1
|
Fornezza S, Delvecchio VS, Harvey WT, Dishuck PC, Eichler EE, Giannuzzi G. AGAP duplicons associate with structural diversity at Chromosome 10q11.22. Genome Res 2024; 34:1487-1499. [PMID: 39322278 PMCID: PMC11534156 DOI: 10.1101/gr.279454.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
The 10q11.22 chromosomal region is a duplication-rich interval of the human genome and one of the last to be fully assembled. It carries copy number-variable genes associated with intellectual disability, bipolar disorder, and obesity. In this study, we characterized the structural diversity at this locus by analyzing 64 haploid assemblies produced by the Human Pangenome Reference Consortium. We identified 11 alternative haplotypes that differ in the copy number and/or orientation of large genomic segments, ranging from hundreds of kilobase pairs (kbp) to over one megabase pair (Mbp). We uncovered a 2.4 Mbp size difference between the shortest and longest haplotypes. Breakpoint analysis revealed that genomic instability results from nonallelic homologous recombination between segmental duplication (SD) pairs with varying similarity (94.4%-99.6%). Nonetheless, these pairs generally recombine at positions where their identity is higher (>99.6%). Recurrent inversions occur with different breakpoints within the same inverted SD pair. Inversion polymorphisms shuffle the entire SD arrangement, creating new predispositions to copy-number variations. The SD architecture is associated with a catarrhine-specific subgroup of the AGAP gene family, which likely triggered the accumulation of SDs at this locus over the past 25 million years of human evolution. Our results reveal extensive structural diversity and genomic instability at the 10q11.22 locus, and expand the general understanding of the mutational mechanisms behind SD-mediated rearrangements.
Collapse
Affiliation(s)
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
2
|
Novy B, Dagunts A, Weishaar T, Holland EE, Adoff H, Hutchinson E, De Maria M, Kampmann M, Tsvetanova NG, Lobingier BT. An engineered trafficking biosensor reveals a role for DNAJC13 in DOR downregulation. Nat Chem Biol 2024:10.1038/s41589-024-01705-2. [PMID: 39223388 DOI: 10.1038/s41589-024-01705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Trafficking of G protein-coupled receptors (GPCRs) through the endosomal-lysosomal pathway is critical to homeostatic regulation of GPCRs following activation with agonist. Identifying the genes involved in GPCR trafficking is challenging due to the complexity of sorting operations and the large number of cellular proteins involved in the process. Here, we developed a high-sensitivity biosensor for GPCR expression and agonist-induced trafficking to the lysosome by leveraging the ability of the engineered peroxidase APEX2 to activate the fluorogenic substrate Amplex UltraRed (AUR). We used the GPCR-APEX2/AUR assay to perform a genome-wide CRISPR interference screen focused on identifying genes regulating expression and trafficking of the δ-opioid receptor (DOR). We identified 492 genes consisting of both known and new regulators of DOR function. We demonstrate that one new regulator, DNAJC13, controls trafficking of multiple GPCRs, including DOR, through the endosomal-lysosomal pathway by regulating the composition of the endosomal proteome and endosomal homeostasis.
Collapse
Affiliation(s)
- Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Aleksandra Dagunts
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Tatum Weishaar
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Emily E Holland
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Emily Hutchinson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA, USA
| | | | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Laighneach A, Kelly JP, Desbonnet L, Holleran L, Kerr DM, McKernan D, Donohoe G, Morris DW. Social isolation-induced transcriptomic changes in mouse hippocampus impact the synapse and show convergence with human genetic risk for neurodevelopmental phenotypes. PLoS One 2023; 18:e0295855. [PMID: 38127959 PMCID: PMC10735045 DOI: 10.1371/journal.pone.0295855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Early life stress (ELS) can impact brain development and is a risk factor for neurodevelopmental disorders such as schizophrenia. Post-weaning social isolation (SI) is used to model ELS in animals, using isolation stress to disrupt a normal developmental trajectory. We aimed to investigate how SI affects the expression of genes in mouse hippocampus and to investigate how these changes related to the genetic basis of neurodevelopmental phenotypes. BL/6J mice were exposed to post-weaning SI (PD21-25) or treated as group-housed controls (n = 7-8 per group). RNA sequencing was performed on tissue samples from the hippocampus of adult male and female mice. Four hundred and 1,215 differentially-expressed genes (DEGs) at a false discovery rate of < 0.05 were detected between SI and control samples for males and females respectively. DEGS for both males and females were significantly overrepresented in gene ontologies related to synaptic structure and function, especially the post-synapse. DEGs were enriched for common variant (SNP) heritability in humans that contributes to risk of neuropsychiatric disorders (schizophrenia, bipolar disorder) and to cognitive function. DEGs were also enriched for genes harbouring rare de novo variants that contribute to autism spectrum disorder and other developmental disorders. Finally, cell type analysis revealed populations of hippocampal astrocytes that were enriched for DEGs, indicating effects in these cell types as well as neurons. Overall, these data suggest a convergence between genes dysregulated by the SI stressor in the mouse and genes associated with neurodevelopmental disorders and cognitive phenotypes in humans.
