1
|
Kale MB, Wankhede NL, Bishoyi AK, Ballal S, Kalia R, Arya R, Kumar S, Khalid M, Gulati M, Umare M, Taksande BG, Upaganlawar AB, Umekar MJ, Kopalli SR, Fareed M, Koppula S. Emerging biophysical techniques for probing synaptic transmission in neurodegenerative disorders. Neuroscience 2025; 565:63-79. [PMID: 39608699 DOI: 10.1016/j.neuroscience.2024.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Plethora of research has shed light on the critical role of synaptic dysfunction in various neurodegenerative disorders (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Synapses, the fundamental units for neural communication in the brain, are highly vulnerable to pathological conditions and are central to the progression of neurological diseases. The presynaptic terminal, a key component of synapses responsible for neurotransmitter release and synaptic communication, undergoes structural and functional alterations in these disorders. Understanding synaptic transmission abnormalities is crucial for unravelling the pathophysiological mechanisms underlying neurodegeneration. In the quest to probe synaptic transmission in NDDs, emerging biophysical techniques play a pivotal role. These advanced methods offer insights into the structural and functional changes occurring at nerve terminals in conditions like AD, PD, HD & ALS. By investigating synaptic plasticity and alterations in neurotransmitter release dynamics, researchers can uncover valuable information about disease progression and potential therapeutic targets. The review articles highlighted provide a comprehensive overview of how synaptic vulnerability and pathology are shared mechanisms across a spectrum of neurological disorders. In major neurodegenerative diseases, synaptic dysfunction is a common thread linking these conditions. The intricate molecular machinery involved in neurotransmitter release, synaptic vesicle dynamics, and presynaptic protein regulation are key areas of focus for understanding synaptic alterations in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Mohit Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box- 71666, Riyadh 11597, Saudi Arabia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
2
|
Woelfle S, Pedro MT, Wagner J, Schön M, Boeckers TM. Expression profiles of the autism-related SHANK proteins in the human brain. BMC Biol 2023; 21:254. [PMID: 37953224 PMCID: PMC10641957 DOI: 10.1186/s12915-023-01712-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND SHANKs are major scaffolding proteins at postsynaptic densities (PSDs) in the central nervous system. Mutations in all three family members have been associated with neurodevelopmental disorders such as autism spectrum disorders (ASDs). Despite the pathophysiological importance of SHANK2 and SHANK3 mutations in humans, research on the expression of these proteins is mostly based on rodent model organisms. RESULTS In the present study, cellular and neuropil SHANK2 expression was analyzed by immunofluorescence (IF) staining of post mortem human brain tissue from four male individuals (19 brain regions). Mouse brains were analyzed in comparison to evaluate the degree of phylogenetic conservation. Furthermore, SHANK2 and SHANK3 isoform patterns were compared in human and mouse brain lysates. While isoform expression and subcellular distribution were largely conserved, differences in neuropil levels of SHANK2 were found by IF staining: Maximum expression was concordantly measured in the cerebellum; however, higher SHANK2 expression was detected in the human brainstem and thalamus when compared to mice. One of the lowest SHANK2 levels was found in the human amygdala, a moderately expressing region in mouse. Quantification of SHANK3 IF in mouse brains unveiled a distribution comparable to humans. CONCLUSIONS In summary, these data show that the overall expression pattern of SHANK is largely conserved in defined brain regions; however, differences do exist, which need to be considered in the translation of rodent studies. The summarized expression patterns of SHANK2 and SHANK3 should serve as a reference for future studies.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Maria T Pedro
