1
|
Liu Y, Yin S, Lu G, Du Y. The intersection of the nervous system and breast cancer. Cancer Lett 2024; 598:217132. [PMID: 39059572 DOI: 10.1016/j.canlet.2024.217132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer (BC) represents a paradigm of heterogeneity, manifesting as a spectrum of molecular subtypes with divergent clinical trajectories. It is fundamentally characterized by the aberrant proliferation of malignant cells within breast tissue, a process modulated by a myriad of factors that govern its progression. Recent endeavors outline the interplay between BC and the nervous system, illuminate the complex symbiosis between neural structures and neoplastic cells, and elucidate nerve dependence as a cornerstone of BC progression. This includes the neural modulations on immune response, neurovascular formation, and multisystem interactions. Such insights have unveiled the critical impact of neural elements on tumor dynamics and patient prognosis. This revelation beckons a deeper exploration into the neuro-oncological interface, potentially unlocking novel therapeutic vistas. This review endeavors to delineate the intricate mechanisms between the nervous system and BC, aiming to accentuate the implications and therapeutic strategies of this intersection for tumor evolution and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Guanyu Lu
- Cancer Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
2
|
Ling J, He C, Zhang S, Zhao Y, Zhu M, Tang X, Li Q, Xu L, Yang Y. Progress in methods for evaluating Schwann cell myelination and axonal growth in peripheral nerve regeneration via scaffolds. Front Bioeng Biotechnol 2023; 11:1308761. [PMID: 38162183 PMCID: PMC10755477 DOI: 10.3389/fbioe.2023.1308761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Peripheral nerve injury (PNI) is a neurological disorder caused by trauma that is frequently induced by accidents, war, and surgical complications, which is of global significance. The severity of the injury determines the potential for lifelong disability in patients. Artificial nerve scaffolds have been investigated as a powerful tool for promoting optimal regeneration of nerve defects. Over the past few decades, bionic scaffolds have been successfully developed to provide guidance and biological cues to facilitate Schwann cell myelination and orientated axonal growth. Numerous assessment techniques have been employed to investigate the therapeutic efficacy of nerve scaffolds in promoting the growth of Schwann cells and axons upon the bioactivities of distinct scaffolds, which have encouraged a greater understanding of the biological mechanisms involved in peripheral nerve development and regeneration. However, it is still difficult to compare the results from different labs due to the diversity of protocols and the availability of innovative technologies when evaluating the effectiveness of novel artificial scaffolds. Meanwhile, due to the complicated process of peripheral nerve regeneration, several evaluation methods are usually combined in studies on peripheral nerve repair. Herein, we have provided an overview of the evaluation methods used to study the outcomes of scaffold-based therapies for PNI in experimental animal models and especially focus on Schwann cell functions and axonal growth within the regenerated nerve.
Collapse
Affiliation(s)
- Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chang He
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Meifeng Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qiaoyuan Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Liming Xu
- Institute of Medical Device Control, National Institutes for Food and Drug Control, Beijing, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
3
|
Zhang M, An H, Wan T, Jiang HR, Yang M, Wen YQ, Zhang PX. Micron track chitosan conduit fabricated by 3D-printed model topography provides bionic microenvironment for peripheral nerve regeneration. Int J Bioprint 2023; 9:770. [PMID: 37608847 PMCID: PMC10339431 DOI: 10.18063/ijb.770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/30/2023] [Indexed: 08/24/2023] Open
Abstract
The micron track conduit (MTC) and nerve factor provide a physical and biological model for simulating peripheral nerve growth and have potential applications for nerve injury. However, it has rarely been reported that they synergize on peripheral nerves. In this study, we used bioderived chitosan as a substrate to design and construct a neural repair conduit with micron track topography using threedimensional (3D) printing topography. We loaded the MTC with neurotrophin-3 (NT-3) to promote the regeneration of sensory and sympathetic neurons in the peripheral nervous system. We found that the MTC@NT3 composite nerve conduit mimicked the microenvironment of peripheral nerves and promoted axonal regeneration while inducing the targeted growth of Schwann cells, which would promote functional recovery in rats with peripheral nerve injury. Artificial nerve implants with functional properties can be developed using the strategy presented in this study.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China
| | - Ming Yang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China
| | - Yong-Qiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
4
|
Warner WS, Stubben C, Yeoh S, Light AR, Mahan MA. Next-generation RNA sequencing elucidates transcriptomic signatures of pathophysiologic nerve regeneration. Sci Rep 2023; 13:8856. [PMID: 37258605 PMCID: PMC10232541 DOI: 10.1038/s41598-023-35606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
The cellular and molecular underpinnings of Wallerian degeneration have been robustly explored in laboratory models of successful nerve regeneration. In contrast, there is limited interrogation of failed regeneration, which is the challenge facing clinical practice. Specifically, we lack insight on the pathophysiologic mechanisms that lead to the formation of neuromas-in-continuity (NIC). To address this knowledge gap, we have developed and validated a novel basic science model of rapid-stretch nerve injury, which provides a biofidelic injury with NIC development and incomplete neurologic recovery. In this study, we applied next-generation RNA sequencing to elucidate the temporal transcriptional landscape of pathophysiologic nerve regeneration. To corroborate genetic analysis, nerves were subject to immunofluorescent staining for transcripts representative of the prominent biological pathways identified. Pathophysiologic nerve regeneration produces substantially altered genetic profiles both temporally and in the mature neuroma microenvironment, in contrast to the coordinated genetic signatures of Wallerian degeneration and successful regeneration. To our knowledge, this study presents as the first transcriptional study of NIC pathophysiology and has identified cellular death, fibrosis, neurodegeneration, metabolism, and unresolved inflammatory signatures that diverge from pathways elaborated by traditional models of successful nerve regeneration.
Collapse
Affiliation(s)
- Wesley S Warner
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA
| | - Christopher Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Stewart Yeoh
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA
| | - Alan R Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
5
|
Piñero G, Vence M, Aranda ML, Cercato MC, Soto PA, Usach V, Setton-Avruj PC. All the PNS is a Stage: Transplanted Bone Marrow Cells Play an Immunomodulatory Role in Peripheral Nerve Regeneration. ASN Neuro 2023; 15:17590914231167281. [PMID: 37654230 PMCID: PMC10475269 DOI: 10.1177/17590914231167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 09/02/2023] Open
Abstract
SUMMARY STATEMENT Bone marrow cell transplant has proven to be an effective therapeutic approach to treat peripheral nervous system injuries as it not only promoted regeneration and remyelination of the injured nerve but also had a potent effect on neuropathic pain.