Collapse
Affiliation(s)
- Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - John P. Kelly
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Lieve Desbonnet
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Laurena Holleran
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - Daniel M. Kerr
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Declan McKernan
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Lewis SA, Bakhtiari S, Forstrom J, Bayat A, Bilan F, Le Guyader G, Alkhunaizi E, Vernon H, Padilla-Lopez SR, Kruer MC. AGAP1-associated endolysosomal trafficking abnormalities link gene-environment interactions in neurodevelopmental disorders. Dis Model Mech 2023; 16:dmm049838. [PMID: 37470098 PMCID: PMC10548112 DOI: 10.1242/dmm.049838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
AGAP1 is an Arf1 GTPase-activating protein that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report three new cases in which individuals had microdeletion variants in AGAP1. The affected individuals had intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 variant-mediated neurodevelopmental impairments using the Drosophila ortholog CenG1a. We discovered reduced axon terminal size, increased neuronal endosome abundance and elevated autophagy compared to those in controls. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in the phosphorylation of the integrated stress-response protein eIF2α (or eIF2A) and inability to further increase eIF2α phosphorylation with subsequent cytotoxic stressors. CenG1a-mutant flies had increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response and leaving AGAP1-deficient cells susceptible to a variety of second-hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara A. Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
| | - Jacob Forstrom
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
| | - Allan Bayat
- Institute for Regional Health Services, University of Southern Denmark, 5230 Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, 4293 Dianalund, Denmark
| | - Frédéric Bilan
- Service de Génétique, CHU de Poitiers, 86000 Poitiers, France
- Laboratoire de Neurosciences Experimentales et Cliniques, INSERM U1084, 86000 Poitiers, France
| | - Gwenaël Le Guyader
- Service de Génétique, CHU de Poitiers, 86000 Poitiers, France
- Laboratoire de Neurosciences Experimentales et Cliniques, INSERM U1084, 86000 Poitiers, France
| | - Ebba Alkhunaizi
- Department of Medical Genetics, North York General Hospital, Toronto, ON M3J0K2, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M3J0K2, Canada
| | - Hilary Vernon
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sergio R. Padilla-Lopez
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
- Programs in Neuroscience, Molecular & Cellular Biology, and Biomedical Informatics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Ishida M, Otero MG, Freeman C, Sánchez-Lara PA, Guardia CM, Pierson TM, Bonifacino JS. A neurodevelopmental disorder associated with an activating de novo missense variant in ARF1. Hum Mol Genet 2023; 32:1162-1174. [PMID: 36345169 PMCID: PMC10026249 DOI: 10.1093/hmg/ddac279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
ADP-ribosylation factor 1 (ARF1) is a small GTPase that regulates membrane traffic at the Golgi apparatus and endosomes through recruitment of several coat proteins and lipid-modifying enzymes. Here, we report a pediatric patient with an ARF1-related disorder because of a monoallelic de novo missense variant (c.296 G > A; p.R99H) in the ARF1 gene, associated with developmental delay, hypotonia, intellectual disability and motor stereotypies. Neuroimaging revealed a hypoplastic corpus callosum and subcortical white matter abnormalities. Notably, this patient did not exhibit periventricular heterotopias previously observed in other patients with ARF1 variants (including p.R99H). Functional analysis of the R99H-ARF1 variant protein revealed that it was expressed at normal levels and properly localized to the Golgi apparatus; however, the expression of this variant caused swelling of the Golgi apparatus, increased the recruitment of coat proteins such as coat protein complex I, adaptor protein complex 1 and GGA3 and altered the morphology of recycling endosomes. In addition, we observed that the expression of R99H-ARF1 prevented dispersal of the Golgi apparatus by the ARF1-inhibitor brefeldin A. Finally, protein interaction analyses showed that R99H-ARF1 bound more tightly to the ARF1-effector GGA3 relative to wild-type ARF1. These properties were similar to those of the well-characterized constitutively active Q71L-ARF1 mutant, indicating that the pathogenetic mechanism of the R99H-ARF1 variant involves constitutive activation with resultant Golgi and endosomal alterations. The absence of periventricular nodular heterotopias in this R99H-ARF1 subject also indicates that this finding may not be a consistent phenotypic expression of all ARF1-related disorders.