- Department of Neurosurgery, Ulm University, Campus Günzburg, Lindenallee 2, 89312, Günzburg, Germany
| | - Jan Wagner
- Department of Neurology, Ulm University and Universitäts- and Rehabilitationskliniken Ulm, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Deutsches Zentrum Für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Hirota Y, Sakakibara Y, Takei K, Nishijima R, Sekiya M, Iijima KM. Alzheimer's Disease-Related Phospho-Tau181 Signals Are Localized to Demyelinated Axons of Parvalbumin-Positive GABAergic Interneurons in an App Knock-In Mouse Model of Amyloid-β Pathology. J Alzheimers Dis 2023:JAD230121. [PMID: 37212118 DOI: 10.3233/jad-230121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND The tau protein phosphorylated at Thr181 (p-tau181) in cerebrospinal fluid and blood is a sensitive biomarker for Alzheimer's disease (AD). Increased p-tau181 levels correlate well with amyloid-β (Aβ) pathology and precede neurofibrillary tangle formation in the early stage of AD; however, the relationship between p-tau181 and Aβ-mediated pathology is less well understood. We recently reported that p-tau181 represents axonal abnormalities in mice with Aβ pathology (AppNLGF). However, from which neuronal subtype(s) these p-tau181-positive axons originate remains elusive. OBJECTIVE The main purpose of this study is to differentiate neuronal subtype(s) and elucidate damage associated with p-tau181-positive axons by immunohistochemical analysis of AppNLGF mice brains. METHODS Colocalization between p-tau181 and (1) unmyelinated axons positive for vesicular acetylcholine transporter or norepinephrine transporter and (2) myelinated axons positive for vesicular glutamate transporter, vesicular GABA transporter, or parvalbumin in the brains of 24-month-old AppNLGF and control mice without Aβ pathology were analyzed. The density of these axons was also compared. RESULTS Unmyelinated axons of cholinergic or noradrenergic neurons did not overlap with p-tau181. By contrast, p-tau181 signals colocalized with myelinated axons of parvalbumin-positive GABAergic interneurons but not of glutamatergic neurons. Interestingly, the density of unmyelinated axons was significantly decreased in AppNLGF mice, whereas that of glutamatergic, GABAergic, or p-tau181-positive axons was less affected. Instead, myelin sheaths surrounding p-tau181-positive axons were significantly reduced in AppNLGF mice. CONCLUSION This study demonstrates that p-tau181 signals colocalize with axons of parvalbumin-positive GABAergic interneurons with disrupted myelin sheaths in the brains of a mouse model of Aβ pathology.
Collapse
Affiliation(s)
- Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
4
|
Cope EC, Wang SH, Waters RC, Gore IR, Vasquez B, Laham BJ, Gould E. Activation of the CA2-ventral CA1 pathway reverses social discrimination dysfunction in Shank3B knockout mice. Nat Commun 2023; 14:1750. [PMID: 36991001 PMCID: PMC10060401 DOI: 10.1038/s41467-023-37248-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Mutation or deletion of the SHANK3 gene, which encodes a synaptic scaffolding protein, is linked to autism spectrum disorder and Phelan-McDermid syndrome, conditions associated with social memory impairments. Shank3B knockout mice also exhibit social memory deficits. The CA2 region of the hippocampus integrates numerous inputs and sends a major output to the ventral CA1 (vCA1). Despite finding few differences in excitatory afferents to the CA2 in Shank3B knockout mice, we found that activation of CA2 neurons as well as the CA2-vCA1 pathway restored social recognition function to wildtype levels. vCA1 neuronal oscillations have been linked to social memory, but we observed no differences in these measures between wildtype and Shank3B knockout mice. However, activation of the CA2 enhanced vCA1 theta power in Shank3B knockout mice, concurrent with behavioral improvements. These findings suggest that stimulating adult circuitry in a mouse model with neurodevelopmental impairments can invoke latent social memory function.
