone deacetylase 1 (HDAC1) via RRM1 and RRM2 domains, that are known to contain the two major TDP-43 acetylation sites, K142 and K192. Moreover, we show that TDP-43 is a direct transcriptional activator of CHOP promoter and this activity is regulated by acetylation. Finally and most importantly, we observe both in cell culture and in Drosophila that a HDCA1 reduced level (genomic inactivation or siRNA) or treatment with pan-HDAC inhibitors exert a protective role against WT or pathological mutant TDP-43 toxicity, suggesting TDP-43 acetylation as a new potential therapeutic target. HDAC inhibition efficacy in neurodegeneration has long been debated, but future investigations are warranted in this area. Selection of more specific HDAC inhibitors is still a promising option for neuronal protection especially as HDAC1 appears as a downstream target of both TDP- 43 and FUS, another ALS-related gene.
Collapse
Affiliation(s)
- Simona Sanna
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Sonia Esposito
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Alessandra Masala
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Paola Sini
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Manuela Galioto
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Milena Fais
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy
| | - Gianluca Cestra
- Istitute of Molecular Biology and Pathology-National Research Council at Department of Biology and Biotechnology-Charles Darwin, Sapienza University of Rome, P.Le A.Moro 5, I-00185, Rome, Italy
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, I-07100, Sassari, Italy.
| |
Collapse
|
7
|
Menbari MN, Rahimi K, Ahmadi A, Mohammadi-Yegane S, Elyasi A, Darvishi N, Hosseini V, Abdi M. Association of HDAC8 Expression with Pathological Findings in Triple Negative and Non-Triple Negative Breast Cancer: Implications for Diagnosis. IRANIAN BIOMEDICAL JOURNAL 2020; 24:288-94. [PMID: 32429642 PMCID: PMC7392136 DOI: 10.29252/ibj.24.5.283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Previous data have shown the tumorigenicity roles of HDAC8 in breast cancer. More recently, the oncogenic effects of this molecule have been revealed in TNBC. The present study aimed to determine the diagnostic value of HDAC8 for the differentiation of TNBC from nTNBC tumors. Methods: A total of 50 cancerous and normal adjacent tumor specimens were obtained, and the clinical and pathological findings of studied subjects were recorded. The expression of HDAC8 gene was determined by qRT-PCR. Also, immunohistochemical staining was performed on tissue samples. Results: Our results showed that the expression of HDAC8 in breast cancer tissues was significantly higher than the normal adjacent tissues (p = 0.0011). HDAC8 expression was also observed to be higher in TNBC patients than nTNBC group (p = 0.0013). In addition, in the TNBC group, there was a significant association between the HDAC8 overexpression and tumor characteristics, including tumor size (p = 0.039), lymphatic invasion (p = 0.01), tumor grade (p = 0.02), and perineural invasion (p < 0.05). The cut-off value was fixed at 0.6279 r.u., and the corresponding sensitivity and specificity were found to be 73.91% and 70.37%, respectively. Conclusion: According to the findings, among the other markers, HDAC8 oncogene may be used as a potential tumor marker in diagnosis of TNBC tumors.
Collapse
Affiliation(s)
- Mohammad-Nazir Menbari
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Gene Expression and Gene Medicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samira Mohammadi-Yegane
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anvar Elyasi
- Department of Surgery, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nikoo Darvishi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vahedeh Hosseini
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
8
|
Ahn MY. HDAC inhibitor apicidin suppresses murine oral squamous cell carcinoma cell growth in vitro and in vivo via inhibiting HDAC8 expression. Oncol Lett 2018; 16:6552-6560. [PMID: 30405794 PMCID: PMC6202526 DOI: 10.3892/ol.2018.9468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/23/2018] [Indexed: 01/14/2023] Open
Abstract
Apicidin, a cyclic peptide histone deacetylase (HDAC) inhibitor, has been demonstrated to exhibit antitumor activity in a number of human cancer types. The present study examined the antitumor activity of apicidin in murine oral squamous cell carcinoma (OSCC) cells. Inhibition of cell proliferation and the expression of selective HDACs were determined in apicidin-treated AT-84 murine OSCC cells. A C3H mouse model with subcutaneous injection of AT-84 cells was used to assess the in vivo effect of apicidin on tumor growth. Apicidin-induced cell growth inhibition and selectively reduced HDAC8 expression in AT-84 cells. Induction of apoptosis and autophagy was observed in apicidin-treated AT-84 cells. Apicidin notably inhibited tumor growth by up to 46% relative to the control group at the end of a 14-day period in a murine tumor model. The immunohistochemistry results in tumor tissues indicated that apicidin inhibited cell proliferation and induced apoptosis and autophagy in AT-84 cell-derived tumor tissues. Overexpression of HDAC8 was observed in the nucleus and cytoplasm in tumor tissues and apicidin significantly inhibited the level of HDAC8 expression, compared with the vehicle group. These results indicated that apicidin inhibited cell proliferation through HDAC8 inhibition in murine OSCC cells in vitro and in vivo. The present study indicated that apicidin may be an effective therapeutic agent for OSCC.