Collapse
Affiliation(s)
- Gonzalo Piñero
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Pathology, Mount Sinai Hospital, New York, NY, USA
| | - Marianela Vence
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcos L. Aranda
- Universidad de Buenos Aires-CONICET, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Magalí C. Cercato
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula A. Soto
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanina Usach
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia C. Setton-Avruj
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Chen X, Tang X, Wang Y, Gu X, Huang T, Yang Y, Ling J. Silk-inspired fiber implant with multi-cues enhanced bionic microenvironment for promoting peripheral nerve repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112674. [DOI: 10.1016/j.msec.2022.112674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
7
|
Sayanagi J, Acevedo-Cintrón JA, Pan D, Schellhardt L, Hunter DA, Snyder-Warwick AK, Mackinnon SE, Wood MD. Brief Electrical Stimulation Accelerates Axon Regeneration and Promotes Recovery Following Nerve Transection and Repair in Mice. J Bone Joint Surg Am 2021; 103:e80. [PMID: 34668879 DOI: 10.2106/jbjs.20.01965] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Clinical outcomes following nerve injury repair can be inadequate. Pulsed-current electrical stimulation (ES) is a therapeutic method that facilitates functional recovery by accelerating axon regeneration. However, current clinical ES protocols involve the application of ES for 60 minutes during surgery, which can increase operative complexity and time. Shorter ES protocols could be a strategy to facilitate broader clinical adoption. The purpose of the present study was to determine if a 10-minute ES protocol could improve outcomes. METHODS C57BL/6J mice were randomized to 3 groups: no ES, 10 minutes of ES, and 60 minutes of ES. In all groups, the sciatic nerve was transected and repaired, and, in the latter 2 groups, ES was applied after repair. Postoperatively, changes to gene expression from dorsal root ganglia were measured after 24 hours. The number of motoneurons regenerating axons was determined by retrograde labeling at 7 days. Histomorphological analyses of the nerve were performed at 14 days. Function was evaluated serially with use of behavioral tests up to 56 days postoperatively, and relative muscle weight was evaluated. RESULTS Compared with the no-ES group, both ES groups demonstrated increased regeneration-associated gene expression within dorsal root ganglia. The 10-minute and 60-minute ES groups demonstrated accelerated axon regeneration compared with the no-ES group based on increased numbers of labeled motoneurons regenerating axons (mean difference, 202.0 [95% confidence interval (CI), 17.5 to 386.5] and 219.4 [95% CI, 34.9 to 403.9], respectively) and myelinated axon counts (mean difference, 559.3 [95% CI, 241.1 to 877.5] and 339.4 [95% CI, 21.2 to 657.6], respectively). The 10-minute and 60-minute ES groups had improved behavioral recovery, including on grid-walking analysis, compared with the no-ES group (mean difference, 11.9% [95% CI, 3.8% to 20.0%] and 10.9% [95% CI, 2.9% to 19.0%], respectively). There was no difference between the ES groups in measured outcomes. CONCLUSIONS A 10-minute ES protocol accelerated axon regeneration and facilitated functional recovery. CLINICAL RELEVANCE The brief (10-minute) ES protocol provided similar benefits to the 60-minute protocol in an acute sciatic nerve transection/repair mice model and merits further studies.
Collapse
Affiliation(s)
- Junichi Sayanagi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Li G, Zheng T, Wu L, Han Q, Lei Y, Xue L, Zhang L, Gu X, Yang Y. Bionic microenvironment-inspired synergistic effect of anisotropic micro-nanocomposite topology and biology cues on peripheral nerve regeneration. SCIENCE ADVANCES 2021; 7:7/28/eabi5812. [PMID: 34233882 PMCID: PMC8262819 DOI: 10.1126/sciadv.abi5812] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 06/02/2023]
Abstract
Anisotropic topographies and biological cues can simulate the regenerative microenvironment of nerve from physical and biological aspects, which show promising application in nerve regeneration. However, their synergetic influence on injured peripheral nerve is rarely reported. In the present study, we constructed a bionic microenvironment-inspired scaffold integrated with both anisotropic micro-nanocomposite topographies and IKVAV peptide. The results showed that both the topographies and peptide displayed good stability. The scaffolds could effectively induce the orientation growth of Schwann cells and up-regulate the genes and proteins relevant to myelination. Last, three signal pathways including the Wnt/β-catenin pathway, the extracellular signal-regulated kinase/mitogen-activated protein pathway, and the transforming growth factor-β pathway were put forward, revealing the main path of synergistic effects of anisotropic micro-nanocomposite topographies and biological cues on neuroregeneration. The present study may supply an important strategy for developing functional of artificial nerve implants.
Collapse
Affiliation(s)
- Guicai Li
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Jilin University, 130061 Changchun, P.R. China
| | - Tiantian Zheng
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Linliang Wu
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Qi Han
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Yifeng Lei
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, 430072 Wuhan, P.R. China
| | - Longjian Xue
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, 430072 Wuhan, P.R. China
| | - Luzhong Zhang
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Xiaosong Gu
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Yumin Yang
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| |
Collapse
|
9
|
Falo CP, Benitez R, Caro M, Morell M, Forte-Lago I, Hernandez-Cortes P, Sanchez-Gonzalez C, O’Valle F, Delgado M, Gonzalez-Rey E. The Neuropeptide Cortistatin Alleviates Neuropathic Pain in Experimental Models of Peripheral Nerve Injury. Pharmaceutics 2021; 13:pharmaceutics13070947. [PMID: 34202793 PMCID: PMC8309056 DOI: 10.3390/pharmaceutics13070947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain is one of the most severe forms of chronic pain caused by the direct injury of the somatosensory system. The current drugs for treating neuropathies have limited efficacies or show important side effects, and the development of analgesics with novel modes of action is critical. The identification of endogenous anti-nociceptive factors has emerged as an attractive strategy for designing new pharmacological approaches to treat neuropathic pain. Cortistatin is a neuropeptide with potent anti-inflammatory activity, recently identified as a natural analgesic peptide in several models of pain evoked by inflammatory conditions. Here, we investigated the potential analgesic effect of cortistatin in neuropathic pain using a variety of experimental models of peripheral nerve injury caused by chronic constriction or partial transection of the sciatic nerve or by diabetic neuropathy. We found that the peripheral and central injection of cortistatin ameliorated hyperalgesia and allodynia, two of the dominant clinical manifestations of chronic neuropathic pain. Cortistatin-induced analgesia was multitargeted, as it regulated the nerve damage-induced hypersensitization of primary nociceptors, inhibited neuroinflammatory responses, and enhanced the production of neurotrophic factors both at the peripheral and central levels. We also demonstrated the neuroregenerative/protective capacity of cortistatin in a model of severe peripheral nerve transection. Interestingly, the nociceptive system responded to nerve injury by secreting cortistatin, and a deficiency in cortistatin exacerbated the neuropathic pain responses and peripheral nerve dysfunction. Therefore, cortistatin-based therapies emerge as attractive alternatives for treating chronic neuropathic pain of different etiologies.
Collapse
Affiliation(s)
- Clara P. Falo
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Raquel Benitez
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Maria Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Genyo Center for Genomics and Oncological Research, Parque Tecnologico de la Salud, 18016 Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Pedro Hernandez-Cortes
- Department of Orthopedic Surgery, San Cecilio University Hospital, 18071 Granada, Spain;
| | - Clara Sanchez-Gonzalez
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, IBIMER and IBS-Granada, Granada University, 18016 Granada, Spain;
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Correspondence: (M.D.); (E.G.-R.)