Collapse
Affiliation(s)
- Morié Ishida
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - María G Otero
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christina Freeman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pedro A Sánchez-Lara
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Carlos M Guardia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27703, USA
| | - Tyler Mark Pierson
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Pediatric Neurology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for the Undiagnosed Patient, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Lewis SA, Bakhtiari S, Forstrom J, Bayat A, Bilan F, Le Guyader G, Alkhunaizi E, Vernon H, Padilla-Lopez SR, Kruer MC. AGAP1-associated endolysosomal trafficking abnormalities link gene-environment interactions in a neurodevelopmental disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526497. [PMID: 36778426 PMCID: PMC9915612 DOI: 10.1101/2023.01.31.526497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AGAP1 is an Arf1 GAP that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report 3 new individuals with microdeletion variants in AGAP1 . Affected individuals have intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 neurodevelopmental impairments using the Drosophila ortholog, CenG1a . We discovered reduced axon terminal size, increased neuronal endosome abundance, and elevated autophagy at baseline. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in phosphorylation of the integrated stress-response protein eIF2α and inability to further increase eIF2α-P with subsequent cytotoxic stressors. CenG1a -mutant flies have increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response, and leaving AGAP1-deficient cells susceptible to a variety of second hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders. Summary statement We describe 3 additional patients with heterozygous AGAP1 deletion variants and use a loss of function Drosophila model to identify defects in synaptic morphology with increased endosomal sequestration, chronic autophagy induction, basal activation of eIF2α-P, and sensitivity to environmental stressors.
Collapse
Affiliation(s)
- Sara A. Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, AZ USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, AZ USA
| | - Jacob Forstrom
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, AZ USA
| | - Allan Bayat
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Frédéric Bilan
- Service de Génétique, CHU de Poitiers
- Laboratoire de Neurosciences Experimentales et Cliniques, INSERM U1084, Poitiers, France
| | - Gwenaël Le Guyader
- Service de Génétique, CHU de Poitiers
- Laboratoire de Neurosciences Experimentales et Cliniques, INSERM U1084, Poitiers, France
| | - Ebba Alkhunaizi
- Department of Medical Genetics, North York General Hospital, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Hilary Vernon
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Sergio R. Padilla-Lopez
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, AZ USA
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, AZ USA
- Programs in Neuroscience, Molecular & Cellular Biology, and Biomedical Informatics, Arizona State University, Tempe, AZ USA
| |
Collapse
|
7
|
Differential Methylation Profile in Fragile X Syndrome-Prone Offspring Mice after in Utero Exposure to Lactobacillus Reuteri. Genes (Basel) 2022; 13:genes13081300. [PMID: 35893036 PMCID: PMC9331364 DOI: 10.3390/genes13081300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/13/2023] Open
Abstract
Environmental factors such as diet, gut microbiota, and infections have proven to have a significant role in epigenetic modifications. It is known that epigenetic modifications may cause behavioral and neuronal changes observed in neurodevelopmental disabilities, including fragile X syndrome (FXS) and autism (ASD). Probiotics are live microorganisms that provide health benefits when consumed, and in some cases are shown to decrease the chance of developing neurological disorders. Here, we examined the epigenetic outcomes in offspring mice after feeding of a probiotic organism, Lactobacillus reuteri (L. reuteri), to pregnant mother animals. In this study, we tested a cohort of Western diet-fed descendant mice exhibiting a high frequency of behavioral features and lower FMRP protein expression similar to what is observed in FXS in humans (described in a companion manuscript in this same GENES special topic issue). By investigating 17,735 CpG sites spanning the whole mouse genome, we characterized the epigenetic profile in two cohorts of mice descended from mothers treated and non-treated with L. reuteri to determine the effect of prenatal probiotic exposure on the prevention of FXS-like symptoms. We found several genes involved in different neurological pathways being differentially methylated (p ≤ 0.05) between the cohorts. Among the key functions, synaptogenesis, neurogenesis, synaptic modulation, synaptic transmission, reelin signaling pathway, promotion of specification and maturation of neurons, and long-term potentiation were observed. The results of this study are relevant as they could lead to a better understanding of the pathways involved in these disorders, to novel therapeutics approaches, and to the identification of potential biomarkers for early detection of these conditions.
