1
|
Castro-Vildosola J, Bryan CA, Tajamal N, Jonnalagadda SA, Kasturi A, Tilly J, Garcia I, Kumar R, Fried NT, Hala T, Corbett BF. Sphingosine-1-phosphate receptor 3 activation promotes sociability and regulates transcripts important for anxiolytic-like behavior. Brain Behav Immun 2025; 124:205-217. [PMID: 39638159 DOI: 10.1016/j.bbi.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024] Open
Abstract
We previously demonstrated that sphingosine-1-phosphate receptor 3 (S1PR3) in the medial prefrontal cortex (mPFC) prevents reductions in sociability normally caused by stress. S1PR3 is a ubiquitously expressed G-protein coupled receptor that regulates immune system function, although its regulation of other biological processes is not well understood. Pharmacological activators of S1PR3 might provide important insights for understanding the neural substrates underlying sociability. Here we show that in mice, systemic injections of an S1PR3-specific agonist, CYM5541, promotes sociability in males and females whereas an S1PR3-specific antagonist, CAY10444, increases amygdala activation and increases social avoidance, particularly in females. S1PR3 expression is increased in the mPFC and dentate gyrus of females compared to males. RNA sequencing in the mPFC reveals that S1PR3 activation alters the expression of transcripts related to immune function, neurotransmission, transmembrane ion transport, and intracellular signaling. This work provides evidence that S1PR3 agonists, which have classically been used as immune modulators, might also be used to promote social behavior and, potentially, relieve symptoms of social anxiety. S1PR3 might be an important hub gene for mitigating maladaptive effects of stress as it reduces inflammatory processes, increases transcripts linked to anxiolytic neurotransmission, and promotes social behavior.
Collapse
Affiliation(s)
| | - Chris-Ann Bryan
- Department of Biology, Rutgers University, Camden, NJ, USA; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Nasira Tajamal
- Department of Biology, Rutgers University, Camden, NJ, USA
| | | | - Akhila Kasturi
- Department of Biology, Rutgers University, Camden, NJ, USA
| | | | - Isabel Garcia
- Department of Biology, Rutgers University, Camden, NJ, USA
| | - Renuka Kumar
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Nathan T Fried
- Department of Biology, Rutgers University, Camden, NJ, USA; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Tamara Hala
- Department of Biology, Rutgers University, Camden, NJ, USA
| | - Brian F Corbett
- Department of Biology, Rutgers University, Camden, NJ, USA; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.
| |
Collapse
|
2
|
Liu H, Chen S, Xiang H, Xiao J, Zhao S, Zhang X, Shu Z, Zhang J, Ouyang J, Liu Q, Quan Q, Fan J, Gao P, Zheng X, Chen AF, Lu H. S1PR3 in hippocampal neurons improves synaptic plasticity and decreases depressive behavior via downregulation of RhoA/ROCK1. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111256. [PMID: 39828081 DOI: 10.1016/j.pnpbp.2025.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The study investigates how Sphingosine-1-phosphate receptor 3 (S1PR3) and the Chronic Unpredictable Mild Stress (CUMS) affects depression-like behaviors. The S1P/S1PR3 signaling pathway is known to play a role in mood regulation, but it is not yet fully understood how it is connected to depression. This study looks to further explore this topic. To investigate the effect of CUMS on S1PR3 expression in hippocampus neurons and the synaptic plasticity, we observed animals' behavior with Sucrose Preference Test (SPT), Forced Swim Test (FST) and Open Field Test (OFT). Combining molecular and histological analysis, we investigated the S1PR3 expression, the change in synapse density, and synaptic structure change in the hippocampus. The CUMS caused a significant decrease in the S1PR3 expression, the density of the synaptic spine and synaptic ultrastructure change in mice. On the other hand, over-expression of S1PR3 by adeno-associated virus (AAV) in hippocampal neurons alleviated the depressive-like behaviors and synaptic deficits observed in stress-susceptible animals. Furthermore, the depressive-like phenotype and synaptic impairments were normalized by the expression of RhoA, implicating the RhoA/ROCK1 pathway in S1PR3 actions. Collectively, our findings provide strong evidence that S1PR3 plays a key role in hippocampal synaptic plasticity and depression and that modulation of S1PR3/RhoA/ROCK1 signaling may offer a novel therapeutic strategy for MDD. This study not only underscores the therapeutic potential of S1PR3 but also provides novel insights into the molecular mechanisms underlying depression.