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Correspondence: (M.D.); (E.G.-R.)
| |
Collapse
|
10
|
Chen WJ, Niu JQ, Chen YT, Deng WJ, Xu YY, Liu J, Luo WF, Liu T. Unilateral facial injection of Botulinum neurotoxin A attenuates bilateral trigeminal neuropathic pain and anxiety-like behaviors through inhibition of TLR2-mediated neuroinflammation in mice. J Headache Pain 2021; 22:38. [PMID: 34000998 PMCID: PMC8130347 DOI: 10.1186/s10194-021-01254-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives In this study, we investigated the possible analgesic effects of Botulinum toxin type A (BoNT/A) on trigeminal neuralgia (TN). A modified TN mouse model was established by chronic constriction injury of the distal infraorbital nerve (dIoN-CCI) in mice, and the possible roles of microglia toll-like receptor 2 (TLR2) and neuroinflammation was investigated. Methods Male C57BL/6 mice were divided into 3 groups, including sham group, vehicle-treated TN group and BoNT/A-treated TN group. Bilateral mechanical pain hypersensitivity, anxiety-like and depressive-like behaviors were evaluated by using von Frey test, open field, elevated plus-maze testing, and forced swimming test in mice, respectively. The mRNA or protein expression levels of toll-like receptors (TLRs), glia activation markers and proinflammatory factors in the trigeminal nucleus caudalis (TNC) were tested by RT-qPCR, immunofluorescence and Western blotting. We also tested the pain behaviors of TN in Tlr2−/− mice. Results We found that unilateral subcutaneous injection of BoNT/A into the whisker pad on the ipsilateral side of dIoN-CCI mice significantly attenuated bilateral mechanical pain hypersensitivity and anxiety-like behaviors induced by dIoN-CCI surgery in mice. The dIoN-CCI surgery significantly up-regulated the expression of TLR2, MyD88, CD11b (a microglia marker), IL-1β, TNF-α and IL-6 in the ipsilateral TNC in mice, and BoNT/A injection significantly inhibited the expression of these factors. Immunostaining results confirmed that BoNT/A injection significantly inhibited the microglia activation in the ipsilateral TNC in dIoN-CCI mice. TLR2 deficiency also alleviated bilateral mechanical pain hypersensitivity and the up-regulation of MyD88 expression in the TNC of dIoN-CCI mice. Conclusion These results indicate that unilateral injection of BoNT/A attenuated bilateral mechanical pain hypersensitivity and anxiety-like behaviors in dIoN-CCI mice, and the analgesic effects of BoNT/A may be associated with the inhibition of TLR2-mediated neuroinflammation in the TNC.
Collapse
Affiliation(s)
- Wei-Jia Chen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | - Jing-Qi Niu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China.,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yi-Ting Chen
- Changzhou Hygiene Vocational Technology College, Changzhou, 213002, China
| | - Wen-Jing Deng
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | - Ying-Ying Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | - Jing Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | - Wei-Feng Luo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China. .,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases, Soochow University, Suzhou, 215021, China.
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, 226019, China. .,College of Life Sciences, Yanan University, Yanan, 716000, China. .,Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou, 215123, China.
| |
Collapse
|
11
|
Yang X, Xu X, Cai X, He J, Lu P, Guo Q, Wang G, Zhu H, Wang H, Xue C. Gene set enrichment analysis and protein-protein interaction network analysis after sciatic nerve injury. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:988. [PMID: 32953788 PMCID: PMC7475449 DOI: 10.21037/atm-20-4958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Peripheral nerves are able to regenerate spontaneously after injury. An increasing number of studies have investigated the mechanism of peripheral nerve regeneration and attempted to find potential therapeutic targets. The various bioinformatics analysis tools available, gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) networks can effectively screen the crucial targets of neuroregeneration. Methods GSEA and PPI networks were constructed through ingenuity pathway analysis and sequential gene expression validation ex vitro to investigate the molecular processes at 1, 4, 7, and 14 days following sciatic nerve transection in rats. Results Immune response and the activation of related canonical pathways were classified as crucial biological events. Additionally, neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), neuregulin 1 (NRG1), nuclear factor of activated T cells 2 (NFATC2), midline 1 (MID1), GLI family zinc finger 2 (GLI2), and ventral anterior homeobox 1 (VAX1), which were jointly involved in both immune response and axonal regeneration, were screened and their mRNA and protein expressions following nerve injury were validated. Among them, the expression of VAX1 continuously increased following nerve injury, and it was considered to be a potential therapeutic target. Conclusions The combined use of GSEA and PPI networks serves as a valuable way to identify potential therapeutic targets for neuroregeneration.
Collapse
Affiliation(s)
- Xiaoming Yang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xi Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodong Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jin He
- School of Medicine, Nantong University, Nantong, China
| | - Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qi Guo
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Gang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chengbin Xue
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
12
|
Hutson TH, Kathe C, Palmisano I, Bartholdi K, Hervera A, De Virgiliis F, McLachlan E, Zhou L, Kong G, Barraud Q, Danzi MC, Medrano-Fernandez A, Lopez-Atalaya JP, Boutillier AL, Sinha SH, Singh AK, Chaturbedy P, Moon LDF, Kundu TK, Bixby JL, Lemmon VP, Barco A, Courtine G, Di Giovanni S. Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Sci Transl Med 2020; 11:11/487/eaaw2064. [PMID: 30971452 DOI: 10.1126/scitranslmed.aaw2064] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
After a spinal cord injury, axons fail to regenerate in the adult mammalian central nervous system, leading to permanent deficits in sensory and motor functions. Increasing neuronal activity after an injury using electrical stimulation or rehabilitation can enhance neuronal plasticity and result in some degree of recovery; however, the underlying mechanisms remain poorly understood. We found that placing mice in an enriched environment before an injury enhanced the activity of proprioceptive dorsal root ganglion neurons, leading to a lasting increase in their regenerative potential. This effect was dependent on Creb-binding protein (Cbp)-mediated histone acetylation, which increased the expression of genes associated with the regenerative program. Intraperitoneal delivery of a small-molecule activator of Cbp at clinically relevant times promoted regeneration and sprouting of sensory and motor axons, as well as recovery of sensory and motor functions in both the mouse and rat model of spinal cord injury. Our findings showed that the increased regenerative capacity induced by enhancing neuronal activity is mediated by epigenetic reprogramming in rodent models of spinal cord injury. Understanding the mechanisms underlying activity-dependent neuronal plasticity led to the identification of potential molecular targets for improving recovery after spinal cord injury.