Collapse
|
8
|
Cheng N, Zhang H, Zhang S, Ma X, Meng G. Crystal structure of the GTP-binding protein-like domain of AGAP1. Acta Crystallogr F Struct Biol Commun 2021; 77:105-112. [PMID: 33830075 PMCID: PMC8034428 DOI: 10.1107/s2053230x21003150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
AGAP1 is often considered to regulate membrane trafficking, protein transport and actin cytoskeleton dynamics. Recent studies have shown that aberrant expression of AGAP1 is associated with many diseases, including neurodevelopmental disorders and acute lymphoblastic leukemia. It has been proposed that the GTP-binding protein-like domain (GLD) is involved in the binding of cofactors and thus regulates the catalytic activity of AGAP1. To obtain a better understanding of the pathogenic mechanism underpinning AGAP1-related diseases, it is essential to obtain structural information. Here, the GLD (residues 70-235) of AGAP1 was overexpressed in Escherichia coli BL21 (DE3) cells. Affinity and gel-filtration chromatography were used to obtain AGAP1GLD with high purity for crystallization. Using the hanging-drop vapor-diffusion method with the protein at a final concentration of 20 mg ml-1, AGAP1GLD protein crystals of suitable size were obtained. The crystals were found to diffract to 3.0 Å resolution and belonged to space group I4, with unit-cell parameters a = 100.39, b = 100.39, c = 48.08 Å. The structure of AGAP1GLD exhibits the highly conserved functional G1-G5 loops and is generally similar to other characterized ADP-ribosylation factor (Arf) GTPase-activating proteins (GAPs), implying an analogous function to Arf GAPs. Additionally, this study indicates that AGAP1 could be classified as a type of NTPase, the activity of which might be regulated by protein partners or by its other domains. Taken together, these results provide insight into the regulatory mechanisms of AGAP1 in cell signaling.
Collapse
Affiliation(s)
- Nuo Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, Shanghai JiaoTong University, 197 Ruijin Er Road, Shanghai 200025, People’s Republic of China
| | - Hao Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, Shanghai JiaoTong University, 197 Ruijin Er Road, Shanghai 200025, People’s Republic of China
| | - Shiyan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, Shanghai JiaoTong University, 197 Ruijin Er Road, Shanghai 200025, People’s Republic of China
| | - Xiaodan Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, Shanghai JiaoTong University, 197 Ruijin Er Road, Shanghai 200025, People’s Republic of China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, Shanghai JiaoTong University, 197 Ruijin Er Road, Shanghai 200025, People’s Republic of China
| |
Collapse
|
9
|
Kim H, Jung H, Jung H, Kwon SK, Ko J, Um JW. The small GTPase ARF6 regulates GABAergic synapse development. Mol Brain 2020; 13:2. [PMID: 31907062 PMCID: PMC6945580 DOI: 10.1186/s13041-019-0543-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
ADP ribosylation factors (ARFs) are a family of small GTPases composed of six members (ARF1-6) that control various cellular functions, including membrane trafficking and actin cytoskeletal rearrangement, in eukaryotic cells. Among them, ARF1 and ARF6 are the most studied in neurons, particularly at glutamatergic synapses, but their roles at GABAergic synapses have not been investigated. Here, we show that a subset of ARF6 protein is localized at GABAergic synapses in cultured hippocampal neurons. In addition, we found that knockdown (KD) of ARF6, but not ARF1, triggered a reduction in the number of GABAergic synaptic puncta in mature cultured neurons in an ARF activity-dependent manner. ARF6 KD also reduced GABAergic synaptic density in the mouse hippocampal dentate gyrus (DG) region. Furthermore, ARF6 KD in the DG increased seizure susceptibility in an induced epilepsy model. Viewed together, our results suggest that modulating ARF6 and its regulators could be a therapeutic strategy against brain pathologies involving hippocampal network dysfunction, such as epilepsy.