Collapse
Affiliation(s)
- Mee-Young Ahn
- Department of Pharmaceutical Engineering, Division of Bio-industry, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
9
|
Zupkovitz G, Lagger S, Martin D, Steiner M, Hagelkruys A, Seiser C, Schöfer C, Pusch O. Histone deacetylase 1 expression is inversely correlated with age in the short-lived fish Nothobranchius furzeri. Histochem Cell Biol 2018; 150:255-269. [PMID: 29951776 PMCID: PMC6096771 DOI: 10.1007/s00418-018-1687-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 12/19/2022]
Abstract
Aging is associated with profound changes in the epigenome, resulting in alterations of gene expression, epigenetic landscape, and genome architecture. Class I Histone deacetylases (HDACs), consisting of HDAC1, HDAC2, HDAC3, and HDAC8, play a major role in epigenetic regulation of chromatin structure and transcriptional control, and have been implicated as key players in the pathogenesis of age-dependent diseases and disorders affecting health and longevity. Here, we report the identification of class I Hdac orthologs and their detailed spatio-temporal expression profile in the short-lived fish Nothobranchius furzeri from the onset of embryogenesis until old age covering the entire lifespan of the organism. Database search of the recently annotated N. furzeri genomes retrieved four distinct genes: two copies of hdac1 and one copy of each hdac3 and hdac8. However, no hdac2 ortholog could be identified. Phylogenetic analysis grouped the individual killifish class I Hdacs within the well-defined terminal clades. We find that upon aging, Hdac1 is significantly down-regulated in muscle, liver, and brain, and this age-dependent down-regulation in brain clearly correlates with increased mRNA levels of the cyclin-dependent kinase inhibitor cdkn1a (p21). Furthermore, this apparent reduction of class I HDACs in transcript and protein levels is mirrored in the mouse brain, highlighting an evolutionarily conserved role of class I HDACs during normal development and in the aging process.
Collapse
Affiliation(s)
- Gordin Zupkovitz
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - David Martin
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Marianne Steiner
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Christian Seiser
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Christian Schöfer
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Oliver Pusch
- Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| |
Collapse
|
10
|
Abstract
Epigenetic deregulation, such as the reduction of histone acetylation levels, is thought to be causally linked to various maladies associated with aging. Consequently, histone deacetylase inhibitors are suggested to serve as epigenetic therapy by increasing histone acetylation. However, previous work suggests that many non-histone proteins, including metabolic enzymes, are also acetylated and that post transitional modifications may impact their activity. Furthermore, deacetylase inhibitors were recently shown to impact the acetylation of a variety of proteins. By utilizing a novel technique to measure oxygen consumption rate from whole living tissue, we demonstrate that treatment of whole living fly heads by the HDAC/KDAC inhibitors sodium butyrate and Trichostatin A, induces a rapid and transient increase of oxygen consumption rate. In addition, our study indicates that the rate increase is markedly attenuated in midlife fly head tissue. Overall, our data suggest that HDAC/KDAC inhibitors may induce enhanced mitochondrial activity in a rapid manner. This observed metabolic boost provides further, but novel evidence, that treating various maladies with deacetylase inhibitors may be beneficial.
Collapse
|
11
|
Gao J, Ruan H, Qi X, Tao Y, Guo X, Shen W. HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum. Front Cell Neurosci 2016; 10:221. [PMID: 27729849 PMCID: PMC5037170 DOI: 10.3389/fncel.2016.00221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/09/2016] [Indexed: 01/12/2023] Open
Abstract
Radial glial cells (RGs) are one of the important progenitor cells that can differentiate into neurons or glia to form functional neural circuits in the developing central nervous system (CNS). Histone deacetylases (HDACs) has been associated with visual activity dependent changes in BrdU-positive progenitor cells in the developing brain. We previously have shown that HDAC1 is involved in the experience-dependent proliferation of RGs. However, it is less clear whether two other members of class I HDACs, HDAC2 and HDAC3, are involved in the regulation of radial glia proliferation. Here, we reported that HDAC2 and HDAC3 expression were developmentally regulated in tectal cells, especially in the ventricular layer of the BLBP-positive RGs. Pharmacological blockade using an inhibitor of class I HDACs, MS-275, decreased the number of BrdU-positive dividing progenitor cells. Specific knockdown of HDAC3 but not HDAC2 decreased the number of BrdU- and BLBP-labeled cells, suggesting that the proliferation of radial glia was selectively mediated by HDAC3. Visual deprivation induced selective augmentation of histone H4 acetylation at lysine 16 in BLBP-positive cells. Furthermore, the visual deprivation-induced increase in BrdU-positive cells was partially blocked by HDAC3 downregulation but not by HDAC2 knockdown at stage 49 tadpoles. These data revealed a specific role of HDAC3 in experience-dependent radial glia proliferation during the development of Xenopus tectum.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, Zhejiang, China
| | - Hangze Ruan
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, Zhejiang, China
| | - Xianjie Qi
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, Zhejiang, China
| | - Yi Tao
- Department of Neurosurgery, Nanjing Medical University and Jiangsu Cancer Hospital Nanjing, Jiangsu, China
| | - Xia Guo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, Zhejiang, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, Zhejiang, China
| |
Collapse
|