1
|
Kizek Ö, Yapıcı Z, Topaloğlu P. Epilepsy in dystrophinopathies: A retrospective cohort and review of the literature. Epilepsy Behav 2024; 151:109595. [PMID: 38181535 DOI: 10.1016/j.yebeh.2023.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE This study aimed to assess the prevalence and characteristics of epilepsy in dystrophinopathies within a cohort of 142 patients at a tertiary neuromuscular center in Istanbul, Turkey. METHODS We recorded the age at seizure onset, seizure type, family history, history of febrile seizures, treatment, and EEG results. Epilepsy was classified according to the latest International League Against Epilepsy (ILAE) classification. RESULTS Of the 142 DMD patients, 8 experienced epileptic seizures (5.6 %). The median age of the patients was 11 years (8.0-15.2). The median age for the first DMD symptoms was 24 months (16.5-37.5). All seizures were consistent with generalized tonic-clonic seizures. Three patients are currently on anti-seizure medication. SIGNIFICANCE The prevalence of epilepsy in our study (5.6 %) exceeds that of the general pediatric population (0.5-1 %). However, the frequency of febrile seizures in children with dystrophinopathy is similar to that of the general population.
Collapse
Affiliation(s)
- Özgü Kizek
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Zuhal Yapıcı
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pınar Topaloğlu
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Jackson T, Seifi M, Górecki DC, Swinny JD. Specific Dystrophins Selectively Associate with Inhibitory and Excitatory Synapses of the Mouse Cerebellum and their Loss Alters Expression of P2X7 Purinoceptors and Pro-Inflammatory Mediators. Cell Mol Neurobiol 2022; 42:2357-2377. [PMID: 34101068 PMCID: PMC9418305 DOI: 10.1007/s10571-021-01110-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.
Collapse
Affiliation(s)
- Torquil Jackson
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
| | - Mohsen Seifi
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Dariusz C Górecki
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001, Warsaw, Poland
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK.
| |
Collapse
|
4
|
Epileptic disorders in Becker and Duchenne muscular dystrophies: a systematic review and meta-analysis. J Neurol 2022; 269:3461-3469. [PMID: 35229191 DOI: 10.1007/s00415-022-11040-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
Dystrophin alterations in the brain have been associated with an increased risk of epilepsy in Becker and Duchenne muscular dystrophies (BMD and DMD). Moreover, an association between the mutation site and the risk of epilepsy is not ruled out. The aim of this systematic review and meta-analysis was to estimate the prevalence of epilepsy in BMD and DMD populations and to establish a possible association between the site of mutation in the dystrophin gene and the risk of epilepsy. Systematic searches of Medline, Scopus, Web of Science, and Cochrane Library were conducted to identify relevant studies published from inception to January 2022. Observational studies of participants with BMD/DMD estimating the prevalence of epilepsy were included. The main outcome was the prevalence of epilepsy, and the secondary outcome was the prevalence ratio considering genotype. A random effects meta-analysis was performed for the prevalence of epilepsy. Eight studies were included in the systematic review and meta-analysis. The prevalence of epilepsy was 7% (95% CI 3-11%) in BMD, 5% (95% CI 2-8%) in DMD, and 5% (95% CI 3-7%) in the overall estimate. No association was observed between mutation site and the prevalence of epilepsy. BMD/DMD is strongly associated with the prevalence of epilepsy, with a higher prevalence in BMD/DMD populations than in the general population, probably owing to alterations in Dp427. The current evidence does not support the hypothesis that Dp140 or Dp71 affect epilepsy risk.