Collapse
Affiliation(s)
- Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Hyunsu Jung
- Division of Life Sciences, Korea University, Seoul, 02841, South Korea.,Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Seok-Kyu Kwon
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-eup, Dalseong-gun, Daegu, 42988, South Korea.
| |
Collapse
|
10
|
van Eyk CL, Corbett MA, Frank MSB, Webber DL, Newman M, Berry JG, Harper K, Haines BP, McMichael G, Woenig JA, MacLennan AH, Gecz J. Targeted resequencing identifies genes with recurrent variation in cerebral palsy. NPJ Genom Med 2019; 4:27. [PMID: 31700678 PMCID: PMC6828700 DOI: 10.1038/s41525-019-0101-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/17/2019] [Indexed: 01/13/2023] Open
Abstract
A growing body of evidence points to a considerable and heterogeneous genetic aetiology of cerebral palsy (CP). To identify recurrently variant CP genes, we designed a custom gene panel of 112 candidate genes. We tested 366 clinically unselected singleton cases with CP, including 271 cases not previously examined using next-generation sequencing technologies. Overall, 5.2% of the naïve cases (14/271) harboured a genetic variant of clinical significance in a known disease gene, with a further 4.8% of individuals (13/271) having a variant in a candidate gene classified as intolerant to variation. In the aggregate cohort of individuals from this study and our previous genomic investigations, six recurrently hit genes contributed at least 4% of disease burden to CP: COL4A1, TUBA1A, AGAP1, L1CAM, MAOB and KIF1A. Significance of Rare VAriants (SORVA) burden analysis identified four genes with a genome-wide significant burden of variants, AGAP1, ERLIN1, ZDHHC9 and PROC, of which we functionally assessed AGAP1 using a zebrafish model. Our investigations reinforce that CP is a heterogeneous neurodevelopmental disorder with known as well as novel genetic determinants.
Collapse
Affiliation(s)
- C L van Eyk
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - M A Corbett
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - M S B Frank
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - D L Webber
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - M Newman
- 3Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA Australia
| | - J G Berry
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - K Harper
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - B P Haines
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - G McMichael
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - J A Woenig
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - A H MacLennan
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia
| | - J Gecz
- 1Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,2Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA Australia.,4South Australian Health and Medical Research Institute, Adelaide, SA Australia
| |
Collapse
|
11
|
van Dongen J, Zilhão NR, Sugden K, Hannon EJ, Mill J, Caspi A, Agnew-Blais J, Arseneault L, Corcoran DL, Moffitt TE, Poulton R, Franke B, Boomsma DI. Epigenome-wide Association Study of Attention-Deficit/Hyperactivity Disorder Symptoms in Adults. Biol Psychiatry 2019; 86:599-607. [PMID: 31003786 PMCID: PMC6717697 DOI: 10.1016/j.biopsych.2019.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous studies have reported associations between attention-deficit/hyperactivity disorder symptoms and DNA methylation in children. We report the first epigenome-wide association study meta-analysis of adult attention-deficit/hyperactivity disorder symptoms, based on peripheral blood DNA methylation (Infinium HumanMethylation450K array) in three population-based adult cohorts. METHODS An epigenome-wide association study was performed in the Netherlands Twin Register (N = 2258, mean age 37 years), Dunedin Multidisciplinary Health and Development Study (N = 800, age 38 years), and Environmental Risk Longitudinal Twin Study (N = 1631, age 18 years), and results were combined through meta-analysis (total sample size N = 4689). Region-based analyses accounting for the correlation between nearby methylation sites were also performed. RESULTS One epigenome-wide significant differentially methylated position was detected in the Dunedin study, but meta-analysis did not detect differentially methylated positions that were robustly associated across cohorts. In region-based analyses, six significant differentially methylation regions (DMRs) were identified in the Netherlands Twin Register, 19 in the Dunedin study, and none in the Environmental Risk Longitudinal Twin Study. Of these DMRs, 92% were associated with methylation quantitative trait loci, and 68% showed moderate to large blood-brain correlations for DNA methylation levels. DMRs included six nonoverlapping DMRs (three in the Netherlands Twin Register, three in the Dunedin study) in the major histocompatibility complex, which were associated with expression of genes in the major histocompatibility complex, including C4A and C4B, previously implicated in schizophrenia. CONCLUSIONS Our findings point at new candidate loci involved in immune and neuronal functions that await further replication. Our work also illustrates the need for further research to examine to what extent epigenetic associations with psychiatric traits depend on characteristics such as age, comorbidities, exposures, and genetic background.
