1
|
Kostović I. Development of the basic architecture of neocortical circuitry in the human fetus as revealed by the coupling spatiotemporal pattern of synaptogenesis along with microstructure and macroscale in vivo MR imaging. Brain Struct Funct 2024; 229:2339-2367. [PMID: 39102068 PMCID: PMC11612014 DOI: 10.1007/s00429-024-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
In humans, a quantifiable number of cortical synapses appears early in fetal life. In this paper, we present a bridge across different scales of resolution and the distribution of synapses across the transient cytoarchitectonic compartments: marginal zone (MZ), cortical plate (CP), subplate (SP), and in vivo MR images. The tissue of somatosensory cortex (7-26 postconceptional weeks (PCW)) was prepared for electron microscopy, and classified synapses with a determined subpial depth were used for creating histograms matched to the histological sections immunoreacted for synaptic markers and aligned to in vivo MR images (1.5 T) of corresponding fetal ages (maternal indication). Two time periods and laminar patterns of synaptogenesis were identified: an early and midfetal two-compartmental distribution (MZ and SP) and a late fetal three-compartmental distribution (CP synaptogenesis). During both periods, a voluminous, synapse-rich SP was visualized on the in vivo MR. Another novel finding concerns the phase of secondary expansion of the SP (13 PCW), where a quantifiable number of synapses appears in the upper SP. This lamina shows a T2 intermediate signal intensity below the low signal CP. In conclusion, the early fetal appearance of synapses shows early differentiation of putative genetic mechanisms underlying the synthesis, transport and assembly of synaptic proteins. "Pioneering" synapses are likely to play a morphogenetic role in constructing of fundamental circuitry architecture due to interaction between neurons. They underlie spontaneous, evoked, and resting state activity prior to ex utero experience. Synapses can also mediate genetic and environmental triggers, adversely altering the development of cortical circuitry and leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Fang Y, Zheng Y, Gao Q, Pang M, Wu Y, Feng X, Tao X, Hu Y, Lin Z, Lin W. Activation of the Nrf2/Keap1 signaling pathway mediates the neuroprotective effect of Perillyl alcohol against cerebral hypoxic-ischemic damage in neonatal rats. Redox Rep 2024; 29:2394714. [PMID: 39284589 PMCID: PMC11407389 DOI: 10.1080/13510002.2024.2394714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo. We established an in vitro model using glucose deprivation and hypoxia/reperfusion (OGD/R) in PC12 cells, alongside an in vivo model via the modified Rice-Vannucci method. Results indicated that POH acted as an indirect antioxidant, reducing inducible nitric oxide synthase and malondialdehyde production, maintaining content of antioxidant molecules and enzymes in OGD/R-induced PC12 cells. In vivo, POH remarkably lessened infarct volume, reduced cerebral edema, accelerated tissue regeneration, and blocked reactive astrogliosis after hypoxic-ischemic brain injury. POH exerted antiapoptotic activities through both the intrinsic and extrinsic apoptotic pathways. Mechanistically, POH activated Nrf2 and inactivated its negative regulator Keap1. The use of ML385, a Nrf2 inhibitor, reversed these effects. Overall, POH mitigates neuronal damage in HIE by combating oxidative stress, reducing inflammation, and inhibiting apoptosis via the Nrf2/Keap1 pathway, suggesting its potential for HIE treatment.
Collapse
Affiliation(s)
- Yu Fang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yihui Zheng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiqi Gao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Mengdan Pang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yiqing Wu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoli Feng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Lee VY, Nils AVM, Arruda BP, Xavier GF, Nogueira MI, Motta-Teixeira LC, Takada SH. Spontaneous running wheel exercise during pregnancy prevents later neonatal-anoxia-induced somatic and neurodevelopmental alterations. IBRO Neurosci Rep 2024; 17:263-279. [PMID: 39310269 PMCID: PMC11414703 DOI: 10.1016/j.ibneur.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction About 15-20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia. Methods spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24-36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75. Results gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring. Conclusion spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.