Collapse
Affiliation(s)
- Huiqin Liu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiao
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shaoli Zhao
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Zhang
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Zhihao Shu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zhang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Ouyang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Quanjun Liu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qisheng Quan
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianing Fan
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Peng Gao
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xinru Zheng
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F Chen
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China; Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
3
|
Rahmati-Dehkordi F, Khanifar H, Najari N, Tamtaji Z, Talebi Taheri A, Aschner M, Shafiee Ardestani M, Mirzaei H, Dadgostar E, Nabavizadeh F, Tamtaji OR. Therapeutic Potential of Fingolimod on Psychological Symptoms and Cognitive Function in Neuropsychiatric and Neurological Disorders. Neurochem Res 2024; 49:2668-2681. [PMID: 38918332 DOI: 10.1007/s11064-024-04199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Neuropsychiatric and neurological disorders pose a significant global health burden, highlighting the need for innovative therapeutic approaches. Fingolimod (FTY720), a common drug to treat multiple sclerosis, has shown promising efficacy against various neuropsychiatric and neurological disorders. Fingolimod exerts its neuroprotective effects by targeting multiple cellular and molecular processes, such as apoptosis, oxidative stress, neuroinflammation, and autophagy. By modulating Sphingosine-1-Phosphate Receptor activity, a key regulator of immune cell trafficking and neuronal function, it also affects synaptic activity and strengthens memory formation. In the hippocampus, fingolimod decreases glutamate levels and increases GABA levels, suggesting a potential role in modulating synaptic transmission and neuronal excitability. Taken together, fingolimod has emerged as a promising neuroprotective agent for neuropsychiatric and neurological disorders. Its broad spectrum of cellular and molecular effects, including the modulation of apoptosis, oxidative stress, neuroinflammation, autophagy, and synaptic plasticity, provides a comprehensive therapeutic approach for these debilitating conditions. Further research is warranted to fully elucidate the mechanisms of action of fingolimod and optimize its use in the treatment of neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Khanifar
- Department of Internal Medicine, Shahre-kord University of Medical Sciences, Shahre-kord, Iran
| | - Nazanin Najari
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Mehdi Shafiee Ardestani
- Department of Radio Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Starodubtseva N, Chagovets V, Tokareva A, Dumanovskaya M, Kukaev E, Novoselova A, Frankevich V, Pavlovich SV, Sukhikh G. Diagnostic Value of Menstrual Blood Lipidomics in Endometriosis: A Pilot Study. Biomolecules 2024; 14:899. [PMID: 39199287 PMCID: PMC11351896 DOI: 10.3390/biom14080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Endometriosis is a prevalent chronic inflammatory disease characterized by a considerable delay between initial symptoms and diagnosis through surgery. The pressing need for a timely, non-invasive diagnostic solution underscores the focus of current research efforts. This study examines the diagnostic potential of the menstrual blood lipidome. The lipid profile of 39 samples (23 women with endometriosis and 16 patients in a control group) was acquired using reverse-phase high-performance liquid chromatography-mass spectrometry with LipidMatch processing and identification. Profiles were normalized based on total ion counts. Significant differences in lipids were determined using the Mann-Whitney test. Lipids for the diagnostic model, based on logistic regression, were selected using a combination of variance importance projection filters and Akaike information criteria. Levels of ceramides, sphingomyelins, cardiolipins, triacylglycerols, acyl- and alkenyl-phosphatidylethanolamines, and alkenyl-phosphatidylcholines increased, while acyl- and alkyl-phosphatidylcholines decreased in cases of endometriosis. Plasmenylphosphatidylethanolamine PE P-16:0/18:1 and cardiolipin CL 16:0_18:0_22:5_22:6 serve as marker lipids in the diagnostic model, exhibiting a sensitivity of 81% and specificity of 85%. The diagnostic approach based on dried spots of menstrual blood holds promise as an alternative to traditional non-invasive methods for endometriosis screening.