Collapse
Affiliation(s)
- Jenny van Dongen
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam.
| | - Nuno R Zilhão
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Eilis J Hannon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jessica Agnew-Blais
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Louise Arseneault
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam
| |
Collapse
|
12
|
Genome-wide methylation analysis of a large population sample shows neurological pathways involvement in chronic widespread musculoskeletal pain. Pain 2018; 158:1053-1062. [PMID: 28221285 PMCID: PMC5427989 DOI: 10.1097/j.pain.0000000000000880] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic widespread musculoskeletal pain (CWP), has a considerable heritable component, which remains to be explained. Epigenetic factors may contribute to and account for some of the heritability estimate. We analysed epigenome-wide methylation using MeDIPseq in whole blood DNA from 1708 monozygotic and dizygotic Caucasian twins having CWP prevalence of 19.9%. Longitudinally stable methylation bins (lsBINs), were established by testing repeated measurements conducted ≥3 years apart, n = 292. DNA methylation variation at lsBINs was tested for association with CWP in a discovery set of 50 monozygotic twin pairs discordant for CWP, and in an independent dataset (n = 1608 twins), and the results from the 2 samples were combined using Fisher method. Functional interpretation of the most associated signals was based on functional genomic annotations, gene ontology, and pathway analyses. Of 723,029 signals identified as lsBINs, 26,399 lsBINs demonstrated the same direction of association in both discovery and replication datasets at nominal significance (P ≤ 0.05). In the combined analysis across 1708 individuals, whereas no lsBINs showed genome-wide significance (P < 10-8), 24 signals reached p≤9E-5, and these included association signals mapping in or near to IL17A, ADIPOR2, and TNFRSF13B. Bioinformatics analyses of the associated methylation bins showed enrichment for neurological pathways in CWP. We estimate that the variance explained by epigenetic factors in CWP is 6%. This, the largest study to date of DNA methylation in CWP, points towards epigenetic modification of neurological pathways in CWP and provides proof of principle of this method in teasing apart the complex risk factors for CWP.
Collapse
|
13
|
Paternoster V, Rajkumar AP, Nyengaard JR, Børglum AD, Grove J, Christensen JH. The importance of data structure in statistical analysis of dendritic spine morphology. J Neurosci Methods 2017; 296:93-98. [PMID: 29287746 DOI: 10.1016/j.jneumeth.2017.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/15/2017] [Accepted: 12/24/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Dendritic spine morphology is heterogeneous and highly dynamic. To study the changing or aberrant morphology in test setups, often spines from several neurons from a few experimental units e.g. mice or primary neuronal cultures are measured. This strategy results in a multilevel data structure, which, when not properly addressed, has a high risk of producing false positive and false negative findings. METHODS We used mixed-effects models to deal with data with a multilevel data structure and compared this method to analyses at each level. We apply these statistical tests to a dataset of dendritic spine morphology parameters to illustrate advantages of multilevel mixed-effects model, and disadvantages of other models. RESULTS We present an application of mixed-effects models for analyzing dendritic spine morphology datasets while correcting for the data structure. COMPARISON WITH EXISTING METHODS We further show that analyses at spine level and aggregated levels do not adequately account for the data structure, and that they may lead to erroneous results. CONCLUSION We highlight the importance of data structure in dendritic spine morphology analyses and highly recommend the use of mixed-effects models or other appropriate statistical methods to deal with multilevel datasets. Mixed-effects models are easy to use and superior to commonly used methods by including the data structure and the addition of other explanatory variables, for example sex, and age, etc., as well as interactions between variables or between variables and level identifiers.