Collapse
Affiliation(s)
- Thomas H Hutson
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Claudia Kathe
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK.,Brain Mind Institute and Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Ilaria Palmisano
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Kay Bartholdi
- Brain Mind Institute and Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Arnau Hervera
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Francesco De Virgiliis
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Eilidh McLachlan
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Luming Zhou
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.,Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany
| | - Guiping Kong
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.,Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany
| | - Quentin Barraud
- Brain Mind Institute and Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Matt C Danzi
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Alejandro Medrano-Fernandez
- Instituto de Neurociencias, Universidad Miguel Hernandez Consejo Superior de Investigaciones Científicas, 03550 Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernandez Consejo Superior de Investigaciones Científicas, 03550 Alicante, Spain
| | - Anne L Boutillier
- Université de Strasbourg, CNRS, UMR 7364, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), F-67000 Strasbourg, France
| | - Sarmistha H Sinha
- Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Akash K Singh
- Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Piyush Chaturbedy
- Nanomaterials and Catalysis Laboratory, Chemistry and Physics of Materials Unit, JNCASR, Bangalore 560064, India
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernandez Consejo Superior de Investigaciones Científicas, 03550 Alicante, Spain
| | - Gregoire Courtine
- Brain Mind Institute and Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Simone Di Giovanni
- Centre for Restorative Neuroscience, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK. .,Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany
| |
Collapse
|
13
|
Bombeiro AL, Pereira BTN, Bonfanti AP, Oliveira ALRD. Immunomodulation by dimethyl fumarate treatment improves mouse sciatic nerve regeneration. Brain Res Bull 2020; 160:24-32. [PMID: 32305403 DOI: 10.1016/j.brainresbull.2020.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/13/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Traumatic injury to the peripheral nervous system (PNS) often generates sensorimotor deficits that impair the quality of life of the patient. The success of nerve regeneration is related to tissue clearance and the formation of a microenvironment that sustains and stimulates axon growth up to the target. In this sense, macrophages are important for axon and myelin debris removal, neovascularization and the production of neurotrophic factors. Macrophage activation is improved by T helper (Th) lymphocytes, whose role remains few explored upon traumatic nerve injuries. Dimethyl fumarate (DMF) is the first-line drug for the treatment of multiple sclerosis due to its neuroprotective, anti-inflammatory and immunomodulatory properties. DMF improves nerve regeneration via antioxidant and cytoprotective cell signaling pathways. However, the direct activity on the cell immune response following nerve axotomy requires further investigation. In the present study, we evaluated DMF activity on Th cells and macrophage polarization, axonal regeneration and motor recovery following sciatic nerve crush in mice. For this aim, operated animals received DMF or vehicle once a day, starting at 3 days postinjury (dpi). Using an in vivo cell migration assay, we observed reduced lymphocyte infiltration in the nerves of DMF-treated mice at 7 dpi. Flow cytometry revealed DMF-responsive lymphocyte polarization from the pro- (Th1) to anti-inflammatory (Th2) phenotype at 7 dpi but not at 14 dpi. No effect was observed on macrophage polarization (from M1 to M2), although DMF reduced the frequency of the proinflammatory M1 subset from 7 to 14 dpi. Quantification of neurofilament (axon marker) and growth-associated protein 43 (GAP-43) immunolabeling showed improved axonal regeneration under DMF treatment at 14 dpi. Better motor recovery was observed in the DMF-treated group, as verified by an automated walking track test. Overall, our data reinforce the pro-regenerative capacity of DMF after traumatic nerve injury based on downmodulation of the proinflammatory immune response.
Collapse
Affiliation(s)
- André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology. P.O. Box: 6109, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| | - Bruna Toledo Nunes Pereira
- Department of Structural and Functional Biology, Institute of Biology. P.O. Box: 6109, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology. P.O. Box: 6109, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| | - Alexandre Leite Rodrigues de Oliveira
- Department of Structural and Functional Biology, Institute of Biology. P.O. Box: 6109, University of Campinas - UNICAMP. 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
14
|
Choi DJ, Yang H, Gaire S, Lee KA, An J, Kim BG, Jou I, Park SM, Joe EH. Critical roles of astrocytic-CCL2-dependent monocyte infiltration in a DJ-1 knockout mouse model of delayed brain repair. Glia 2020; 68:2086-2101. [PMID: 32176388 DOI: 10.1002/glia.23828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/25/2020] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
Monocyte-derived macrophages play a role in the repair of the injured brain. We previously reported that a deficiency of the Parkinson's disease (PD)-associated gene DJ-1 delays repair of brain injury produced by stereotaxic injection of ATP, a component of damage-associated molecular patterns. Here, we show that a DJ-1 deficiency attenuates monocyte infiltration into the damaged brain owing to a decrease in C-C motif chemokine ligand 2 (CCL2) expression in astrocytes. Like DJ-1-knockout (KO) mice, CCL2 receptor (CCR2)-KO mice showed defects in monocyte infiltration and delayed recovery of brain injury, as determined by 9.4 T magnetic resonance imaging analysis and immunostaining for tyrosine hydroxylase and glial fibrillary acid protein. Notably, transcriptome analyses showed that genes related to regeneration and synapse formation were similarly downregulated in injured brains of DJ-1-KO and CCR2-KO mice compared with the injured wild-type brain. These results indicate that defective astrogliosis in DJ-1-KO mice is associated with decreased CCL2 expression and attenuated monocyte infiltration, resulting in delayed repair of brain injury. Thus, delayed repair of brain injury could contribute to the development of PD. MAIN POINTS: A DJ-1 deficiency attenuates infiltration of monocytes owing to a decrease in CCL2 expression in astrocytes, which in turn led to delay in repair of brain injury.
Collapse
Affiliation(s)
- Dong-Joo Choi
- Department of Pharmacology, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea
| | - Hajie Yang
- Department of Pharmacology, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea
| | - Sushil Gaire
- Department of Pharmacology, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea
| | - Keon Ah Lee
- Department of Pharmacology, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea
| | - Jiawei An
- Department of Pharmacology, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea
| | - Byung Gon Kim
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Department of Neurology, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea
| | - Ilo Jou
- Department of Pharmacology, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea
| | - Sang Myun Park
- Department of Pharmacology, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea
| | - Eun-Hye Joe
- Department of Pharmacology, National Research Lab of Brain Inflammation, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do, South Korea
| |
Collapse
|
15
|
Bombeiro AL, Lima BHDM, Bonfanti AP, Oliveira ALRD. Improved mouse sciatic nerve regeneration following lymphocyte cell therapy. Mol Immunol 2020; 121:81-91. [PMID: 32172028 DOI: 10.1016/j.molimm.2020.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Traumatic injury to the peripheral nervous system (PNS) is the most common cause of acquired nerve damage and impairs the quality of life of patients. The success of nerve regeneration depends on distal stump degeneration, tissue clearance and remodeling, processes in which the immune system participates. We previously reported improved motor recovery in sciatic nerve crush mice following adoptive transfer of lymphocytes, which migrated to the lesion site. However, lymphocyte activity and the nerve tissue response remain unexplored. Thus, in the present study, we evaluated sciatic nerve regeneration and T cell polarization in lymphocyte recipient mice. Splenic lymphocytes were isolated from mice 14 days after sciatic nerve crush and transferred to axotomized animals three days postinjury. Immediate lymphocyte migration to the crushed nerve was confirmed by in vivo imaging. Phenotyping of T helper (Th) cells by flow cytometry revealed an increased frequency of the proinflammatory Th1 and Th17 cell subsets in recipient mice at 7 days and showed that the frequency of these cells remained unchanged for up to 21 days. Moreover, nerve regeneration was improved upon cell therapy, as shown by sustained immunolabeling of axons, Schwann cells, growth-associated protein 43 and BDNF from 14 to 28 days after lesion. Macrophage and IgG immunolabeling were also higher in cell-transferred mice at 14 and 21 days following nerve crush. Functionally, we observed better sensory recovery in the lymphocyte-treated group. Overall, our data demonstrate that enhanced inflammation early after nerve injury has beneficial effects for the regenerative process, improving tissue clearance and axonal regrowth towards the target organs.