Collapse
Affiliation(s)
- Natalia Starodubtseva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Vitaliy Chagovets
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Alisa Tokareva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Madina Dumanovskaya
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Eugenii Kukaev
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russia Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Novoselova
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Stanislav V. Pavlovich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
5
|
Wang J, Zheng G, Wang L, Meng L, Ren J, Shang L, Li D, Bao Y. Dysregulation of sphingolipid metabolism in pain. Front Pharmacol 2024; 15:1337150. [PMID: 38523645 PMCID: PMC10957601 DOI: 10.3389/fphar.2024.1337150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghan Meng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Dongtao Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
6
|
Yang R, Lin Z, Cai Y, Chen N, Zhou Y, Zhang J, Hong G. Assessing the risk of prenatal depressive symptoms in Chinese women: an integrated evaluation of serum metabolome, multivitamin supplement intake, and clinical blood indicators. Front Psychiatry 2024; 14:1234461. [PMID: 38274432 PMCID: PMC10808622 DOI: 10.3389/fpsyt.2023.1234461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Background Prenatal depressive symptoms (PDS) is a serious public health problem. This study aimed to develop an integrated panel and nomogram to assess at-risk populations by examining the association of PDS with the serum metabolome, multivitamin supplement intake, and clinical blood indicators. Methods This study comprised 221 pregnant women, categorized into PDS and non-PDS groups based on the Edinburgh postnatal depression scale. The participants were divided into training and test sets according to their enrollment time. We conducted logistic regression analysis to identify risk factors, and employed liquid chromatography/high resolution mass spectrometry-based serum metabolome analysis to identify metabolic biomarkers. Multiple factor analysis was used to combine risk factors, clinical blood indicators and key metabolites, and then a nomogram was developed to estimate the probability of PDS. Results We identified 36 important differential serum metabolites as PDS biomarkers, mainly involved in amino acid metabolism and lipid metabolism. Multivitamin intake works as a protective factor for PDS. The nomogram model, including multivitamin intake, HDL-C and three key metabolites (histidine, estrone and valylasparagine), exhibited an AUC of 0.855 in the training set and 0.774 in the test set, and the calibration curves showed good agreement, indicating that the model had good stability. Conclusion Our approach integrates multiple models to identify metabolic biomarkers for PDS, ensuring their robustness. Furthermore, the inclusion of dietary factors and clinical blood indicators allows for a comprehensive characterization of each participant. The analysis culminated in an intuitive nomogram based on multimodal data, displaying potential performance in initial PDS risk assessment.
Collapse
Affiliation(s)
- Rongrong Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Zhenguo Lin
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, China
| | - Yanhua Cai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Nan Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Clinical Medical Research Center for Obstetrics and Gynecology Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Rimawi I, Yanai S, Turgeman G, Yanai J. Whole transcriptome analysis in offspring whose fathers were exposed to a developmental insult: a novel avian model. Sci Rep 2023; 13:16499. [PMID: 37779136 PMCID: PMC10543553 DOI: 10.1038/s41598-023-43593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
Although the effects of paternal exposure to insults on the offspring received limited attention in the past, it is currently gaining interest especially after understanding the mechanisms which may mediate such exposure effects. In the current study, the well-controlled avian model (Fayoumi) was utilized to investigate the effects of paternal exposure to the developmental insult, chlorpyrifos on the offspring's gene expression via mRNA and small RNA sequencing. Numerous mRNA gene expression changes were detected in the offspring after paternal exposure to the developmental insult, especially in genes related to neurogenesis, learning and memory. qPCR analysis of several genes, that were significantly changed in mRNA sequencing, confirmed the results obtained in mRNA sequencing. On the other hand, small RNA sequencing did not identify significant microRNA genes expression changes in the offspring after paternal exposure to the developmental insult. The effects of the paternal exposure were more pronounced in the female offspring compared to the male offspring. The results identified expression alterations in major genes (some of which were pertinent to the functional changes observed in other forms of early developmental exposure) after paternal insult exposure and provided a direction for future studies involving the most affected genes.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Sunny Yanai
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Wencel PL, Blecharz-Klin K, Piechal A, Pyrzanowska J, Mirowska-Guzel D, Strosznajder RP. Fingolimod Modulates the Gene Expression of Proteins Engaged in Inflammation and Amyloid-Beta Metabolism and Improves Exploratory and Anxiety-Like Behavior in Obese Mice. Neurotherapeutics 2023; 20:1388-1404. [PMID: 37432552 PMCID: PMC10480137 DOI: 10.1007/s13311-023-01403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity is considered a risk factor for type 2 diabetes mellitus, which has become one of the most important health problems, and is also linked with memory and executive function decline. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that regulates cell death/survival and the inflammatory response via its specific receptors (S1PRs). Since the role of S1P and S1PRs in obesity is rather obscure, we examined the effect of fingolimod (an S1PR modulator) on the expression profile of genes encoding S1PRs, sphingosine kinase 1 (Sphk1), proteins engaged in amyloid-beta (Aβ) generation (ADAM10, BACE1, PSEN2), GSK3β, proapoptotic Bax, and proinflammatory cytokines in the cortex and hippocampus of obese/prediabetic mouse brains. In addition, we observed behavioral changes. Our results revealed significantly elevated mRNA levels of Bace1, Psen2, Gsk3b, Sphk1, Bax, and proinflammatory cytokines, which were accompanied by downregulation of S1pr1 and sirtuin 1 in obese mice. Moreover, locomotor activity, spatially guided exploratory behavior, and object recognition were impaired. Simultaneously, fingolimod reversed alterations in the expressions of the cytokines, Bace1, Psen2, and Gsk3b that occurred in the brain, elevated S1pr3 mRNA levels, restored normal cognition-related behavior patterns, and exerted anxiolytic effects. The improvement in episodic and recognition memory observed in this animal model of obesity may suggest a beneficial effect of fingolimod on central nervous system function.