Collapse
Affiliation(s)
- Vitor Yonamine Lee
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Aline Vilar Machado Nils
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Bruna Petrucelli Arruda
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| | - Gilberto Fernando Xavier
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Maria Inês Nogueira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Lívia Clemente Motta-Teixeira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, R. Jaguaribe, 155 - Vila Buarque, Sao Paulo, SP 01224-001, Brazil
| | - Silvia Honda Takada
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
4
|
Schmidt R, Welzel B, Merten A, Naundorf H, Löscher W. Temporal development of seizure threshold and spontaneous seizures after neonatal asphyxia and the effect of prophylactic treatment with midazolam in rats. Exp Neurol 2024; 383:115042. [PMID: 39505250 DOI: 10.1016/j.expneurol.2024.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Birth asphyxia (BA) and subsequent hypoxic-ischemic encephalopathy (HIE) is one of the most serious birth complications affecting full-term infants and can result in severe disabilities including mental retardation, cerebral palsy, and epilepsy. Animal models of BA and HIE are important to characterize the functional and behavioral correlates of injury, explore cellular and molecular mechanisms, and assess the potential of novel therapeutic strategies. Here we used a non-invasive, physiologically validated rat model of BA and acute neonatal seizures that mimics many features of BA and HIE in human infants to study (i) the temporal development of epilepsy with spontaneous recurrent seizures (SRS) in the weeks and months after the initial brain injury, (ii) alterations in seizure threshold and hippocampal EEG that may precede the onset of SRS, and (iii) the effect of prophylactic treatment with midazolam. For this purpose, a total of 89 rat pups underwent asphyxia or sham asphyxia at postnatal day 11 and were examined over 8-10.5 months. In vehicle-treated animals, the incidence of electroclinical SRS progressively increased from 0 % at 2.5 months to 50 % at 6.5 months, 75 % at 8.5 months, and > 80 % at 10.5 months after asphyxia. Unexpectedly, post-asphyxial rats did not differ from sham-exposed rats in seizure threshold or interictal epileptiform discharges in the EEG. Treatment with midazolam (1 mg/kg i.p.) after asphyxia, which suppressed acute symptomatic neonatal seizures in about 60 % of the rat pups, significantly reduced the incidence of SRS regardless of its effect on neonatal seizures. This antiepileptogenic effect of midazolam adds to the recently reported prophylactic effects of this drug on BA-induced neuroinflammation, brain damage, behavioral alterations, and cognitive impairment in the rat asphyxia model of HIE.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Annika Merten
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Hannah Naundorf
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Tassinari ID, Zang J, Ribeiro NH, Martins BB, Tauffer JVM, Nunes RR, Sanches EF, Sizonenko S, Netto CA, Paz AH, de Fraga LS. Lactate administration causes long-term neuroprotective effects following neonatal hypoxia-ischemia. Exp Neurol 2024; 381:114929. [PMID: 39168170 DOI: 10.1016/j.expneurol.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Neonatal hypoxia-ischemia (HI) is one of the main causes of mortality and long-term disabilities in newborns, and the only clinical approach to treat this condition is therapeutic hypothermia, which shows some limitations. Thus, putative neuroprotective agents have been tested in animal models of HI. Lactate is a preferential metabolic substrate of the neonatal brain and has already been shown to produce beneficial neuroprotective outcomes in neonatal animals exposed to HI. Here, we administered lactate as a treatment in neonatal rats previously exposed to HI and evaluated the impact of this treatment in adulthood. Seven-day-old (P7) male and female Wistar rats underwent permanent common right carotid occlusion combined with an exposition to a hypoxic atmosphere (8% oxygen) for 60 min. Animals were assigned to one of four experimental groups: HI, HI+LAC, SHAM, SHAM+LAC. Lactate was administered intraperitoneally 30 min and 2 h after hypoxia in HI+LAC and SHAM+LAC groups, whereas HI and SHAM groups received vehicle. Animals were tested in the behavioral tasks of negative geotaxis and righting reflex (P8), cylinder test (P24), and the modified neurological severity score was calculated (P25). Open field (OF), and novel object recognition (NOR) were evaluated in adulthood. Animals were killed at P60, and the brains were harvested and processed to evaluate the volume of brain injury. Our results showed that lactate administration reduced the volume of brain lesion and improved sensorimotor and cognitive behaviors in neonatal, juvenile, and adult life in HI animals from both sexes. Thus, lactate administration might be considered as a potential neuroprotective strategy for the treatment of neonatal HI, which is a prevalent disorder affecting newborns.