Collapse
Affiliation(s)
- André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil.
| | - Bruno Henrique de Melo Lima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil.
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil.
| | | |
Collapse
|
16
|
Malanotte JA, Ribeiro LDFC, Peretti AL, Kakihata CMM, Potulsky A, Guimarães ATB, Bertolini GRF, Nassar PO, Nassar CA. Low-Level Laser Effect on Peripheral Sciatic Regeneration Under the Systemic Inflammatory Condition of Periodontal Disease. J Lasers Med Sci 2020; 11:56-64. [PMID: 32099628 DOI: 10.15171/jlms.2020.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Periodontal disease (PD) is an inflammatory condition, which leads to tooth loss and promotes a systemic inflammatory state that can aggravate the nerve degeneration. As laser therapy may stimulate regeneration, this study aimed to evaluate the effect of the low-level laser (LLL) on peripheral nerve regeneration under the systemic inflammatory condition of PD. Methods: Thirry-two male rats were used, distributed in 4 groups: nerve injury (NIG); periodontal disease with nerve injury (PDNI); nerve injury and treatment (TNIG); periodontal disease with nerve injury and treatment (PDNIT). On the 7th day of the experiment, the animals had ligatures placed around the lower first molars. On the 22nd day, they underwent peripheral nerve damage, and on the 25th day, the LLL treatment was initiated, performed for two weeks. The sciatic functional index (SFI) was evaluated with subsequent euthanasia of all the animals on the 37th day of the experiment. The sciatic nerve was collected for morphological and oxidative stress analysis and the hemi jaws for radiographic analysis. Results: Regarding the SFI, there was no difference among the groups in the first evaluation (EV) pre-injury; as for theEV2, after injury, all the groups presented a decrease in these values, which remained in post-treatment. For the morphology of the PDNI, nerve tissue presented larger diameter fibers, whereas, for NIT and PDNIT, fibers had smaller diameters with endoneurial organization. When it comes to the antioxidant system, there was an increase in protein concentration, higher superoxide activity, and decreased glutathione transferase activity in the treated groups. Catalase and cholinesterase did not differ between the groups, and lipoperoxidation (LPO) increased in the PD groups. For the mandible radiographic analysis, it was possible to verify the induction of PD. Conclusion: As for the used parameters, the low-level laser was not effective in increasing the nociceptive threshold, but it contributed to the regeneration of nerve fibers, although the inflammation was still present in the site. However, the treatment was effective in protecting cells against oxidative damage due to increased SOD and increased protein, although the decrease in GST demonstrates the inhibition of this stage of the antioxidant system.
Collapse
Affiliation(s)
| | | | - Ana Luiza Peretti
- Biosciences and Health, Western Paraná State University (UNIOESTE), Cascavel, Brazil
| | | | - Andrey Potulsky
- Agroecology and Sustainable Rural Development, Federal University of Southern Border - UFFS, Laranjeiras do Sul, Brazil
| | | | | | | | - Carlos Augusto Nassar
- Biosciences and Health, Western Paraná State University (UNIOESTE), Cascavel, Brazil
| |
Collapse
|
17
|
Zhang L, Chen X, Liu Z, Han Q, Tang L, Tian Z, Ren Z, Rong C, Xu H. Miconazole alleviates peripheral nerve crush injury by mediating a macrophage phenotype change through the NF-κB pathway. Brain Behav 2019; 9:e01400. [PMID: 31486271 PMCID: PMC6790322 DOI: 10.1002/brb3.1400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 08/06/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Peripheral nerve injury (PNI) causes motor and sensory defects, has strong impact on life quality and still has no effective therapy. Miconazole is one of the most widely used antifungal drugs; the aims of the study were to investigate the effects of miconazole during sciatic nerve regeneration in a mouse model of sciatic nerve crush injury. METHODS We established peripheral nerve crush model and investigated the effects of miconazole by multiple aspects. We further studied the potential mechanism of action of miconazole by Western blotting, fluorescence immunohistochemistry, and PCR analysis. RESULTS Miconazole improves the symptoms of crushed nerve by improving inflammatory cell infiltration and demyelinating myelin of sciatic nerve. Affected by miconazole, the proportion of inflammatory M1 macrophages in the distal part of the sciatic nerve was reduced, and the proportion of anti-inflammatory M2 macrophages was increased. Finally, the neuroprotective properties of miconazole may be regulated by the nuclear factor (NF)-κB pathway. CONCLUSIONS Our data suggest that miconazole can effectively alleviate PNI, and the mechanism involves mediating a phenotype change of M1/ M2 macrophages. Thus, miconazole may represent a potential therapeutic intervention for nerve crush injury.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| | - Xiuju Chen
- Department of Neurology, Tianjin Nankai Hospital, Tianjin, China
| | - Zengyun Liu
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Qingluan Han
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| | - Liguo Tang
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Zhen Tian
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Zhiyong Ren
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Cunmin Rong
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| | - Hui Xu
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| |
Collapse
|
18
|
Davis B, Hilgart D, Erickson S, Labroo P, Burton J, Sant H, Shea J, Gale B, Agarwal J. Local FK506 delivery at the direct nerve repair site improves nerve regeneration. Muscle Nerve 2019; 60:613-620. [PMID: 31397908 DOI: 10.1002/mus.26656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The objective of this study is to assess the efficacy of local tacrolimus (FK506) delivery to improve outcomes in the setting of nerve transection injury. METHODS FK506 embedded poly(lactide-co-caprolactone) films capable of extended, localized release of FK506 were developed. FK506 rate of release testing and bioactivity assay was performed. Mouse sciatic nerve transection and direct repair model was used to evaluate the effect extended, local delivery of FK506 had on nerve regeneration outcomes. RESULTS Linear release of FK506 was observed for 30 days and released FK506 matched control levels of neurite extension in the dorsal root ganglion assay. Groups treated with local FK506 had greater gastrocnemius muscle weight, foot electromyogram, and number of axons distal of the repair site than non-FK506 groups. DISCUSSION Results of this study indicate that extended, localized delivery of FK506 to nerve injuries can improve nerve regeneration outcomes in a mouse sciatic nerve transection and repair.