Collapse
Affiliation(s)
- P L Wencel
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02106, Warsaw, Poland.
| | - K Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - A Piechal
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - J Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - D Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - R P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02106, Warsaw, Poland
| |
Collapse
|
9
|
Jiang ZJ, Gong LW. The SphK1/S1P Axis Regulates Synaptic Vesicle Endocytosis via TRPC5 Channels. J Neurosci 2023; 43:3807-3824. [PMID: 37185099 PMCID: PMC10217994 DOI: 10.1523/jneurosci.1494-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid concentrated in the brain, is essential for normal brain functions, such as learning and memory and feeding behaviors. Sphingosine kinase 1 (SphK1), the primary kinase responsible for S1P production in the brain, is abundant within presynaptic terminals, indicating a potential role of the SphK1/S1P axis in presynaptic physiology. Altered S1P levels have been highlighted in many neurologic diseases with endocytic malfunctions. However, it remains unknown whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis in neurons. The present study evaluates potential functions of the SphK1/S1P axis in synaptic vesicle endocytosis by determining effects of a dominant negative catalytically inactive SphK1. Our data for the first time identify a critical role of the SphK1/S1P axis in endocytosis in both neuroendocrine chromaffin cells and neurons from mice of both sexes. Furthermore, our Ca2+ imaging data indicate that the SphK1/S1P axis may be important for presynaptic Ca2+ increases during prolonged stimulations by regulating the Ca2+ permeable TRPC5 channels, which per se regulate synaptic vesicle endocytosis. Collectively, our data point out a critical role of the regulation of TRPC5 by the SphK1/S1P axis in synaptic vesicle endocytosis.SIGNIFICANCE STATEMENT Sphingosine kinase 1 (SphK1), the primary kinase responsible for brain sphingosine-1-phosphate (S1P) production, is abundant within presynaptic terminals. Altered SphK1/S1P metabolisms has been highlighted in many neurologic disorders with defective synaptic vesicle endocytosis. However, whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis is unknown. Here, we identify that the SphK1/S1P axis regulates the kinetics of synaptic vesicle endocytosis in neurons, in addition to controlling fission-pore duration during single vesicle endocytosis in neuroendocrine chromaffin cells. The regulation of the SphK1/S1P axis in synaptic vesicle endocytosis is specific since it has a distinguished signaling pathway, which involves regulation of Ca2+ influx via TRPC5 channels. This discovery may provide novel mechanistic implications for the SphK1/S1P axis in brain functions under physiological and pathologic conditions.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| |
Collapse
|
10
|
Kocovski P, Tabassum-Sheikh N, Marinis S, Dang PT, Hale MW, Orian JM. Immunomodulation Eliminates Inflammation in the Hippocampus in Experimental Autoimmune Encephalomyelitis, but Does Not Ameliorate Anxiety-Like Behavior. Front Immunol 2021; 12:639650. [PMID: 34177891 PMCID: PMC8222726 DOI: 10.3389/fimmu.2021.639650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease targeting the central nervous system, characterized by an unpredictable disease course and a wide range of symptoms. Emotional and cognitive deficits are now recognized as primary disease manifestations and not simply the consequence of living with a chronic condition, raising questions regarding the efficacy of current therapeutics for these specific symptoms. Mechanisms underlying psychiatric sequelae in MS are believed to be similar to those underlying pathogenesis, that is mediated by cytokines and other inflammatory mediators. To gain insight into the pathogenesis of MS depression, we performed behavioral assays in the murine experimental autoimmune encephalomyelitis (EAE) MS model, in the presence or absence of immunomodulation using the drug FTY720, an analogue of the lipid signaling molecule sphingosine-1-phosphate (S1P). Specifically, mice were challenged with the elevated plus maze (EPM) test, a validated experimental paradigm for rodent-specific anxiety-like behavior. FTY720 treatment failed to ameliorate anxiety-like symptoms, irrespective