Collapse
Affiliation(s)
- Isadora D'Ávila Tassinari
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Janaína Zang
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Nícolas Heller Ribeiro
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Bianca Büchele Martins
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - João Vitor Miotto Tauffer
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Ricardo Ribeiro Nunes
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Departamento de Bioquímica, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Ana Helena Paz
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Departamento de Ciências Morfológicas, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre 90050-170, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil
| | - Luciano Stürmer de Fraga
- Departamento de Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS 90035-903, Brazil.
| |
Collapse
|
6
|
Barros M, Liang M, Iannucci N, Dickinson R. Xenon and Argon as Neuroprotective Treatments for Perinatal Hypoxic-Ischemic Brain Injury: A Preclinical Systematic Review and Meta-Analysis. Anesth Analg 2024:00000539-990000000-01012. [PMID: 39453983 DOI: 10.1213/ane.0000000000007223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Xenon and argon are currently being evaluated as potential neuroprotective treatments for acquired brain injuries. Xenon has been evaluated clinically as a treatment for brain ischemia with equivocal results in small trials, but argon has not yet undergone clinical evaluation. Several preclinical studies have investigated xenon or argon as treatments in animal models of perinatal hypoxic-ischemic encephalopathy (HIE). A systematic review of MEDLINE and Embase databases was performed. After screening of titles, abstracts, and full text, data were extracted from included studies. A pairwise meta-analysis of neuroprotective efficacy was performed using a random effects model. Heterogeneity was investigated using subgroup analysis, funnel plot asymmetry, and Egger's regression. The protocol was prospectively registered on PROSPERO (CRD42022301986). A total of 21 studies met the inclusion criteria. The data extracted included measurements from 1591 animals, involving models of HIE in mice, rats, and pigs. The meta-analysis found that both xenon and argon had significant (P < .0001) neuroprotective efficacies. The summary estimate for xenon was 39.7% (95% confidence interval [CI], 28.3%-51.1%) and for argon it was 70.3% (95% CI, 59.0%-81.7%). The summary effect for argon was significantly (P < .001) greater than that of xenon. Our results provide evidence supporting further investigation of xenon and argon as neuroprotective treatments for HIE.
Collapse
Affiliation(s)
- Mariana Barros
- From the Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Min Liang
- Anaesthesiology Research Institute, Department of Anaesthesiology, First Affiliated Hospital of Fujian Medical University, Binhai Campus, Fuzhou, China
| | - Noemi Iannucci
- From the Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Robert Dickinson
- From the Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Beasant L, Chakkarapani E, Horwood J, Odd D, Stocks S, Parker D, Ingram J. Embedding the 'CoolCuddle' intervention for infants undergoing therapeutic hypothermia for hypoxic-ischaemic encephalopathy in NICU: an evaluation using normalisation process theory. BMJ Open 2024; 14:e088228. [PMID: 39424383 PMCID: PMC11492938 DOI: 10.1136/bmjopen-2024-088228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES Newborn infants exposed to lack of oxygen and blood flow to the brain around birth may develop brain dysfunction (hypoxic-ischaemic encephalopathy-HIE). These infants undergo 72 hours of cooling therapy and most are not held by their parents in the UK. We examined the implementation of 'CoolCuddle', identifying factors that impact embedding of this complex intervention in neonatal intensive care units (NICUs) across England. DESIGN Process evaluation and qualitative study using a standard questionnaire and interviews. Normalisation Process Theory (NPT) core constructs were used to assess relevant issues to staff embedding 'CoolCuddle', to discern change over time and different settings. Qualitative interviews provided valuable contextual exploration of implementation. SETTING AND PARTICIPANTS Six tertiary NICUs in England. Thirty-seven families with a newborn baby undergoing cooling therapy for HIE were recruited from September 2022 to August 2023; 17 NICU staff Normalisation MeAsure Development (NoMADs) at six NICUs over 6 months were included; 14 neonatal/research nurses from three participating NICUs were interviewed. INTERVENTION The family-centred intervention 'CoolCuddle' was developed to enable parents to hold their infant during cooling, without affecting the cooling therapy or intensive care. OUTCOME MEASURES NoMAD questionnaires at three timepoints over 6 months and NPT informed qualitative interviews. RESULTS NoMAD questionnaires at baseline showed more variation between units, for intervention acceptability, than those at 3 and 6 months. Qualitative data highlighted that staff understood the benefits of CoolCuddle but were apprehensive due to perceived risks involved in moving cooling babies. A rigorous standard operating procedure was flexible enough to incorporate the use of local processes and equipment and provided the relevant procedural knowledge to deliver CoolCuddle safely. CONCLUSIONS The CoolCuddle intervention can be implemented safely under the supervision of standard neonatal teams as part of usual practice in diverse NICU settings in England. The importance of having a rigorous standard operating procedure, which can be adapted to support local settings, is highlighted. TRIAL REGISTRATION NUMBER ISRCTN10018542; Results: registered on 30 August 2022.