Collapse
Affiliation(s)
- Veerle Paternoster
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Anto P Rajkumar
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, United Kingdom; Mental Health of Older Adults and Dementia Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, United Kingdom.
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Anders Dupont Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Bioinformatics Research Centre, BiRC, Aarhus University, Aarhus, Denmark.
| | - Jane Hvarregaard Christensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
14
|
Hwang H, Park GW, Park JY, Lee HK, Lee JY, Jeong JE, Park SKR, Yates JR, Kwon KH, Park YM, Lee HJ, Paik YK, Kim JY, Yoo JS. Next Generation Proteomic Pipeline for Chromosome-Based Proteomic Research Using NeXtProt and GENCODE Databases. J Proteome Res 2017; 16:4425-4434. [PMID: 28965411 DOI: 10.1021/acs.jproteome.7b00223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human Proteome Project aims to map all human proteins including missing proteins as well as proteoforms with post translational modifications, alternative splicing variants (ASVs), and single amino acid variants (SAAVs). neXtProt and Ensemble databases are usually used to provide curated information on human coding genes. However, to find these proteoforms, we (Chr #11 team) first introduce a streamlined pipeline using customized and concatenated neXtProt and GENCODE originated from Ensemble, with controlled false discovery rate (FDR). Because of large sized databases used in this pipeline, we found more stringent FDR filtering (0.1% at the peptide level and 1% at the protein level) to claim novel findings, such as GENCODE ASVs and missing proteins, from human hippocampus data set (MSV000081385) and ProteomeXchange (PXD007166). Using our next generation proteomic pipeline (nextPP) with neXtProt and GENCODE databases, two missing proteins such as activity-regulated cytoskeleton-associated protein (ARC, Chr 8) and glutamate receptor ionotropic, kainite 5 (GRIK5, Chr 19) were additionally identified with two or more unique peptides from human brain tissues. Additionally, by applying the pipeline to human brain related data sets such as cortex (PXD000067 and PXD000561), spinal cord, and fetal brain (PXD000561), seven GENCODE ASVs such as ACTN4-012 (Chr.19), DPYSL2-005 (Chr.8), MPRIP-003 (Chr.17), NCAM1-013 (Chr.11), EPB41L1-017 (Chr.20), AGAP1-004 (Chr.2), and CPNE5-005 (Chr.6) were identified from two or more data sets. The identified peptides of GENCODE ASVs were mapped onto novel exon insertions, alternative translations at 5'-untranslated region, or novel protein coding sequence. Applying the pipeline to male reproductive organ related data sets, 52 GENCODE ASVs were identified from two testis (PXD000561 and PXD002179) and a spermatozoa (PXD003947) data sets. Four out of 52 GENCODE ASVs such as RAB11FIP5-008 (Chr. 2), RP13-347D8.7-001 (Chr. X), PRDX4-002 (Chr. X), and RP11-666A8.13-001 (Chr. 17) were identified in all of the three samples.
Collapse
Affiliation(s)
- Heeyoun Hwang
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea
| | - Gun Wook Park
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea
| | - Ji Yeong Park
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon, Republic of Korea
| | - Hyun Kyoung Lee
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon, Republic of Korea
| | - Ju Yeon Lee
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea
| | - Ji Eun Jeong
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon, Republic of Korea
| | - Sung-Kyu Robin Park
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Kyung-Hoon Kwon
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea
| | - Young Mok Park
- Center for Cognition and Sociality, Institute for Basic Science , Daejeon, Republic of Korea
| | - Hyoung-Joo Lee
- Yonsei Proteome Research Center and Department of Integrated OMICS for Biomedical Science, and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University , Seoul, Republic of Korea
| | - Young-Ki Paik
- Yonsei Proteome Research Center and Department of Integrated OMICS for Biomedical Science, and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University , Seoul, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon, Republic of Korea
| |
Collapse
|