of dosage. On the other hand, it was effective in reducing inflammatory infiltration, microglial reactivity and levels of pro-inflammatory molecules in the hippocampus, confirming the anti-inflammatory capacity of treatment. To explore the absence of FTY720 effect on behavior, we confirmed expression of S1P receptors (S1PR) S1PR1, S1PR3 and S1PR5 in the hippocampus and mapped the dynamics of these receptors in response to drug treatment alone, or in combination with EAE induction. We identified a complex pattern of responses, differing between (1) receptors, (2) dosage and (3) hippocampal sub-field. FTY720 treatment in the absence of EAE resulted in overall downregulation of S1PR1 and S1PR3, while S1PR5 exhibited a dose-dependent upregulation. EAE induction alone resulted in overall downregulation of all three receptors. On the other hand, combined FTY720 and EAE showed generally no effect on S1PR1 and S1PR3 expression except for the fimbrium region, but strong upregulation of S1PR5 over the range of doses examined. These data illustrate a hitherto undescribed complexity of S1PR response to FTY720 in the hippocampus, independent of drug effect on effector immune cells, but simultaneously emphasize the need to explore novel treatment strategies to specifically address mood disorders in MS.
Collapse
Affiliation(s)
- Pece Kocovski
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Nuzhat Tabassum-Sheikh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Stephanie Marinis
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Phuc T. Dang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| | - Matthew W. Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Lin CH, Kornhuber J, Zheng F, Alzheimer C. Tonic Control of Secretory Acid Sphingomyelinase Over Ventral Hippocampal Synaptic Transmission and Neuron Excitability. Front Cell Neurosci 2021; 15:660561. [PMID: 33897374 PMCID: PMC8062921 DOI: 10.3389/fncel.2021.660561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
The acid sphingomyelinase (ASM) converts sphingomyelin into ceramide. Recent work has advanced the ASM/ceramide system as a major player in the pathogenesis of major depressive disorder (MDD). Indeed, ASM activity is enhanced in MDD patients and antidepressant drugs like fluoxetine act as functional inhibitors of ASM. Here, we employed the specific ASM inhibitor ARC39 to explore the acute effects of the enzyme on hippocampal synaptic transmission and cell excitability in adult mouse brain slice preparations. In both field potential and whole-cell recordings, ARC39 (1-3 μM) enhanced excitatory synaptic input onto ventral hippocampal CA1 pyramidal cells. The specificity of drug action was demonstrated by its lacking effect in slices from ASM knockout mice. In control condition, ARC39 strongly reduced firing in most CA1 pyramidal cells, together with membrane hyperpolarization. Such pronounced inhibitory action of ARC39 on soma excitability was largely reversed when GABAA receptors were blocked. The idea that ARC39 recruits GABAergic inhibition to dampen cell excitability was further reinforced by the drug's ability to enhance the inhibitory synaptic drive onto pyramidal cells. In pyramidal cells that were pharmacologically isolated from synaptic input, the overall effect of ARC39 on cell firing was inhibitory, but some neurons displayed a biphasic response with a transient increase in firing, suggesting that ARC39 might alter intrinsic firing properties in a cell-specific fashion. Because ARC39 is charged at physiological pH and exerted all its effects within minutes of application, we propose that the neurophysiological actions reported here are due to the inhibition of secretory rather than lysosomal ASM. In summary, the ASM inhibitor ARC39 reveals a tonic control of the enzyme over ventral hippocampal excitability, which involves the intrinsic excitability of CA1 pyramidal cells as well as their excitatory and inhibitory synaptic inputs.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Psychiatry, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Squillace S, Spiegel S, Salvemini D. Targeting the Sphingosine-1-Phosphate Axis for Developing Non-narcotic Pain Therapeutics. Trends Pharmacol Sci 2020; 41:851-867. [PMID: 33010954 DOI: 10.1016/j.tips.2020.