1
|
Gisina A, Yarygin K, Lupatov A. The Impact of Glycosylation on the Functional Activity of CD133 and the Accuracy of Its Immunodetection. BIOLOGY 2024; 13:449. [PMID: 38927329 PMCID: PMC11200695 DOI: 10.3390/biology13060449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
The membrane glycoprotein CD133 (prominin-1) is widely regarded as the main molecular marker of cancer stem cells, which are the most malignant cell subpopulation within the tumor, responsible for tumor growth and metastasis. For this reason, CD133 is considered a promising prognostic biomarker and molecular target for antitumor therapy. Under normal conditions, CD133 is present on the cell membrane in glycosylated form. However, in malignancies, altered glycosylation apparently leads to changes in the functional activity of CD133 and the availability of some of its epitopes for antibodies. This review focuses on CD133's glycosylation in human cells and its impact on the function of this glycoprotein. The association of CD133 with proliferation, differentiation, apoptosis, autophagy, epithelial-mesenchymal transition, the organization of plasma membrane protrusions and extracellular trafficking is discussed. In this review, particular attention is paid to the influence of CD133's glycosylation on its immunodetection. A list of commercially available and custom antibodies with their characteristics is provided. The available data indicate that the development of CD133-based biomedical technologies should include an assessment of CD133's glycosylation in each tumor type.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V. N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | | |
Collapse
|
2
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
3
|
Herman S, Djaldetti R, Mollenhauer B, Offen D. CSF-derived extracellular vesicles from patients with Parkinson's disease induce symptoms and pathology. Brain 2023; 146:209-224. [PMID: 35881523 DOI: 10.1093/brain/awac261] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease is characterized by the gradual appearance of intraneuronal inclusions that are primarily composed of misfolded α-synuclein protein, leading to cytotoxicity and neural death. Recent in vitro and in vivo studies suggest that misfolded α-synuclein may spread transcellularly in a prion-like manner, inducing pathological aggregates in healthy neurons, and is disseminated via secretion of extracellular vesicles. Accordingly, extracellular vesicles derived from brain lysates and CSF of patients with Parkinson's disease were shown to facilitate α-synuclein aggregation in healthy cells. Prompted by the hypothesis of Braak and colleagues that the olfactory bulb is one of the primary propagation sites for the initiation of Parkinson's disease, we sought to investigate the role of extracellular vesicles in the spread of α-synuclein and progression of Parkinson's disease through the olfactory bulb. Extracellular vesicles derived from the CSF of patients diagnosed with Parkinson's disease or with a non-synucleinopathy neurodegenerative disorder were administered intranasally to healthy mice, once daily over 4 days. Three months later, mice were subjected to motor and non-motor tests. Functional impairments were elucidated by histochemical analysis of midbrain structures relevant to Parkinson's disease pathology, 8 months after EVs treatment. Mice treated with extracellular vesicles from the patients with Parkinson's disease displayed multiple symptoms consistent with prodromal and clinical-phase Parkinson's disease such as hyposmia, motor behaviour impairments and high anxiety levels. Furthermore, their midbrains showed widespread α-synuclein aggregations, dopaminergic neurodegeneration, neuroinflammation and altered autophagy activity. Several unconventional pathologies were also observed, such as α-synuclein aggregations in the red nucleus, growth of premature grey hair and astrogliosis. Collectively, these data indicate that intranasally administered extracellular vesicles derived from the CSF of patients with Parkinson's disease can propagate α-synuclein aggregation in vivo and trigger Parkinson's disease-like symptoms and pathology in healthy mice.