Collapse
Affiliation(s)
- Brett Davis
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - David Hilgart
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Sierra Erickson
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Pratima Labroo
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Joshua Burton
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Himanshu Sant
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - Jill Shea
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Bruce Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - Jay Agarwal
- Department of Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
19
|
MIF/CD74 axis participates in inflammatory activation of Schwann cells following sciatic nerve injury. J Mol Histol 2019; 50:355-367. [PMID: 31197516 DOI: 10.1007/s10735-019-09832-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
Based on deep RNA sequencing of distal segments of lesioned sciatic nerves, a huge number of differentially expression genes (DEGs) were thus obtained and functionally analyzed. The inflammatory response was denoted as one of most significant biological processes following sciatic nerve injury. In the present study, ingenuity pathway analysis (IPA) demonstrated that macrophage migration inhibitory factor (MIF) was identified as a core regulator of inflammatory response through interaction with CD74 membrane receptor. By establishment of rat sciatic nerve transection model, we displayed that MIF was upregulated following sciatic nerve axotomy, in colocalization with Schwann cells (SCs). MIF promoted migration, proliferation, together with inflammatory responses of SCs in vitro. Immunoprecipitation showed that MIF interacted with CD74 receptor, through which to activate intracellular ERK and JNK signaling pathways. Interference of CD74 receptor using specific siRNA showed that the transcription of proinflammatory cytokines including TNF-α, IL-1β, as well as cytokine receptor TLR4 in SCs was significantly attenuated, supporting an participation of MIF/CD74 signal axis in SCs inflammatory response. The data provide a novel role of MIF in eliciting inflammatory response of peripheral nerve injury, which might be beneficial for precise therapy of peripheral nerve inflammation.
Collapse
|
20
|
Pan D, Hunter DA, Schellhardt L, Jo S, Santosa KB, Larson EL, Fuchs AG, Snyder-Warwick AK, Mackinnon SE, Wood MD. The accumulation of T cells within acellular nerve allografts is length-dependent and critical for nerve regeneration. Exp Neurol 2019; 318:216-231. [PMID: 31085199 DOI: 10.1016/j.expneurol.2019.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
Repair of traumatic nerve injuries can require graft material to bridge the defect. The use of alternatives to bridge the defect, such as acellular nerve allografts (ANAs), is becoming more common and desired. Although ANAs support axon regeneration across short defects (<3 cm), axon regeneration across longer defects (>3 cm) is limited. It is unclear why alternatives, including ANAs, are functionally limited by length. After repairing Lewis rat nerve defects using short (2 cm) or long (4 cm) ANAs, we showed that long ANAs have severely reduced axon regeneration across the grafts and contain Schwann cells with a unique phenotype. But additionally, we found that long ANAs have disrupted angiogenesis and altered leukocyte infiltration compared to short ANAs as early as 2 weeks after repair. In particular, long ANAs contained fewer T cells compared to short ANAs. These outcomes were accompanied with reduced expression of select cytokines, including IFN-γ and IL-4, within long versus short ANAs. T cells within ANAs did not express elevated levels of IL-4, but expressed elevated levels of IFN-γ. We also directly assessed the contribution of T cells to regeneration across nerve grafts using athymic rats. Interestingly, T cell deficiency had minimal impact on axon regeneration across nerve defects repaired using isografts. Conversely, T cell deficiency reduced axon regeneration across nerve defects repaired using ANAs. Our data demonstrate that T cells contribute to nerve regeneration across ANAs and suggest that reduced T cells accumulation within long ANAs could contribute to limiting axon regeneration across these long ANAs.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel A Hunter
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren Schellhardt
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sally Jo
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine B Santosa
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ellen L Larson
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anja G Fuchs
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Bombeiro AL, Pereira BTN, de Oliveira ALR. Granulocyte-macrophage colony-stimulating factor improves mouse peripheral nerve regeneration following sciatic nerve crush. Eur J Neurosci 2018; 48:2152-2164. [PMID: 30099786 DOI: 10.1111/ejn.14106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/15/2018] [Accepted: 08/01/2018] [Indexed: 02/01/2023]
Abstract
Peripheral nerve injuries severely impair patients' quality of life as full recovery is seldom achieved. Upon axonal disruption, the distal nerve stump undergoes fragmentation, and myelin breaks down; the subsequent regeneration progression is dependent on cell debris removal. In addition to tissue clearance, macrophages release angiogenic and neurotrophic factors that contribute to axon growth. Based on the importance of macrophages for nerve regeneration, especially during the initial response to injury, we treated mice with granulocyte-macrophage colony-stimulating factor (GM-CSF) at various intervals after sciatic nerve crushing. Sciatic nerves were histologically analyzed at different time intervals after injury for the presence of macrophages and indicators of regeneration. Functional recovery was followed by an automated walking track test. We found that GM-CSF potentiated early axon growth, as indicated by the enhanced expression of growth-associated protein at 7 days postinjury. Inducible nitric oxide synthase expression increased at the beginning and at the end of the regenerative process, suggesting that nitric oxide is involved in axon growth and pruning. As expected, GM-CSF treatment stimulated macrophage infiltration, which increased at 7 and 14 days; however, it did not improve myelin clearance. Instead, GM-CSF stimulated early brain-derived neurotrophic factor (BDNF) production, which peaked at 7 days. Locomotor recovery pattern was not improved by GM-CSF treatment. The present results suggest that GM-CSF may have beneficial effects on early axonal regeneration.
Collapse
Affiliation(s)
- André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Bruna Toledo Nunes Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | | |
Collapse
|
22
|
Nardo G, Trolese MC, Verderio M, Mariani A, de Paola M, Riva N, Dina G, Panini N, Erba E, Quattrini A, Bendotti C. Counteracting roles of MHCI and CD8 + T cells in the peripheral and central nervous system of ALS SOD1 G93A mice. Mol Neurodegener 2018; 13:42. [PMID: 30092791 PMCID: PMC6085701 DOI: 10.1186/s13024-018-0271-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The major histocompatibility complex I (MHCI) is a key molecule for the interaction of mononucleated cells with CD8+T lymphocytes. We previously showed that MHCI is upregulated in the spinal cord microglia and motor axons of transgenic SOD1G93A mice. METHODS To assess the role of MHCI in the disease, we examined transgenic SOD1G93A mice crossbred with β2 microglobulin-deficient mice, which express little if any MHCI on the cell surface and are defective for CD8+ T cells. RESULTS The lack of MHCI and CD8+ T cells in the sciatic nerve affects the motor axon stability, anticipating the muscle atrophy and the disease onset. In contrast, MHCI depletion in resident microglia and the lack of CD8+ T cell infiltration in the spinal cord protect the cervical motor neurons delaying the paralysis of forelimbs and prolonging the survival of SOD1G93A mice. CONCLUSIONS We provided straightforward evidence for a dual role of MHCI in the peripheral nervous system (PNS) compared to the CNS, pointing out regional and temporal differences in the clinical responses of ALS mice. These findings offer a possible explanation for the failure of systemic immunomodulatory treatments and suggest new potential strategies to prevent the progression of ALS.