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Samantha H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Renée C Waters
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Betsy Vasquez
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Blake J Laham
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
5
|
Ray A, Christian JA, Mosso MB, Park E, Wegner W, Willig KI, Barth AL. Quantitative Fluorescence Analysis Reveals Dendrite-Specific Thalamocortical Plasticity in L5 Pyramidal Neurons during Learning. J Neurosci 2023; 43:584-600. [PMID: 36639912 PMCID: PMC9888508 DOI: 10.1523/jneurosci.1372-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
High-throughput anatomic data can stimulate and constrain new hypotheses about how neural circuits change in response to experience. Here, we use fluorescence-based reagents for presynaptic and postsynaptic labeling to monitor changes in thalamocortical synapses onto different compartments of layer 5 (L5) pyramidal (Pyr) neurons in somatosensory (barrel) cortex from mixed-sex mice during whisker-dependent learning (Audette et al., 2019). Using axonal fills and molecular-genetic tags for synapse identification in fixed tissue from Rbp4-Cre transgenic mice, we found that thalamocortical synapses from the higher-order posterior medial thalamic nucleus showed rapid morphologic changes in both presynaptic and postsynaptic structures at the earliest stages of sensory association training. Detected increases in thalamocortical synaptic size were compartment specific, occurring selectively in the proximal dendrites onto L5 Pyr and not at inputs onto their apical tufts in L1. Both axonal and dendritic changes were transient, normalizing back to baseline as animals became expert in the task. Anatomical measurements were corroborated by electrophysiological recordings at different stages of training. Thus, fluorescence-based analysis of input- and target-specific synapses can reveal compartment-specific changes in synapse properties during learning.SIGNIFICANCE STATEMENT Synaptic changes underlie the cellular basis of learning, experience, and neurologic diseases. Neuroanatomical methods to assess synaptic plasticity can provide critical spatial information necessary for building models of neuronal computations during learning and experience but are technically and fiscally intensive. Here, we describe a confocal fluorescence microscopy-based analytical method to assess input, cell type, and dendritic location-specific synaptic plasticity in a sensory learning assay. Our method not only confirms prior electrophysiological measurements but allows us to predict functional strength of synapses in a pathway-specific manner. Our findings also indicate that changes in primary sensory cortices are transient, occurring during early learning. Fluorescence-based synapse identification can be an efficient and easily adopted approach to study synaptic changes in a variety of experimental paradigms.
Collapse
Affiliation(s)
- Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213
| | - Joseph A Christian
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213
| | - Matthew B Mosso
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213
| | - Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213
| | - Waja Wegner
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37099 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Katrin I Willig
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37099 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213
| |
Collapse
|
6
|
Brain Dp140 alters glutamatergic transmission and social behaviour in the mdx52 mouse model of Duchenne muscular dystrophy. Prog Neurobiol 2022; 216:102288. [PMID: 35654209 DOI: 10.1016/j.pneurobio.2022.102288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/23/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice.
Collapse
|
7
|
Du Y, Brennan FH, Popovich PG, Zhou M. Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia 2022; 70:1359-1379. [PMID: 35394085 PMCID: PMC9324808 DOI: 10.1002/glia.24179] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022]
Abstract
Microglial control of activity‐dependent plasticity and synaptic remodeling in neuronal networks has been the subject of intense research in the past several years. Although microglia–neuron interactions have been extensively studied, less is known about how microglia influence astrocyte‐dependent control over neuronal structure and function. Here, we explored a role for microglia in regulating the structure and function of the astrocyte syncytium in mouse hippocampus. After depleting microglia using a CSF1R antagonist (PLX5622, Plexxikon), we observed severe disruption of astrocyte syncytial isopotentiality and dye coupling. A decrease in astrocyte‐specific gap junction connexin (Cx) 30 and 43 expression, at least partially accounts for these microglia‐dependent changes in astrocytes. Because neuronal function requires intact astrocyte coupling, we also evaluated the effects of microglia depletion on synaptic transmission in the hippocampus. Without microglia, the strength of