Collapse
|
5
|
Lange J, Gillham O, Alkharji R, Eaton S, Ferrari G, Madej M, Flower M, Tedesco FS, Muntoni F, Ferretti P. Dystrophin deficiency affects human astrocyte properties and response to damage. Glia 2022; 70:466-490. [PMID: 34773297 DOI: 10.1002/glia.24116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
In addition to progressive muscular degeneration due to dystrophin mutations, 1/3 of Duchenne muscular dystrophy (DMD) patients present cognitive deficits. However, there is currently an incomplete understanding about the function of the multiple dystrophin isoforms in human brains. Here, we tested the hypothesis that dystrophin deficiency affects glial function in DMD and could therefore contribute to neural impairment. We investigated human dystrophin isoform expression with development and differentiation and response to damage in human astrocytes from control and induced pluripotent stem cells from DMD patients. In control cells, short dystrophin isoforms were up-regulated with development and their expression levels changed differently upon neuronal and astrocytic differentiation, as well as in 2-dimensional versus 3-dimensional astrocyte cultures. All DMD-astrocytes tested displayed altered morphology, proliferative activity and AQP4 expression. Furthermore, they did not show any morphological change in response to inflammatory stimuli and their number was significantly lower as compared to stimulated healthy astrocytes. Finally, DMD-astrocytes appeared to be more sensitive than controls to oxidative damage as shown by their increased cell death. Behavioral and metabolic defects in DMD-astrocytes were consistent with gene pathway dysregulation shared by lines with different mutations as demonstrated by bulk RNA-seq analysis. Together, our DMD model provides evidence for altered astrocyte function in DMD suggesting that defective astrocyte responses may contribute to neural impairment and might provide additional potential therapeutic targets.
Collapse
Affiliation(s)
- Jenny Lange
- Department of Developmental Biology and Cancer, Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Olivia Gillham
- Department of Developmental Biology and Cancer, Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Reem Alkharji
- Department of Developmental Biology and Cancer, Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Simon Eaton
- Department of Developmental Biology and Cancer, Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Monika Madej
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael Flower
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- The Francis Crick Institute, 1 Midland Road, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Patrizia Ferretti
- Department of Developmental Biology and Cancer, Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
6
|
Verkhratsky A, Li B, Scuderi C, Parpura V. Principles of Astrogliopathology. ADVANCES IN NEUROBIOLOGY 2021; 26:55-73. [PMID: 34888830 DOI: 10.1007/978-3-030-77375-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of astrocytes in the nervous system pathology was early on embraced by neuroscientists at end of the nineteenth and the beginning of the twentieth century, only to be pushed aside by neurone-centric dogmas during most of the twentieth century. However, the last decade of the twentieth century and the twenty-first century have brought the astroglial "renaissance", which has put astroglial cells as key players in pathophysiology of most if not all disorders of the nervous system and has regarded astroglia as a fertile ground for therapeutic intervention.Astrocytic contribution to neuropathology can be primary, whereby cell-autonomous changes, such as mutations in gene encoding for glial fibrillary acidic protein, can drive the pathologic progression, in this example, Alexander disease. They can also be secondary, when astrocytes respond to a variety of insults to the nervous tissue. Regardless of their origin, being cell-autonomous or not, changes in astroglia that occur in pathology, that is, astrogliopathology, can be contemporary and arbitrary classified into four forms: (i) reactive astrogliosis, (ii) astrocytic atrophy with loss of function, (iii) pathological remodelling of astrocytes and (iv) astrodegeneration morphologically manifested as clasmatodendrosis. Inevitably, as with any other classification, this classification of astrogliopathology awaits its revision that shall be rooted in new discoveries and concepts.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Baoman Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Lionarons JM, Hoogland G, Slegers RJ, Steinbusch H, Claessen SMH, Vles JSH. Dystrophin in the Neonatal and Adult Rat Intestine. Life (Basel) 2021; 11:life11111155. [PMID: 34833031 PMCID: PMC8622973 DOI: 10.3390/life11111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Gastrointestinal (GI) complaints are frequently noted in aging dystrophinopathy patients, yet their underlying molecular mechanisms are largely unknown. As dystrophin protein isoform 71 (Dp71) is particularly implicated in the development of smooth muscle cells, we evaluated its distribution in the neonatal and adult rat intestine in this study. Methods: Dp71 expression levels were assessed in the proximal (duodenum, jejunum and ileum) and distal (caecum, colon and rectum) intestine by Western blotting and qPCR. In addition, the cellular distribution of total Dp was evaluated in the duodenum and colon by immunohistochemical colocalization studies with alpha-smooth muscle actin (aSMA), Hu RNA binding proteins C and D (HuC/HuD) for neurons and vimentin (VIM) for interstitial cells. Results: In neonatal and adult rats, the distal intestine expressed 2.5 times more Dp71 protein than the proximal part (p < 0.01). This regional difference was not observed in Dp71 mRNA. During both stages, Dp-immunoreactivity was predominant in the muscularis propria, where it co-localized with aSMA and HuC/HuD. Conclusions: In neonatal and adult rats, Dp71 was expressed highest in the distal intestine. Together with the observation that Dp may be expressed by myenteric neurons, this warrants a paradigm shift in the treatment of GI comorbidities.