Collapse
Affiliation(s)
- Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy.
| | - Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Mattia Verderio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Alessandro Mariani
- Laboratory of Analytical Biochemistry, Department of Environmental Health Sciences, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Massimiliano de Paola
- Laboratory of Analytical Biochemistry, Department of Environmental Health Sciences, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Nilo Riva
- Neuropathology Unit, Department of Neurology, INSPE- San Raffaele Scientific Institute, Dibit II, Via Olgettina 48, 20132, Milan, Italy
| | - Giorgia Dina
- Neuropathology Unit, Department of Neurology, INSPE- San Raffaele Scientific Institute, Dibit II, Via Olgettina 48, 20132, Milan, Italy
| | - Nicolò Panini
- Laboratory of Cancer Pharmacology Department of Oncology, Flow Cytometry Unit, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156, Milan, Italy
| | - Eugenio Erba
- Laboratory of Cancer Pharmacology Department of Oncology, Flow Cytometry Unit, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Department of Neurology, INSPE- San Raffaele Scientific Institute, Dibit II, Via Olgettina 48, 20132, Milan, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| |
Collapse
|
23
|
Guo Q, Zhu H, Wang H, Zhang P, Wang S, Sun Z, Li S, Xue C, Gu X, Cui S. Transcriptomic Landscapes of Immune Response and Axonal Regeneration by Integrative Analysis of Molecular Pathways and Interactive Networks Post-sciatic Nerve Transection. Front Neurosci 2018; 12:457. [PMID: 30038556 PMCID: PMC6046400 DOI: 10.3389/fnins.2018.00457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
Potential interaction between immune response and axonal regeneration has recently attracted much attention in peripheral nervous system (PNS). Previously, global mRNA expression changes in proximal nerve segments were profiled and merely focused on the differentially change of the key biological processes. To further uncover molecular mechanisms of peripheral nerve regeneration, here we focused on the interaction between immune response and axonal regeneration that associated with specific molecular pathways and interactive networks following sciatic nerve transection. To offer an outline of the specific molecular pathways elaborating axonal regeneration and immune response, and to figure out the molecular interaction between immune response and axonal regeneration post-sciatic nerve transection, we carried out comprehensive approaches, including gene expression profiling plus multi-level bioinformatics analysis and then further experimental validation. Alcam, Nrp1, Nrp2, Rac1, Creb1, and Runx3 were firstly considered as the key or hub genes of the protein-protein interaction (PPI) network in rat models of sciatic nerve transection, which are highly correlated with immune response and axonal regeneration. Our work provide a new way to figure out molecular mechanism of peripheral nerve regeneration and valuable resources to figure out the molecular courses which outline neural injury-induced micro-environmental variation to discover novel therapeutic targets for axonal regeneration.
Collapse
Affiliation(s)
- Qi Guo
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, China.,Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hui Zhu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shengran Wang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhichao Sun
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chengbin Xue
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
24
|
Bloancă V, Ceauşu AR, Jitariu AA, Barmayoun A, Moş R, Crăiniceanu Z, Bratu T. Adipose Tissue Graft Improves Early but not Late Stages of Nerve Regeneration. ACTA ACUST UNITED AC 2018; 31:649-655. [PMID: 28652433 DOI: 10.21873/invivo.11107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 01/16/2023]
Abstract
AIM The aim of the study was to assess the effect of autologous fat graft on nerve regeneration by means of immunohistochemistry. MATERIALS AND METHODS The rat sciatic nerve was used; complete transection followed by primary neurorrhaphy was performed on both hind legs, on the left side a processed fat graft was applied, surrounding the nerve. Nerve biopsies were collected and immunohistochemical procedures were performed for glial fibrillary acidic protein (GFAP) and for neurofilament-associated protein(NFAP). RESULTS At 4 weeks, GFAP-positive cells were observed in the connective tissue formed between the two nerve endings on the left side only. At 10 weeks, GFAP-positive structures were present and exhibited a tendency to become linear on both sides, with an increased density on the left. NFAP-positive expression was present in the left treated limb with a disorganized pattern. CONCLUSION Adipose tissue led to the stimulation of GFAP-positive Schwann cells, which could have a positive impact on nerve regeneration in the clinical setting.
Collapse
Affiliation(s)
- Vlad Bloancă
- Department of Plastic Surgery, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Amalia Raluca Ceauşu
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Andreea Adriana Jitariu
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Ariana Barmayoun
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Raluca Moş
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Zorin Crăiniceanu
- Department of Plastic Surgery, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| | - Tiberiu Bratu
- Department of Plastic Surgery, Victor Babes University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
25
|
Setter DO, Runge EM, Schartz ND, Kennedy FM, Brown BL, McMillan KP, Miller WM, Shah KM, Haulcomb MM, Sanders VM, Jones KJ. Impact of peripheral immune status on central molecular responses to facial nerve axotomy. Brain Behav Immun 2018; 68:98-110. [PMID: 29030217 PMCID: PMC5767532 DOI: 10.1016/j.bbi.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
When facial nerve axotomy (FNA) is performed on immunodeficient recombinase activating gene-2 knockout (RAG-2-/-) mice, there is greater facial motoneuron (FMN) death relative to wild type (WT) mice. Reconstituting RAG-2-/- mice with whole splenocytes rescues FMN survival after FNA, and CD4+ T cells specifically drive immune-mediated neuroprotection. Evidence suggests that immunodysregulation may contribute to motoneuron death in amyotrophic lateral sclerosis (ALS). Immunoreconstitution of RAG-2-/- mice with lymphocytes from the mutant superoxide dismutase (mSOD1) mouse model of ALS revealed that the mSOD1 whole splenocyte environment suppresses mSOD1 CD4+ T cell-mediated neuroprotection after FNA. The objective of the current study was to characterize the effect of CD4+ T cells on the central molecular response to FNA and then identify if mSOD1 whole splenocytes blocked these regulatory pathways. Gene expression profiles of the axotomized facial motor nucleus were assessed from RAG-2-/- mice immunoreconstituted with either CD4+ T cells or whole splenocytes from WT or mSOD1 donors. The findings indicate that immunodeficient mice have suppressed glial activation after axotomy, and cell transfer of WT CD4+ T cells rescues microenvironment responses. Additionally, mSOD1 whole splenocyte recipients exhibit an increased astrocyte activation response to FNA. In RAG-2-/- + mSOD1 whole splenocyte mice, an elevation of motoneuron-specific Fas cell death pathways is also observed. Altogether, these findings suggest that mSOD1 whole splenocytes do not suppress mSOD1 CD4+ T cell regulation of the microenvironment, and instead, mSOD1 whole splenocytes may promote motoneuron death by either promoting a neurotoxic astrocyte phenotype or inducing Fas-mediated cell death pathways. This study demonstrates that peripheral immune status significantly affects central responses to nerve injury. Future studies will elucidate the mechanisms by which mSOD1 whole splenocytes promote cell death and if inhibiting this mechanism can preserve motoneuron survival in injury and disease.