synaptic transmission was reduced at baseline and after long‐term potentiation (LTP). Conversely, priming microglia with systemic injections of lipopolysaccharide enhanced CA3‐CA1 synaptic transmission. This microglia‐induced scaling of synaptic transmission was associated with increased expression of post‐synaptic scaffold proteins (Homer1) in CA1. However, astrocyte network function was not affected by microglia priming, indicating that microglia‐dependent effects on astrocytes and neurons vary across functional states. Through manipulation of microglia in the brain, our results reveal the importance of microglia in homeostatic regulation of the astrocyte syncytium and scaling of synaptic transmission. These novel mechanisms uncover a new direction for future studies interrogating microglia function in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Yixing Du
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Faith H Brennan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
8
|
Garrido D, Beretta S, Grabrucker S, Bauer HF, Bayer D, Sala C, Verpelli C, Roselli F, Bockmann J, Proepper C, Catanese A, Boeckers TM. Shank2/3 double knockout-based screening of cortical subregions links the retrosplenial area to the loss of social memory in autism spectrum disorders. Mol Psychiatry 2022; 27:4994-5006. [PMID: 36100669 PMCID: PMC9763120 DOI: 10.1038/s41380-022-01756-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023]
Abstract
Members of the Shank protein family are master scaffolds of the postsynaptic architecture and mutations within the SHANK genes are causally associated with autism spectrum disorders (ASDs). We generated a Shank2-Shank3 double knockout mouse that is showing severe autism related core symptoms, as well as a broad spectrum of comorbidities. We exploited this animal model to identify cortical brain areas linked to specific autistic traits by locally deleting Shank2 and Shank3 simultaneously. Our screening of 10 cortical subregions revealed that a Shank2/3 deletion within the retrosplenial area severely impairs social memory, a core symptom of ASD. Notably, DREADD-mediated neuronal activation could rescue the social impairment triggered by Shank2/3 depletion. Data indicate that the retrosplenial area has to be added to the list of defined brain regions that contribute to the spectrum of behavioural alterations seen in ASDs.
Collapse
Affiliation(s)
- Débora Garrido
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748International Graduate School, Ulm University, 89081 Ulm, Germany
| | - Stefania Beretta
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Stefanie Grabrucker
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Helen Friedericke Bauer
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748International Graduate School, Ulm University, 89081 Ulm, Germany
| | - David Bayer
- grid.6582.90000 0004 1936 9748International Graduate School, Ulm University, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Carlo Sala
- grid.418879.b0000 0004 1758 9800CNR, Institute for Neuroscience, Milano, Italy
| | - Chiara Verpelli
- grid.418879.b0000 0004 1758 9800CNR, Institute for Neuroscience, Milano, Italy
| | - Francesco Roselli
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Juergen Bockmann
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Christian Proepper
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Alberto Catanese
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| |
Collapse
|
9
|
Woelfle S, Boeckers TM. Layer-Specific Vesicular Glutamate Transporter 1 Immunofluorescence Levels Delineate All Layers of the Human Hippocampus Including the Stratum lucidum. Front Cell Neurosci 2021; 15:789903. [PMID: 34955756 PMCID: PMC8696355 DOI: 10.3389/fncel.2021.789903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022] Open
Abstract
The hippocampal formation consists of the Ammon’s horn (cornu Ammonis with its regions CA1-4), dentate gyrus, subiculum, and the entorhinal cortex. The rough extension of the regions CA1-3 is typically defined based on the density and size of the pyramidal neurons without clear-cut boundaries. Here, we propose the vesicular glutamate transporter 1 (VGLUT1) as a molecular marker for the CA3 region. This is based on its strong labeling of the stratum lucidum (SL) in fluorescently stained human hippocampus sections. VGLUT1 puncta of the intense SL band co-localize with synaptoporin (SPO), a protein enriched in mossy fibers (MFs). Owing to its specific intensity profile throughout all hippocampal layers, VGLUT1 could be implemented as a pendant to Nissl-staining in fluorescent approaches with the additional demarcation of the SL. Furthermore, by high-resolution confocal microscopy, we detected VGLUT2 in the human hippocampus, thus reconciling two previous studies. Finally, by VGLUT1/SPO co-staining, we provide evidence for the existence of infrapyramidal MFs in the human hippocampus and we show that SPO expression is not restricted to MF synapses as demonstrated for rodent tissue.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm (IGradU), Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| |