Collapse
Affiliation(s)
- Judith M. Lionarons
- Department of Neurology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (R.J.S.); (H.S.); (S.M.H.C.); (J.S.H.V.)
- Correspondence: (J.M.L.); (G.H.); Tel.: +31-(0)43-3875058 (J.M.L.); +31-(0)43-3881024 (G.H.)
| | - Govert Hoogland
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (R.J.S.); (H.S.); (S.M.H.C.); (J.S.H.V.)
- Department of Neurosurgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Correspondence: (J.M.L.); (G.H.); Tel.: +31-(0)43-3875058 (J.M.L.); +31-(0)43-3881024 (G.H.)
| | - Rutger J. Slegers
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (R.J.S.); (H.S.); (S.M.H.C.); (J.S.H.V.)
| | - Hellen Steinbusch
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (R.J.S.); (H.S.); (S.M.H.C.); (J.S.H.V.)
| | - Sandra M. H. Claessen
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (R.J.S.); (H.S.); (S.M.H.C.); (J.S.H.V.)
| | - Johan S. H. Vles
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (R.J.S.); (H.S.); (S.M.H.C.); (J.S.H.V.)
| |
Collapse
|
8
|
Ravi K, Paidas MJ, Saad A, Jayakumar AR. Astrocytes in rare neurological conditions: Morphological and functional considerations. J Comp Neurol 2021; 529:2676-2705. [PMID: 33496339 DOI: 10.1002/cne.25118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Astrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood-brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer's and Parkinson's disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
Collapse
Affiliation(s)
- Karthik Ravi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA
| | - Ali Saad
- Pathology and Laboratory Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA.,South Florida VA Foundation for Research and Education Inc, Miami, Florida, USA.,General Medical Research Neuropathology Section, R&D Service, Veterans Affairs Medical Centre, Miami, Florida, USA
| |
Collapse
|
9
|
Rugowska A, Starosta A, Konieczny P. Epigenetic modifications in muscle regeneration and progression of Duchenne muscular dystrophy. Clin Epigenetics 2021; 13:13. [PMID: 33468200 PMCID: PMC7814631 DOI: 10.1186/s13148-021-01001-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a multisystemic disorder that affects 1:5000 boys. The severity of the phenotype varies dependent on the mutation site in the DMD gene and the resultant dystrophin expression profile. In skeletal muscle, dystrophin loss is associated with the disintegration of myofibers and their ineffective regeneration due to defective expansion and differentiation of the muscle stem cell pool. Some of these phenotypic alterations stem from the dystrophin absence-mediated serine-threonine protein kinase 2 (MARK2) misplacement/downregulation in activated muscle stem (satellite) cells and neuronal nitric oxide synthase loss in cells committed to myogenesis. Here, we trace changes in DNA methylation, histone modifications, and expression of regulatory noncoding RNAs during muscle regeneration, from the stage of satellite cells to myofibers. Furthermore, we describe the abrogation of these epigenetic regulatory processes due to changes in signal transduction in DMD and point to therapeutic treatments increasing the regenerative potential of diseased muscles based on this acquired knowledge.