Collapse
Affiliation(s)
- Shay Herman
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, and Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ruth Djaldetti
- Department of Neurology, Rabin Medical Center-Beilinson Hospital, Petach Tikva 4941492, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Daniel Offen
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, and Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Blood Circulating CD133+ Extracellular Vesicles Predict Clinical Outcomes in Patients with Metastatic Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14051357. [PMID: 35267665 PMCID: PMC8909146 DOI: 10.3390/cancers14051357] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, we explored the prognostic and predictive value of blood circulating EVs expressing selected surface proteins in patients with metastatic colorectal cancer (mCRC). A recently patented flow cytometry protocol was used for the identification and subtyping of blood circulating EVs in a cohort of patients with stage IV colorectal cancer (n = 54) and in a cohort of healthy controls (n = 48). We observed an increased blood concentration of tumor-induced blood circulating EVs in the mCRC cohort as compared to healthy controls. Additionally, we show an intriguing link between circulating CD133+ EVs and poor clinical outcomes in patients with mCRC. This study provides novel insights about the potential impact of EVs as a relevant source of candidate biomarkers in mCRC. Abstract Colorectal cancer (CRC) is one of the most incident and lethal malignancies worldwide. Recent treatment advances prolonged survival in patients with metastatic colorectal cancer (mCRC). However, there are still few biomarkers to guide clinical management and treatment selection in mCRC. In this study, we applied an optimized flow cytometry protocol for EV identification, enumeration, and subtyping in blood samples of 54 patients with mCRC and 48 age and sex-matched healthy controls (HCs). The overall survival (OS) and overall response rate (ORR) were evaluated in mCRC patients enrolled and treated with a first line fluoropyrimidine-based regimen. Our findings show that patients with mCRC presented considerably higher blood concentrations of total EVs, as well as CD133+ and EPCAM+ EVs compared to HCs. Overall survival analysis revealed that increased blood concentrations of total EVs and CD133+ EVs before treatment were significantly associated with shorter OS in mCRC patients (p = 0.001; and p = 0.0001, respectively). In addition, we observed a correlation between high blood levels of CD133+ EVs at baseline and reduced ORR to first-line systemic therapy (p = 0.045). These findings may open exciting perspectives into the application of novel blood-based EV biomarkers for improved risk stratification and optimized treatment strategies in mCRC.
Collapse
|
5
|
Bobinger T, Roeder SS, Spruegel MI, Froehlich K, Beuscher VD, Hoelter P, Lücking H, Corbeil D, Huttner HB. Variation of membrane particle-bound CD133 in cerebrospinal fluid of patients with subarachnoid and intracerebral hemorrhage. J Neurosurg 2021; 134:600-607. [PMID: 31978876 DOI: 10.3171/2019.11.jns191861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/25/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Previous studies have demonstrated that human CSF contains membrane particles carrying the stem cell antigenic marker CD133 (prominin-1). Here, the authors analyzed the variation of the amount of these CD133-positive particles in the CSF of patients with subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH). METHODS Consecutive CSF samples from 47 patients with SAH or ICH were compared to 14 healthy control patients. After differential ultracentrifugation of CSF, the membrane particle fraction was separated on gel electrophoresis and its CD133 content was probed by immunoblotting using the mouse monoclonal antibody 80B258 directed against human CD133. The antigen-antibody complexes were detected by chemiluminescence reagents and quantified using human Caco-2 cell extract as positive control with a standardized curve. RESULTS As compared to healthy controls (6.3 ± 0.5 ng of bound CD133 antibody; n = 14), the amount of membrane particle-associated CD133 immunoreactivities was significantly elevated in patients with SAH and ICH (38.2 ± 6.6 ng and 61.3 ± 11.0 ng [p < 0.001] for SAH [n = 18] and ICH [n = 29], respectively). In both groups the CD133 level dropped during the first 7 days (i.e., day 5-7: SAH group, 24.6 ± 10.1 ng [p = 0.06]; ICH group, 25.0 ± 4.8 ng [p = 0.002]). Whereas changes in the amount of CD133-positive membrane particles between admission and day 5-7 were not associated with clinical outcomes in patients with ICH (modified Rankin Scale [mRS] scores 0-3, -30.9 ± 12.8 ng vs mRS scores 4-6, -21.8 ± 10.7 ng; p = 0.239), persistent elevation of CD133 in patients with SAH was related to impaired functional outcome 3 months after ictus (mRS scores 0-2, -29.9 ± 8.1 ng vs mRS scores 3-6, 7.6 ± 20.3 ng; p = 0.027). These data are expressed as the mean ± standard error of the mean (SEM). CONCLUSIONS Levels of membrane particle-associated CD133 in the CSF of patients with SAH and ICH are significantly increased in comparison to healthy patients, and they decline during the hospital stay. Specifically, the persistent elevation of CD133-positive membrane particles within the first week may represent a possible surrogate measure for impaired functional outcome in patients with SAH.