Collapse
|
10
|
Cursano S, Battaglia CR, Urrutia-Ruiz C, Grabrucker S, Schön M, Bockmann J, Braumüller S, Radermacher P, Roselli F, Huber-Lang M, Boeckers TM. A CRHR1 antagonist prevents synaptic loss and memory deficits in a trauma-induced delirium-like syndrome. Mol Psychiatry 2021; 26:3778-3794. [PMID: 32051550 PMCID: PMC8550963 DOI: 10.1038/s41380-020-0659-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Older patients with severe physical trauma are at high risk of developing neuropsychiatric syndromes with global impairment of cognition, attention, and consciousness. We employed a thoracic trauma (TxT) mouse model and thoroughly analyzed age-dependent spatial and temporal posttraumatic alterations in the central nervous system. Up to 5 days after trauma, we observed a transient 50% decrease in the number of excitatory synapses specifically in hippocampal pyramidal neurons accompanied by alterations in attention and motor activity and disruption of contextual memory consolidation. In parallel, hippocampal corticotropin-releasing hormone (CRH) expression was highly upregulated, and brain-derived neurotrophic factor (BDNF) levels were significantly reduced. In vitro experiments revealed that CRH application induced neuronal autophagy with rapid lysosomal degradation of BDNF via the NF-κB pathway. The subsequent synaptic loss was rescued by BDNF as well as by specific NF-κB and CRH receptor 1 (CRHR1) antagonists. In vivo, the chronic application of a CRHR1 antagonist after TxT resulted in reversal of the observed histological, molecular, and behavioral alterations. The data suggest that neuropsychiatric syndromes (i.e., delirium) after peripheral trauma might be at least in part due to the activation of the hippocampal CRH/NF-κB/BDNF pathway, which results in a dramatic loss of synaptic contacts. The successful rescue by stress hormone receptor antagonists should encourage clinical trials focusing on trauma-induced delirium and/or other posttraumatic syndromes.
Collapse
Affiliation(s)
- Silvia Cursano
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany ,International Graduate School in Molecular Medicine, IGradU, 89081 Ulm, Germany
| | - Chiara R. Battaglia
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany ,International Graduate School in Molecular Medicine, IGradU, 89081 Ulm, Germany
| | - Carolina Urrutia-Ruiz
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stefanie Grabrucker
- grid.10049.3c0000 0004 1936 9692Department of Biological Sciences, University of Limerick, Limerick, V94 PH61 Ireland
| | - Michael Schön
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jürgen Bockmann
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sonja Braumüller
- grid.6582.90000 0004 1936 9748Institute for Anesthesiological Pathophysiology, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - Peter Radermacher
- grid.6582.90000 0004 1936 9748Institute for Anesthesiological Pathophysiology, Ulm University, Helmholtzstr. 8/1, 89081 Ulm, Germany
| | - Francesco Roselli
- grid.6582.90000 0004 1936 9748Clinic for Neurology, Ulm University, 89081 Ulm, Germany
| | - Markus Huber-Lang
- grid.6582.90000 0004 1936 9748Institute of Clinical and Experimental Trauma-Immunology, Ulm University, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- grid.6582.90000 0004 1936 9748Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
11
|
Battaglia CR, Cursano S, Calzia E, Catanese A, Boeckers TM. Corticotropin-releasing hormone (CRH) alters mitochondrial morphology and function by activating the NF-kB-DRP1 axis in hippocampal neurons. Cell Death Dis 2020; 11:1004. [PMID: 33230105 PMCID: PMC7683554 DOI: 10.1038/s41419-020-03204-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Neuronal stress-adaptation combines multiple molecular responses. We have previously reported that thorax trauma induces a transient loss of hippocampal excitatory synapses mediated by the local release of the stress-related hormone corticotropin-releasing hormone (CRH). Since a physiological synaptic activity relies also on mitochondrial functionality, we investigated the direct involvement of mitochondria in the (mal)-adaptive changes induced by the activation of neuronal CRH receptors 1 (CRHR1). We observed, in vivo and in vitro, a significant shift of mitochondrial dynamics towards fission, which correlated with increased swollen mitochondria and aberrant cristae. These morphological changes, which are associated with increased NF-kB activity and nitric oxide concentrations, correlated with a pronounced reduction of mitochondrial activity. However, ATP availability was unaltered, suggesting that neurons maintain a physiological energy metabolism to preserve them from apoptosis under CRH exposure. Our findings demonstrate that stress-induced CRHR1 activation leads to strong, but reversible, modifications of mitochondrial dynamics and morphology. These alterations are accompanied by bioenergetic defects and the reduction of neuronal activity, which are linked to increased intracellular oxidative stress, and to the activation of the NF-kB/c-Abl/DRP1 axis.