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Chronic pain is a life-altering condition affecting millions of people. Current treatments are inadequate and prolonged therapies come with severe side effects, especially dependence and addiction to opiates. Identification of non-narcotic analgesics is of paramount importance. Preclinical and clinical studies suggest that sphingolipid metabolism alterations contribute to neuropathic pain development. Functional sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) antagonists, such as FTY720/fingolimod, used clinically for non-pain conditions, are emerging as non-narcotic analgesics, supporting the repurposing of fingolimod for chronic pain treatment and energizing drug discovery focused on S1P signaling. Here, we summarize the role of S1P in pain to highlight the potential of targeting the S1P axis towards development of non-narcotic therapeutics, which, in turn, will hopefully help lessen misuse of opioid pain medications and address the ongoing opioid epidemic.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
13
|
Baranowska U, Holownia A, Chabowski A, Baranowski M. Pharmacological inhibition of sphingosine-1-phosphate lyase partially reverses spatial memory impairment in streptozotocin-diabetic rats. Mol Cell Neurosci 2020; 107:103526. [PMID: 32622897 DOI: 10.1016/j.mcn.2020.103526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid with strong neuroprotective properties that is important for normal excitability and synaptic transmission in the hippocampal neurons. Considering the above, the aim of the present study was to determine whether increasing brain S1P level is able to reverse spatial memory impairment in streptozotocin-diabetic rats. The experiment was carried out on diabetic (n = 22) and nondiabetic (n = 10) male Wistar rats. Diabetes was induced by a single injection of streptozotocin. Eleven weeks later, 11 diabetic animals received injections of THI (S1P lyase inhibitor) for seven days. During the last five days of the experiment spatial reference memory acquisition and retention were tested in the Morris water maze task. The animals were then anaesthetized and samples of the hippocampus, prefrontal cortex, striatum, and cerebellum were excised. The content of S1P and related sphingolipids was measured using a HPLC method. Diabetes induced a depletion of ceramide in the hippocampus and cerebellum that was associated with impaired spatial memory and learning. Administration of THI to the diabetic animals prevented ceramide depletion in the hippocampus and cerebellum, and induced an increase in S1P content in all examined brain structures. These effects were associated with an improvement in spatial memory. We conclude that pharmacological inhibition of S1P lyase partially reverses the impairment in spatial memory induced by chronic hyperglycemia, and that this effect may be related to the prevention of ceramide depletion in the hippocampus and cerebellum, the increase in brain S1P level, or both.
Collapse
Affiliation(s)
| | - Adam Holownia
- Department of Pharmacology, Medical University of Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Poland
| | | |
Collapse
|
14
|
Sphingosine-1-phosphate receptor 3 in the medial prefrontal cortex promotes stress resilience by reducing inflammatory processes. Nat Commun 2019; 10:3146. [PMID: 31316053 PMCID: PMC6637233 DOI: 10.1038/s41467-019-10904-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
Stress can promote the development of psychiatric disorders, though some individuals are more vulnerable to stress compared to others who are more resilient. Here we show that the sphingosine-1-phosphate receptor 3 (S1PR3) in the medial prefrontal cortex (mPFC) of rats regulates resilience to chronic social defeat stress. S1PR3 expression is elevated in the mPFC of resilient compared to vulnerable and control rats. Virally-mediated over-expression of S1PR3 in the mPFC produces a resilient phenotype whereas its knock-down produces a vulnerable phenotype, characterized by increased anxiety- and depressive-like behaviors, and these effects are mediated by TNFα. Furthermore, we show that S1PR3 mRNA in blood is reduced in veterans with PTSD compared to combat-exposed control subjects and its expression negatively correlates with symptom severity. Together, these data identify S1PR3 as a regulator of stress resilience and reveal sphingolipid receptors as important substrates of relevance to stress-related psychiatric disorders.