Collapse
Affiliation(s)
| | | | | | | | | | - Philip Hoelter
- 2Neuroradiology, Friedrich-Alexander University Erlangen (FAU); and
| | - Hannes Lücking
- 2Neuroradiology, Friedrich-Alexander University Erlangen (FAU); and
| | - Denis Corbeil
- 3Biotechnology Center (BIOTEC), Technische Universität Dresden, Germany
| | | |
Collapse
|
6
|
Luo D, Liu X, Zhang J, Du L, Bai L, Luo S. Premobilization of CD133+ progenitors is associated with attenuated inflammation-induced pulmonary dysfunction following extracorporeal circulation in mice. Interact Cardiovasc Thorac Surg 2021; 31:210-220. [PMID: 32386299 DOI: 10.1093/icvts/ivaa074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Progenitor cells mobilized by granulocyte colony-stimulating factor (G-CSF) have been shown to lessen acute kidney injury induced by extracorporeal circulation (ECC). Both acute kidney injury and lung injury are characterized by endothelial dysfunction. Our goal was to examine whether and how G-CSF-mobilized progenitors with endothelial capacity may help mitigate ECC-induced pulmonary dysfunction. METHODS G-CSF (10 μg/kg/day) was administered subcutaneously to C57BL/6 mice before or at the initiation of the ECC process, after which lung injury was assessed by measuring neutrophils in the fluid from bronchoalveolar lavage and determining the pathological score in lung tissue. CD133+ progenitors were isolated and injected into C57BL/6 mice before ECC in vivo. We incubated the CD133+ cells with pulmonary monocytes or neutrophils isolated from naïve mice in vitro. RESULTS Pretreatment with G-CSF for 2 days significantly decreased the number of neutrophils in the bronchoalveolar lavage fluid, and the pathological score (P < 0.01; n = 5) improved the PaO2/FiO2 ratio [193.4 ± 12.7 (ECC without G-CSF) vs 305.6 ± 22.6 mmHg (ECC with G-CSF); P = 0.03, n = 5] and suppressed neutrophil elastase and tumour necrosis factor-α levels in the circulation; we also observed increases in both circulating and pulmonary populations of CD133+ progenitors. Similar effects were observed in animals pretreated with CD133+ progenitors instead of G-CSF before ECC. The majority of CD133+/CD45- and CD133+/CD45+ progenitors were mobilized in the lung and in the circulation, respectively. Incubating CD133+ progenitors with neutrophils or pulmonary monocytes blocked lipopolysaccharide-induced release of inflammatory factors. CONCLUSIONS Our results suggest that pretreatment of G-CSF attenuates ECC-induced pulmonary dysfunction through inhibiting the inflammatory response in lung tissue and in the circulation with associated premobilization of CD133+ progenitors.
Collapse
Affiliation(s)
- Dan Luo
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinhao Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology of the Health Ministry of China, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Du
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Bai
- Regenerative Medicine Research Center, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Shuhua Luo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Pivotal Role of Fyn Kinase in Parkinson's Disease and Levodopa-Induced Dyskinesia: a Novel Therapeutic Target? Mol Neurobiol 2020; 58:1372-1391. [PMID: 33175322 DOI: 10.1007/s12035-020-02201-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
The exact etiology of Parkinson's disease (PD) remains obscure, although many cellular mechanisms including α-synuclein aggregation, oxidative damage, excessive neuroinflammation, and dopaminergic neuronal apoptosis are implicated in its pathogenesis. There is still no disease-modifying treatment for PD and the gold standard therapy, chronic use of levodopa is usually accompanied by severe side effects, mainly levodopa-induced dyskinesia (LID). Hence, the elucidation of the precise underlying molecular mechanisms is of paramount importance. Fyn is a tyrosine phospho-transferase of the Src family nonreceptor kinases that is highly implicated in immune regulation, cell proliferation and normal brain development. Accumulating preclinical evidence highlights the emerging role of Fyn in key aspects of PD and LID pathogenesis: it may regulate α-synuclein phosphorylation, oxidative stress-induced dopaminergic neuronal death, enhanced neuroinflammation and glutamate excitotoxicity by mediating key signaling pathways, such as BDNF/TrkB, PKCδ, MAPK, AMPK, NF-κB, Nrf2, and NMDAR axes. These findings suggest that therapeutic targeting of Fyn or Fyn-related pathways may represent a novel approach in PD treatment. Saracatinib, a nonselective Fyn inhibitor, has already been tested in clinical trials for Alzheimer's disease, and novel selective Fyn inhibitors are under investigation. In this comprehensive review, we discuss recent evidence on the role of Fyn in the pathogenesis of PD and LID and provide insights on additional Fyn-related molecular mechanisms to be explored in PD and LID pathology that could aid in the development of future Fyn-targeted therapeutic approaches.