Collapse
Affiliation(s)
- Chiara R Battaglia
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School, Ulm University, Ulm, Germany
| | - Silvia Cursano
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School, Ulm University, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany. .,DZNE, Ulm site, Ulm, Germany.
| |
Collapse
|
12
|
Zanier ER, Bertani I, Sammali E, Pischiutta F, Chiaravalloti MA, Vegliante G, Masone A, Corbelli A, Smith DH, Menon DK, Stocchetti N, Fiordaliso F, De Simoni MG, Stewart W, Chiesa R. Induction of a transmissible tau pathology by traumatic brain injury. Brain 2019; 141:2685-2699. [PMID: 30084913 DOI: 10.1093/brain/awy193] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/06/2018] [Indexed: 01/13/2023] Open
Abstract
Traumatic brain injury is a risk factor for subsequent neurodegenerative disease, including chronic traumatic encephalopathy, a tauopathy mostly associated with repetitive concussion and blast, but not well recognized as a consequence of severe traumatic brain injury. Here we show that a single severe brain trauma is associated with the emergence of widespread hyperphosphorylated tau pathology in a proportion of humans surviving late after injury. In parallel experimental studies, in a model of severe traumatic brain injury in wild-type mice, we found progressive and widespread tau pathology, replicating the findings in humans. Brain homogenates from these mice, when inoculated into the hippocampus and overlying cerebral cortex of naïve mice, induced widespread tau pathology, synaptic loss, and persistent memory deficits. These data provide evidence that experimental brain trauma induces a self-propagating tau pathology, which can be transmitted between mice, and call for future studies aimed at investigating the potential transmissibility of trauma associated tau pathology in humans.
Collapse
Affiliation(s)
- Elisa R Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Bertani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eliana Sammali
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Department of Cerebrovascular Diseases, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Pischiutta
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Gloria Vegliante
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Antonio Masone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Douglas H Smith
- Penn Centre for Brain Injury and Repair and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nino Stocchetti
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy.,Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
13
|
Yoo YE, Yoo T, Lee S, Lee J, Kim D, Han HM, Bae YC, Kim E. Shank3 Mice Carrying the Human Q321R Mutation Display Enhanced Self-Grooming, Abnormal Electroencephalogram Patterns, and Suppressed Neuronal Excitability and Seizure Susceptibility. Front Mol Neurosci 2019; 12:155. [PMID: 31275112 PMCID: PMC6591539 DOI: 10.3389/fnmol.2019.00155] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
Shank3, a postsynaptic scaffolding protein involved in regulating excitatory synapse assembly and function, has been implicated in several brain disorders, including autism spectrum disorders (ASD), Phelan-McDermid syndrome, schizophrenia, intellectual disability, and mania. Here we generated and characterized a Shank3 knock-in mouse line carrying the Q321R mutation (Shank3 Q321R mice) identified in a human individual with ASD that affects the ankyrin repeat region (ARR) domain of the Shank3 protein. Homozygous Shank3 Q321R/Q321R mice show a selective decrease in the level of Shank3a, an ARR-containing protein variant, but not other variants. CA1 pyramidal neurons in the Shank3 Q321R/Q321R hippocampus show decreased neuronal excitability but normal excitatory and inhibitory synaptic transmission. Behaviorally, Shank3 Q321R/Q321R mice show moderately enhanced self-grooming and anxiolytic-like behavior, but normal locomotion, social interaction, and object recognition and contextual fear memory. In addition, these mice show abnormal electroencephalogram (EEG) patterns and decreased susceptibility to induced seizures. These results indicate that the Q321R mutation alters Shank3 protein stability, neuronal excitability, repetitive and anxiety-like behavior, EEG patterns, and seizure susceptibility in mice.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Taesun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiseok Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Hye-Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong-Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| |