Collapse
|
15
|
Optical control of sphingosine-1-phosphate formation and function. Nat Chem Biol 2019; 15:623-631. [PMID: 31036923 PMCID: PMC7428055 DOI: 10.1038/s41589-019-0269-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Sphingosine-1-phosphate (S1P) plays important roles as a signaling lipid in a variety of physiological and pathophysiological processes. S1P signals via a family of G protein-coupled receptors (S1P1–5) and intracellular targets. Here, we report on photoswitchable analogs of S1P and its precursor sphingosine, respectively termed PhotoS1P and PhotoSph. PhotoS1P enables optical control of S1P1–3, shown through electrophysiology and Ca2+ mobilization assays. We evaluated PhotoS1Pin vivo, where it reversibly controlled S1P3-dependent pain hypersensitivity in mice. The hypersensitivity induced by PhotoS1P is comparable to that induced by S1P. PhotoS1P is uniquely suited for the study of S1P biology in cultured cells and in vivo because it exhibits prolonged metabolic stability compared to the rapidly metabolized S1P. Using lipid mass spectrometry analysis, we constructed a metabolic map of PhotoS1P and PhotoSph. The formation of these photoswitchable lipids was found to be light-dependent, providing a novel approach to optically probe sphingolipid biology.
Collapse
|
16
|
Hill RZ, Hoffman BU, Morita T, Campos SM, Lumpkin EA, Brem RB, Bautista DM. The signaling lipid sphingosine 1-phosphate regulates mechanical pain. eLife 2018; 7:e33285. [PMID: 29561262 PMCID: PMC5896955 DOI: 10.7554/elife.33285] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Somatosensory neurons mediate responses to diverse mechanical stimuli, from innocuous touch to noxious pain. While recent studies have identified distinct populations of A mechanonociceptors (AMs) that are required for mechanical pain, the molecular underpinnings of mechanonociception remain unknown. Here, we show that the bioactive lipid sphingosine 1-phosphate (S1P) and S1P Receptor 3 (S1PR3) are critical regulators of acute mechanonociception. Genetic or pharmacological ablation of S1PR3, or blockade of S1P production, significantly impaired the behavioral response to noxious mechanical stimuli, with no effect on responses to innocuous touch or thermal stimuli. These effects are mediated by fast-conducting A mechanonociceptors, which displayed a significant decrease in mechanosensitivity in S1PR3 mutant mice. We show that S1PR3 signaling tunes mechanonociceptor excitability via modulation of KCNQ2/3 channels. Our findings define a new role for S1PR3 in regulating neuronal excitability and establish the importance of S1P/S1PR3 signaling in the setting of mechanical pain thresholds.
Collapse
Affiliation(s)
- Rose Z Hill
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Benjamin U Hoffman
- Department of Physiology and Cellular BiophysicsColumbia University College of Physicians and SurgeonsNew YorkUnited States
- Medical Scientist Training ProgramColumbia UniversityNew YorkUnited States
| | - Takeshi Morita
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | | - Ellen A Lumpkin
- Department of Physiology and Cellular BiophysicsColumbia University College of Physicians and SurgeonsNew YorkUnited States
- Neurobiology CourseMarine Biological LaboratoryWoods HoleUnited States
| | - Rachel B Brem
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Buck Institute for Research on AgingNovatoUnited States
| | - Diana M Bautista
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Neurobiology CourseMarine Biological LaboratoryWoods HoleUnited States
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
17
|
Karunakaran I, van Echten-Deckert G. Sphingosine 1-phosphate - A double edged sword in the brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1573-1582. [PMID: 28315304 DOI: 10.1016/j.bbamem.2017.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022]
Abstract
The physiological functions of sphingosine 1-phosphate (S1P) and its pathological roles in various diseases are increasingly being elucidated. Particularly, a growing body of literature has implicated S1P in the pathogenesis of brain related disorders. With the deciphering of more intricate aspects of S1P signalling, there is also a need to reconsider the notion of S1P only as a determinant of cell survival and proliferation. Further the concept of 'S1P-ceramide' balance as the controlling switch of cellular fate and functions needs to be refined. In this review, we focus on the brain related functions of S1P with special focus on its role in synaptic transmission, neuronal autophagy and neuroinflammation. The review also attempts to bring out the multi-faceted nature of S1P signalling aspects that makes it a 'double edged sword'. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- LIMES Institute, Membrane Biology & Lipid Biochemistry, University of Bonn, Bonn, Germany
| | | |
Collapse
|