Collapse
Affiliation(s)
- Deborah O. Setter
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Elizabeth M. Runge
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Nicole D. Schartz
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Felicia M. Kennedy
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Brandon L. Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Kathryn P. McMillan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Whitney M. Miller
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Kishan M. Shah
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Melissa M. Haulcomb
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Virginia M. Sanders
- Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH
| | - Karthryn J. Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| |
Collapse
|
26
|
Kodela E, Moysidou M, Karaliota S, Koutmani Y, Tsakanikas P, Kodella K, Karavia EA, Kypreos KE, Kostomitsopoulos N, Karalis KP. Strain-specific Differences in the Effects of Lymphocytes on the Development of Insulin Resistance and Obesity in Mice. Comp Med 2018; 68:15-24. [PMID: 29460717 PMCID: PMC5824135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/06/2017] [Accepted: 08/02/2017] [Indexed: 06/08/2023]
Abstract
Obesity is characterized as a chronic, low-grade inflammatory disease owing to the infiltration of the adipose tissue by macrophages. Although the role of macrophages in this process is well established, the role of lymphocytes in the development of obesity and metabolism remains less well defined. In the current study, we fed WT and Rag1-/- male mice, of C57BL/6J and BALB/c backgrounds, high-fat diet (HFD) or normal diet for 15 wk. Compared with WT mice, Rag1-/- mice of either of the examined strains were found less prone to insulin resistance after HFD, had higher metabolic rates, and used lipids more efficiently, as shown by the increased expression of genes related to fatty acid oxidation in epidydimal white adipose tissue. Furthermore, Rag1-/- mice had increased Ucp1 protein expression and associated phenotypic characteristics indicative of beige adipose tissue in subcutaneous white adipose tissue and increased Ucp1 expression in brown adipose tissue. As with inflammatory and other physiologic responses previously reported, the responses of mice to HFD show strain-specific differences, with increased susceptibility of C57BL/6J as compared with BALB/c strain. Our findings unmask a crucial role for lymphocytes in the development of obesity and insulin resistance, in that lymphocytes inhibit efficient dissipation of energy by adipose tissue. These strain-associated differences highlight important metabolic factors that should be accommodated in disease modeling and drug testing.
Collapse
Affiliation(s)
- Elisavet Kodela
- Biomedical Research Foundation of the Academy of Athens, Clinical Experimental Surgery & Translational Research, Athens, University of Crete, School of Medicine, Heraklion, Crete, Greece
| | - Maria Moysidou
- Biomedical Research Foundation of the Academy of Athens, Clinical Experimental Surgery & Translational Research, Athens, University of Crete, School of Medicine, Heraklion, Crete, Greece
| | - Sevasti Karaliota
- Biomedical Research Foundation of the Academy of Athens, Clinical Experimental Surgery & Translational Research, Athens, Greece
| | - Yassemi Koutmani
- Biomedical Research Foundation of the Academy of Athens, Clinical Experimental Surgery & Translational Research, Athens, Greece
| | - Panagiotis Tsakanikas
- Biomedical Research Foundation of the Academy of Athens, Clinical Experimental Surgery & Translational Research, Athens, Greece
| | - Konstantia Kodella
- Biomedical Research Foundation of the Academy of Athens, Clinical Experimental Surgery & Translational Research, Athens, Greece
| | - Eleni A Karavia
- Department of Pharmacology, University of Patras Medical School, Patras, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Patras, Greece
| | - Nikolaos Kostomitsopoulos
- Biomedical Research Foundation of the Academy of Athens, Clinical Experimental Surgery & Translational Research, Athens, Greece;,
| | - Katia P Karalis
- Biomedical Research Foundation of the Academy of Athens, Clinical Experimental Surgery & Translational Research, Athens, Greece, Endocrine Division, Boston Children's Hospital, Boston, Massachuttes
| |
Collapse
|
27
|
The Emerging Role of the Major Histocompatibility Complex Class I in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2017; 18:ijms18112298. [PMID: 29104236 PMCID: PMC5713268 DOI: 10.3390/ijms18112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motoneurons (MNs). The etiology of the disease is still unknown for most patients with sporadic ALS, while in 5–10% of the familial cases, several gene mutations have been linked to the disease. Mutations in the gene encoding Cu, Zn superoxide dismutase (SOD1), reproducing in animal models a pathological scenario similar to that found in ALS patients, have allowed for the identification of mechanisms relevant to the ALS pathogenesis. Among them, neuroinflammation mediated by glial cells and systemic immune activation play a key role in the progression of the disease, through mechanisms that can be either neuroprotective or neurodetrimental depending on the type of cells and the MN compartment involved. In this review, we will examine and discuss the involvement of major histocompatibility complex class I (MHCI) in ALS concerning its function in the adaptive immunity and its role in modulating the neural plasticity in the central and peripheral nervous system. The evidence indicates that the overexpression of MHCI into MNs protect them from astrocytes’ toxicity in the central nervous system (CNS) and promote the removal of degenerating motor axons accelerating collateral reinnervation of muscles.
Collapse
|
28
|
Boriani F, Fazio N, Fotia C, Savarino L, Nicoli Aldini N, Martini L, Zini N, Bernardini M, Baldini N. A novel technique for decellularization of allogenic nerves and in vivo
study of their use for peripheral nerve reconstruction. J Biomed Mater Res A 2017; 105:2228-2240. [DOI: 10.1002/jbm.a.36090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/21/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Affiliation(s)
- F. Boriani
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine; Rizzoli Orthopaedic Institute; Bologna Italy
| | - N. Fazio
- Prometeo Laboratory; Rizzoli Orthopaedic Institute; Bologna Italy
| | - C. Fotia
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine; Rizzoli Orthopaedic Institute; Bologna Italy
| | - L. Savarino
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine; Rizzoli Orthopaedic Institute; Bologna Italy
| | - N. Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies; Rizzoli Orthopaedic Institute; Bologna Italy
| | - L. Martini
- Laboratory of Preclinical and Surgical Studies; Rizzoli Orthopaedic Institute; Bologna Italy
| | - N. Zini
- CNR, National Research Council of Italy, Institute of Molecular Genetics; Bologna Italy
- Laboratory of Musculoskeletal Cell Biology; Rizzoli Orthopaedic Institute; Bologna Italy
| | - M. Bernardini
- Department of Animal Medicine; Production and Health, Padova University; Padua Italy
| | - N. Baldini
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine; Rizzoli Orthopaedic Institute; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna Italy
| |
Collapse
|
29
|
Transcriptional Profiling at High Temporal Resolution Reveals Robust Immune/Inflammatory Responses during Rat Sciatic Nerve Recovery. Mediators Inflamm 2017; 2017:3827841. [PMID: 28490837 PMCID: PMC5405595 DOI: 10.1155/2017/3827841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/25/2017] [Accepted: 03/07/2017] [Indexed: 11/23/2022] Open
Abstract
After peripheral nerve injury, immune/inflammatory responses are triggered, which are critical for nerve regeneration. Despite their importance, the underlying molecular changes in immune/inflammatory responses remain largely unknown. In this study, we systematically analyzed differentially expressed genes in immune/inflammatory-related pathways at high temporal resolution and experimentally validated gene expression changes with RT-PCR following sciatic nerve crush in rats. We found that immune/inflammatory reactions not only occur in the acute injury but also remained activated over two weeks after injury. Detailed bioinformatic studies suggested that multiple immune/inflammatory pathways, including agranulocyte adhesion and diapedesis, granulocyte adhesion and diapedesis, IL-6 signaling, and IL-10 signaling, were sustained activated during nerve degeneration and regeneration. Our current study expands our understanding of the molecular basis of altered immune/inflammatory-related pathways following injury and thus might offer the possibility of targeting related molecules as therapeutic intervention for peripheral nerve regeneration.
Collapse
|