Collapse
|
14
|
Yamawaki N, Corcoran KA, Guedea AL, Shepherd GMG, Radulovic J. Differential Contributions of Glutamatergic Hippocampal→Retrosplenial Cortical Projections to the Formation and Persistence of Context Memories. Cereb Cortex 2019; 29:2728-2736. [PMID: 29878069 PMCID: PMC6519694 DOI: 10.1093/cercor/bhy142] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/02/2018] [Indexed: 12/20/2022] Open
Abstract
Learning to associate stressful events with specific environmental contexts depends on excitatory transmission in the hippocampus, but how this information is transmitted to the neocortex for lasting memory storage is unclear. We identified dorsal hippocampal (DH) projections to the retrosplenial cortex (RSC), which arise mainly from the subiculum and contain either the vesicular glutamate transporter 1 (vGlut1) or vGlut2. Both vGlut1+ and vGlut2+ axons strongly excite and disynaptically inhibit RSC pyramidal neurons in superficial layers, but vGlut2+ axons trigger greater inhibition that spreads to deep layers, indicating that these pathways engage RSC circuits via partially redundant, partially differentiated cellular mechanisms. Using contextual fear conditioning in mice to model contextual associative memories, together with chemogenetic axonal silencing, we found that vGlut1+ projections are principally involved in processing recent context memories whereas vGlut2+ projections contribute to their long-lasting storage. Thus, within the DH→RSC pathway, engagement of vGlut1+ and vGlut2+ circuits differentially contribute to the formation and persistence of fear-inducing context memories.
Collapse
Affiliation(s)
- Naoki Yamawaki
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kevin A Corcoran
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Anita L Guedea
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Gordon M G Shepherd
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jelena Radulovic
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Lee S, Lee E, Kim R, Kim J, Lee S, Park H, Yang E, Kim H, Kim E. Shank2 Deletion in Parvalbumin Neurons Leads to Moderate Hyperactivity, Enhanced Self-Grooming and Suppressed Seizure Susceptibility in Mice. Front Mol Neurosci 2018; 11:209. [PMID: 29970987 PMCID: PMC6018407 DOI: 10.3389/fnmol.2018.00209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/28/2018] [Indexed: 01/05/2023] Open
Abstract
Shank2 is an abundant postsynaptic scaffolding protein implicated in neurodevelopmental and psychiatric disorders, including autism spectrum disorders (ASD). Deletion of Shank2 in mice has been shown to induce social deficits, repetitive behaviors, and hyperactivity, but the identity of the cell types that contribute to these phenotypes has remained unclear. Here, we report a conditional mouse line with a Shank2 deletion restricted to parvalbumin (PV)-positive neurons (Pv-Cre;Shank2fl/fl mice). These mice display moderate hyperactivity in both novel and familiar environments and enhanced self-grooming in novel, but not familiar, environments. In contrast, they showed normal levels of social interaction, anxiety-like behavior, and learning and memory. Basal brain rhythms in Pv-Cre;Shank2fl/fl mice, measured by electroencephalography, were normal, but susceptibility to pentylenetetrazole (PTZ)-induced seizures was decreased. These results suggest that Shank2 deletion in PV-positive neurons leads to hyperactivity, enhanced self-grooming and suppressed brain excitation.