Collapse
Affiliation(s)
- Anna Rugowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Alicja Starosta
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
10
|
Li D, Liu X, Liu T, Liu H, Tong L, Jia S, Wang YF. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia 2019; 68:878-897. [PMID: 31626364 DOI: 10.1002/glia.23734] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Li Tong
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Patel AM, Wierda K, Thorrez L, van Putten M, De Smedt J, Ribeiro L, Tricot T, Gajjar M, Duelen R, Van Damme P, De Waele L, Goemans N, Tanganyika-de Winter C, Costamagna D, Aartsma-Rus A, van Duyvenvoorde H, Sampaolesi M, Buyse GM, Verfaillie CM. Dystrophin deficiency leads to dysfunctional glutamate clearance in iPSC derived astrocytes. Transl Psychiatry 2019; 9:200. [PMID: 31434868 PMCID: PMC6704264 DOI: 10.1038/s41398-019-0535-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) results, beside muscle degeneration in cognitive defects. As neuronal function is supported by astrocytes, which express dystrophin, we hypothesized that loss of dystrophin from DMD astrocytes might contribute to these cognitive defects. We generated cortical neuronal and astrocytic progeny from induced pluripotent stem cells (PSC) from six DMD subjects carrying different mutations and several unaffected PSC lines. DMD astrocytes displayed cytoskeletal abnormalities, defects in Ca+2 homeostasis and nitric oxide signaling. In addition, defects in glutamate clearance were identified in DMD PSC-derived astrocytes; these deficits were related to a decreased neurite outgrowth and hyperexcitability of neurons derived from healthy PSC. Read-through molecule restored dystrophin expression in DMD PSC-derived astrocytes harboring a premature stop codon mutation, corrected the defective astrocyte glutamate clearance and prevented associated neurotoxicity. We propose a role for dystrophin deficiency in defective astroglial glutamate homeostasis which initiates defects in neuronal development.
Collapse
Affiliation(s)
- Abdulsamie M. Patel
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Keimpe Wierda
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium
| | - Lieven Thorrez
- 0000 0001 0668 7884grid.5596.fKU Leuven Department of Development and Regeneration, Campus Kulak, Kortrijk, Belgium
| | - Maaike van Putten
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonathan De Smedt
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Luis Ribeiro
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium
| | - Tine Tricot
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Madhavsai Gajjar
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Philip Van Damme
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fLaboratory of Neurobiology, Department of Neuroscience, KU Leuven, Leuven, Belgium ,0000 0004 0626 3338grid.410569.fNeurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Liesbeth De Waele
- 0000 0001 0668 7884grid.5596.fKU Leuven Department of Development and Regeneration, Campus Kulak, Kortrijk, Belgium ,0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fVesalius Research Center, Laboratory of Neurobiology, KU Leuven, Leuven, Belgium
| | - Nathalie Goemans
- 0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Christa Tanganyika-de Winter
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Domiziana Costamagna
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Annemieke Aartsma-Rus
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermine van Duyvenvoorde
- 0000000089452978grid.10419.3dLaboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurilio Sampaolesi
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Gunnar M. Buyse
- 0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Catherine M. Verfaillie
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Lionarons JM, Hoogland G, Hendriksen RGF, Faber CG, Hellebrekers DMJ, Van Koeveringe GA, Schipper S, Vles JSH. Dystrophin is expressed in smooth muscle and afferent nerve fibers in the rat urinary bladder. Muscle Nerve 2019; 60:202-210. [PMID: 31095755 PMCID: PMC6771971 DOI: 10.1002/mus.26518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 11/10/2022]
Abstract
INTRODUCTION With increasing life expectancy, comorbidities become overt in Duchenne muscular dystrophy (DMD). Although micturition problems are common, bladder function is poorly understood in DMD. We studied dystrophin expression and multiple isoform involvement in the bladder during maturation to gain insights into their roles in micturition. METHODS Dystrophin distribution was evaluated in rat bladders by immunohistochemical colocalization with smooth muscle, interstitial, urothelial, and neuronal markers. Protein levels of Dp140, Dp71, and smooth muscle were quantitated by Western blotting of neonatal to adult rat bladders. RESULTS Dystrophin colocalized with smooth muscle cells and afferent nerve fibers. Dp71 was expressed two- to threefold higher compared with Dp140, independently of age. Age-related muscle mass changes did not influence isoform expression levels. DISCUSSION Dystrophin is expressed in smooth muscle cells and afferent nerve fibers in the urinary bladder, which underscores that micturition problems in DMD may have not solely a myogenic but also a neurogenic origin. Muscle Nerve 60: 202-210, 2019.