Collapse
|
8
|
Li JH, He ZQ, Lin FH, Chen ZH, Yang SY, Duan H, Jiang XB, Al-Nahari F, Zhang XH, Wang JH, Zhang GH, Zhang ZF, Li C, Mou YG. Assessment of ctDNA in CSF may be a more rapid means of assessing surgical outcomes than plasma ctDNA in glioblastoma. Mol Cell Probes 2019; 46:101411. [PMID: 31173881 DOI: 10.1016/j.mcp.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
We aimed to develop a high-throughput deep DNA sequencing assay of cerebrospinal fluid (CSF) to identify clinically relevant oncogenic mutations that contribute to the development of glioblastoma (GBM) and serve as biomarkers to predict patients' responses to surgery. For this purpose, we recruited five patients diagnosed with highly suspicious GBM according to preoperative magnet resonance imaging. Subsequently, patients were histologically diagnosed with GBM. CSF was obtained through routine lumbar puncture, and plasma from peripheral blood was collected before surgery and 7 days after. Fresh tumor samples were collected using routine surgical procedures. Targeted deep sequencing was used to characterize the genomic landscape and identify mutational profile that differed between pre-surgical and post-surgical samples. Sequence analysis was designed to detect protein-coding exons, exon-intron boundaries, and the untranslated regions of 50 genes associated with cancers of the central nervous system. Circulating tumor DNAs (ctDNAs) were prepared from the CSF and plasma from peripheral blood. For comparison, DNA was isolated from fresh tumor tissues. Non-silent coding variants were detected in CSF and plasma ctDNAs, and the overall minor allele frequency (MAF) of the former corresponded to an earlier disease stage compared with that of plasma when the tumor burden was released (surgical removal). Gene mutation loads of GBMs significantly correlated with overall survival (OS, days) (Pearson correlation = -0.95, P = 0.01). We conclude that CSF ctDNAs better reflected the sequential mutational changes of driver genes compared with those of plasma ctDNAs. Deep sequencing of the CSF of patients with GBM may therefore serve as an alternative clinical assay to improve patients' outcomes.
Collapse
Affiliation(s)
- Jue-Hui Li
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Zhen-Qiang He
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Fu-Hua Lin
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Zheng-He Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Shi-Yu Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Xiao-Bing Jiang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Fuad Al-Nahari
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Xiang-Heng Zhang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Jiang-Huang Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Guan-Hua Zhang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Zhen-Feng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Cong Li
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Yong-Gao Mou
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Assessment of CD133-positive extracellular membrane vesicles in pancreatic cancer ascites and beyond. Med Mol Morphol 2019; 53:60-62. [PMID: 30953194 DOI: 10.1007/s00795-019-00221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
|
10
|
Singer D, Thamm K, Zhuang H, Karbanová J, Gao Y, Walker JV, Jin H, Wu X, Coveney CR, Marangoni P, Lu D, Grayson PRC, Gulsen T, Liu KJ, Ardu S, Wann AK, Luo S, Zambon AC, Jetten AM, Tredwin C, Klein OD, Attanasio M, Carmeliet P, Huttner WB, Corbeil D, Hu B. Prominin-1 controls stem cell activation by orchestrating ciliary dynamics. EMBO J 2018; 38:embj.201899845. [PMID: 30523147 PMCID: PMC6331727 DOI: 10.15252/embj.201899845] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023] Open
Abstract
Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.
Collapse
Affiliation(s)
- Donald Singer
- Peninsula Dental School, University of Plymouth, Plymouth, UK
| | - Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Heng Zhuang
- Peninsula Dental School, University of Plymouth, Plymouth, UK.,Department of Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Yan Gao
- Peninsula Dental School, University of Plymouth, Plymouth, UK.,Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | | | - Heng Jin
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangnan Wu
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Clarissa R Coveney
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Dongmei Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tulay Gulsen
- Peninsula Dental School, University of Plymouth, Plymouth, UK
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Stefano Ardu
- Division of Cariology & Endodontology, Dental School, University of Geneva, Geneva, Switzerland
| | - Angus Kt Wann
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | | | - Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA.,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Massimo Attanasio
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Peter Carmeliet
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Bing Hu
- Peninsula Dental School, University of Plymouth, Plymouth, UK
| |
Collapse
|
11
|
Wiklander OPB, Bostancioglu RB, Welsh JA, Zickler AM, Murke F, Corso G, Felldin U, Hagey DW, Evertsson B, Liang XM, Gustafsson MO, Mohammad DK, Wiek C, Hanenberg H, Bremer M, Gupta D, Björnstedt M, Giebel B, Nordin JZ, Jones JC, El Andaloussi S, Görgens A. Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures. Front Immunol 2018; 9:1326. [PMID: 29951064 PMCID: PMC6008374 DOI: 10.3389/fimmu.2018.01326] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell’s activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.
Collapse
Affiliation(s)
- Oscar P B Wiklander
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom
| | - R Beklem Bostancioglu
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joshua A Welsh
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Antje M Zickler
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Pathology F56, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Giulia Corso
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Felldin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel W Hagey
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Björn Evertsson
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Xiu-Ming Liang
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuela O Gustafsson
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dara K Mohammad
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Constanze Wiek
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dhanu Gupta
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Björnstedt
- Division of Pathology F56, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joel Z Nordin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom
| | - Jennifer C Jones
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Samir El Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - André Görgens
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Evox Therapeutics Limited, Oxford, United Kingdom.,Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|