Collapse
Affiliation(s)
- Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
16
|
Cell-Type-Specific Shank2 Deletion in Mice Leads to Differential Synaptic and Behavioral Phenotypes. J Neurosci 2018; 38:4076-4092. [PMID: 29572432 DOI: 10.1523/jneurosci.2684-17.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 12/14/2022] Open
Abstract
Shank2 is an excitatory postsynaptic scaffolding protein implicated in synaptic regulation and psychiatric disorders including autism spectrum disorders. Conventional Shank2-mutant (Shank2-/-) mice display several autistic-like behaviors, including social deficits, repetitive behaviors, hyperactivity, and anxiety-like behaviors. However, cell-type-specific contributions to these behaviors have remained largely unclear. Here, we deleted Shank2 in specific cell types and found that male mice lacking Shank2 in excitatory neurons (CaMKII-Cre;Shank2fl/fl) show social interaction deficits and mild social communication deficits, hyperactivity, and anxiety-like behaviors. In particular, male mice lacking Shank2 in GABAergic inhibitory neurons (Viaat-Cre;Shank2fl/fl) display social communication deficits, repetitive self-grooming, and mild hyperactivity. These behavioral changes were associated with distinct changes in hippocampal and striatal synaptic transmission in the two mouse lines. These results indicate that cell-type-specific deletions of Shank2 in mice lead to differential synaptic and behavioral abnormalities.SIGNIFICANCE STATEMENT Shank2 is an abundant excitatory postsynaptic scaffolding protein implicated in the regulation of excitatory synapses and diverse psychiatric disorders including autism spectrum disorders. Previous studies have reported in vivo functions of Shank2 mainly using global Shank2-null mice, but it remains largely unclear how individual cell types contribute to Shank2-dependent regulation of neuronal synapses and behaviors. Here, we have characterized conditional Shank2-mutant mice carrying the Shank2 deletion in excitatory and inhibitory neurons. These mouse lines display distinct alterations of synaptic transmission in the hippocampus and striatum that are associated with differential behavioral abnormalities in social, repetitive, locomotor, and anxiety-like domains.
Collapse
|
17
|
Collins SM, Belagodu AP, Reed SL, Galvez R. SHANK1 is differentially expressed during development in CA1 hippocampal neurons and astrocytes. Dev Neurobiol 2017; 78:363-373. [PMID: 29218848 DOI: 10.1002/dneu.22564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 01/25/2023]
Abstract
Recent studies have strongly suggested a role for the synaptic scaffolding protein SHANK1 in normal synaptic structure and signaling. Global SHANK1 knockout (SHANK1-/-) mice demonstrate reduced dendritic spine density, an immature dendritic spine phenotype and impairments in various cognitive tasks. SHANK1 overexpression is associated with increased dendritic spine size and impairments in fear conditioning. These studies suggest proper regulation of SHANK1 is crucial for appropriate synaptic structure and cognition. However, little is known regarding SHANK1's developmental expression in brain regions critical for learning. The current study quantified cell specific developmental expression of SHANK1 in the hippocampus, a brain region critically involved in various learning paradigms shown to be disrupted by SHANK1 dysregulation. Consistent with prior studies, SHANK1 was found to be strongly co-expressed with dendritic markers, with significant increased co-expression at postnatal day (P) 15, an age associated with increased synaptogenesis in the hippocampus. Interestingly, SHANK1 was also found to be expressed in astrocytes and microglia. To our knowledge, this is the first demonstration of glial SHANK1 localization; therefore, these findings were further examined via a glial purified primary cell culture fraction using magnetic cell sorting. This additional analysis further demonstrated that SHANK1 was expressed in glial cells, supporting our immunofluorescence co-expression findings. Developmentally, astroglial SHANK1 co-expression was found to be significantly elevated at P5 with a reduction into adulthood, while SHANK1 microglial co-expression did not significantly change across development. These data collectively implicate a more global role for SHANK1 in mediating normal cellular signaling in the brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 363-373, 2018.
Collapse
Affiliation(s)
- Sean M Collins
- Psychology Department, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| | - Amogh P Belagodu
- Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| | - Samantha L Reed
- Psychology Department, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| | - Roberto Galvez
- Psychology Department, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801.,Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| |
Collapse
|
18
|
Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies. Neural Plast 2016; 2016:8051861. [PMID: 27795858 PMCID: PMC5067329 DOI: 10.1155/2016/8051861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains-the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.
Collapse
|