Collapse
Affiliation(s)
- Judith M Lionarons
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Govert Hoogland
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ruben G F Hendriksen
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Danique M J Hellebrekers
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Gommert A Van Koeveringe
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Urology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sandra Schipper
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Urology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johan S H Vles
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Angelini C, Pinzan E. Advances in imaging of brain abnormalities in neuromuscular disease. Ther Adv Neurol Disord 2019; 12:1756286419845567. [PMID: 31105770 PMCID: PMC6503605 DOI: 10.1177/1756286419845567] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
Brain atrophy, white matter abnormalities, and ventricular enlargement have been described in different neuromuscular diseases (NMDs). We aimed to provide a comprehensive overview of the substantial advancement of brain imaging in neuromuscular diseases by consulting the main libraries (Pubmed, Scopus and Google Scholar) including the more common forms of muscular dystrophies such as dystrophinopathies, dystroglycanopathies, myotonic dystrophies, facioscapulohumeral dystrophy, limb-girdle muscular dystrophy, congenital myotonia, and congenital myopathies. A consistent, widespread cortical and subcortical involvement of grey and white matter was found. Abnormalities in the functional connectivity in brain networks and metabolic alterations were observed with positron emission tomography (PET) and single photon emission computed tomography (SPECT). Pathological brain changes with cognitive dysfunction seemed to be frequently associated in NMDs. In particular, in congenital muscular dystrophies (CMDs), skeletal muscular weakness, severe hypotonia, WM abnormalities, ventricular dilatation and abnormalities in cerebral gyration were observed. In dystroglycanopathy 2I subtype (LGMD2I), adult patients showed subcortical atrophy and a WM periventricular involvement, moderate ventriculomegaly, and enlargement of subarachnoid spaces. Correlations with clinical features have been observed with brain imaging characteristics and alterations were prominent in congenital or childhood onset cases. In myotonic dystrophy type 2 (DM2) symptoms seem to be less severe than in type 1 (DM1). In Duchenne and Becker muscular dystrophies (DMD, BMD) cortical atrophy is associated with minimal ventricular dilatation and WM abnormalities. Late-onset glycogenosis type II (GSD II) or Pompe infantile forms are characterized by delayed myelination. Only in a few cases of oculopharyngeal muscular dystrophy (OPMD) central nervous system involvement has been described and associated with executive functions impairment.
Collapse
Affiliation(s)
- Corrado Angelini
- Fondazione Ospedale San Camillo IRCCS, Via
Alberoni 70, Venezia, 30126, Italia
| | - Elena Pinzan
- Fondazione Ospedale San Camillo IRCCS, Venezia,
Italia
| |
Collapse
|
14
|
Hoogland G, Hendriksen RGF, Slegers RJ, Hendriks MPH, Schijns OEMG, Aalbers MW, Vles JSH. The expression of the distal dystrophin isoforms Dp140 and Dp71 in the human epileptic hippocampus in relation to cognitive functioning. Hippocampus 2018; 29:102-110. [PMID: 30069964 DOI: 10.1002/hipo.23015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023]
Abstract
Dystrophin is an important protein within the central nervous system. The absence of dystrophin, characterizing Duchenne muscular dystrophy (DMD), is associated with brain related comorbidities such as neurodevelopmental (e.g., cognitive and behavioural) deficits and epilepsy. Especially mutations in the downstream part of the DMD gene affecting the dystrophin isoforms Dp140 and Dp71 are found to be associated with cognitive deficits. However, the function of Dp140 is currently not well understood and its expression pattern has previously been implicated to be developmentally regulated. Therefore, we evaluated Dp140 and Dp71 expression in human hippocampi in relation to cognitive functioning in patients with drug-resistant temporal lobe epilepsy (TLE) and post-mortem controls. Hippocampal samples obtained as part of epilepsy surgery were quantitatively analyzed by Western blot and correlations with neuropsychological test results (i.e., memory and intelligence) were examined. First, we demonstrated that the expression of Dp140 does not appear to differ across different ages throughout adulthood. Second, we identified an inverse correlation between memory loss (i.e., verbal and visual memory), but not intelligence (i.e., neither verbal nor performance), and hippocampal Dp140 expression. Finally, patients with TLE appeared to have similar Dp140 expression levels compared to post-mortem controls without neurological disease. Dp140 may thus have a function in normal cognitive (i.e., episodic memory) processes.
Collapse
Affiliation(s)
- Govert Hoogland
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ruben G F Hendriksen
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rutger J Slegers
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc P H Hendriks
- Kempenhaeghe Epilepsy Centre, Heeze, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marlien W Aalbers
- Department of Neurosurgery, Groningen University Medical Centre, Groningen, The Netherlands
| | - Johan S H Vles
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
15
|
Helleringer R, Le Verger D, Li X, Izabelle C, Chaussenot R, Belmaati-Cherkaoui M, Dammak R, Decottignies P, Daniel H, Galante M, Vaillend C. Cerebellar synapse properties and cerebellum-dependent motor and non-motor performance in Dp71-null mice. Dis Model Mech 2018; 11:dmm.033258. [PMID: 29895670 PMCID: PMC6078407 DOI: 10.1242/dmm.033258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/04/2018] [Indexed: 02/04/2023] Open
Abstract
Recent emphasis has been placed on the role that cerebellar dysfunctions could have in the genesis of cognitive deficits in Duchenne muscular dystrophy (DMD). However, relevant genotype-phenotype analyses are missing to define whether cerebellar defects underlie the severe cases of intellectual deficiency that have been associated with genetic loss of the smallest product of the dmd gene, the Dp71 dystrophin. To determine for the first time whether Dp71 loss could affect cerebellar physiology and functions, we have used patch-clamp electrophysiological recordings in acute cerebellar slices and a cerebellum-dependent behavioral test battery addressing cerebellum-dependent motor and non-motor functions in Dp71-null transgenic mice. We found that Dp71 deficiency selectively enhances excitatory transmission at glutamatergic synapses formed by climbing fibers (CFs) on Purkinje neurons, but not at those formed by parallel fibers. Altered basal neurotransmission at CFs was associated with impairments in synaptic plasticity and clustering of the scaffolding postsynaptic density protein PSD-95. At the behavioral level, Dp71-null mice showed some improvements in motor coordination and were unimpaired for muscle force, static and dynamic equilibrium, motivation in high-motor demand and synchronization learning. Dp71-null mice displayed altered strategies in goal-oriented navigation tasks, however, suggesting a deficit in the cerebellum-dependent processing of the procedural components of spatial learning, which could contribute to the visuospatial deficits identified in this model. In all, the observed deficits suggest that Dp71 loss alters cerebellar synapse function and cerebellum-dependent navigation strategies without being detrimental for motor functions. Summary: Dp71 is the most prominent dystrophin gene product in the adult brain. Here, multiple approaches including behavioral tests and electrophysiology are adopted to explore the role of Dp71 in the cerebellum.
Collapse
Affiliation(s)
- Romain Helleringer
- Molecules and Circuits Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Delphine Le Verger
- Cognition and Behavior Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Xia Li
- Molecules and Circuits Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Charlotte Izabelle
- Cognition and Behavior Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Rémi Chaussenot
- Cognition and Behavior Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Mehdi Belmaati-Cherkaoui
- Cognition and Behavior Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Raoudha Dammak
- Molecules and Circuits Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Paulette Decottignies
- Molecules and Circuits Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Hervé Daniel
- Molecules and Circuits Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Micaela Galante
- Molecules and Circuits Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Cyrille Vaillend
- Cognition and Behavior Department, Paris-Saclay Institute of Neuroscience (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
16
|
Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci Rep 2017; 7:12575. [PMID: 28974727 PMCID: PMC5626779 DOI: 10.1038/s41598-017-12981-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/13/2017] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscular dystrophy with high incidence of learning and behavioural problems and is associated with neurodevelopmental disorders. To gain more insights into the role of dystrophin in this cognitive phenotype, we performed a comprehensive analysis of the expression patterns of dystrophin isoforms across human brain development, using unique transcriptomic data from Allen Human Brain and BrainSpan atlases. Dystrophin isoforms show large changes in expression through life with pronounced differences between the foetal and adult human brain. The Dp140 isoform was expressed in the cerebral cortex only in foetal life stages, while in the cerebellum it was also expressed postnatally. The Purkinje isoform Dp427p was virtually absent. The expression of dystrophin isoforms was significantly associated with genes implicated in neurodevelopmental disorders, like autism spectrum disorders or attention-deficit hyper-activity disorders, which are known to be associated to DMD. We also identified relevant functional associations of the different isoforms, like an association with axon guidance or neuron differentiation during early development. Our results point to the crucial role of several dystrophin isoforms in the development and function of the human brain.
Collapse
|