Collapse
Affiliation(s)
- Lucy Beasant
- Centre for Academic Child Health, University of Bristol, Bristol, UK
| | | | - Jeremy Horwood
- Centre for Academic Primary Care, University of Bristol, Bristol, UK
| | - David Odd
- University Hospital of Wales, Cardiff, UK
| | - Stephanie Stocks
- Neonatal Care Unit, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Denise Parker
- Centre for Academic Child Health, University of Bristol, Bristol, UK
| | - Jenny Ingram
- Centre for Academic Child Health, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Landucci E, Mango D, Carloni S, Mazzantini C, Pellegrini-Giampietro DE, Saidi A, Balduini W, Schiavi E, Tigli L, Pioselli B, Imbimbo BP, Facchinetti F. Beneficial effects of CHF6467, a modified human nerve growth factor, in experimental neonatal hypoxic-ischaemic encephalopathy. Br J Pharmacol 2024. [PMID: 39379341 DOI: 10.1111/bph.17353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Therapeutic hypothermia (TH) has become the standard care to reduce morbidity and mortality in neonates affected by moderate-to-severe hypoxic-ischaemic encephalopathy (HIE). Despite the use of TH for HIE, the incidence of mortality and disabilities remains high. EXPERIMENTAL APPROACH Nerve growth factor (NGF) is a potent neurotrophin, but clinical use is limited by its pain eliciting effects. CHF6467 is a recombinant modified form of human NGF devoid of algogenic activity (painless NGF). KEY RESULTS In rodent hippocampal slices exposed to oxygen and glucose deprivation, CHF6467 protected neurons from death and reverted neurotransmission impairment when combined with hypothermia. In a model of rat neonatal HIE, intranasal CHF6467 (20 μg kg-1) significantly reduced brain infarct volume versus vehicle when delivered 10 min or 3 h after the insult. CHF6467 (20 and 40 μg kg-1, i.n.), significantly decreased brain infarct volume to a similar extent to TH and when combined, showed a synergistic neuroprotective effect. CHF6467 (20 μg kg-1, i.n.) per se and in combination with hypothermia reversed locomotor coordination impairment (Rotarod test) and memory deficits (Y-maze and novel object recognition test) in the neonatal HIE rat model. Intranasal administration of CHF6467 resulted in meaningful concentrations in the brain, blunted HIE-induced mRNA elevation of brain neuroinflammatory markers and, when combined to TH, significantly counteracted the increase in plasma levels of neurofilament light chain, a peripheral marker of neuroaxonal damage. CONCLUSION AND IMPLICATIONS CHF6467 administered intranasally is a promising therapy, in combination with TH, for the treatment of HIE.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | | | - Amira Saidi
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Elisa Schiavi
- Corporate Preclinical R&D, Chiesi Farmaceutici, Parma, Italy
| | - Laura Tigli
- Corporate Preclinical R&D, Chiesi Farmaceutici, Parma, Italy
| | | | - Bruno P Imbimbo
- Corporate Preclinical R&D, Chiesi Farmaceutici, Parma, Italy
| | | |
Collapse
|
9
|
Goto T, Tsurugizawa T, Komaki Y, Takashima I, Iwaki S, Kunori N. Clemastine enhances exercise-induced motor improvement in hypoxic ischemic rats. Brain Res 2024; 1846:149257. [PMID: 39362477 DOI: 10.1016/j.brainres.2024.149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Neonatal hypoxic ischemia (HI) occurs owing to reduced cerebral oxygen levels and perfusion during the perinatal period. Brain injury after HI triggers neurological manifestations such as motor impairment, and the improvement of impaired brain function remains challenging. Recent studies suggest that cortical myelination plays a role in motor learning, but its involvement in motor improvement after HI injury is not well understood. This study aimed to investigate the impact of myelination on motor improvement following neonatal HI injury. We employed a modified Rice-Vannucci model; the right common carotid artery of postnatal day 7 (P7) Wistar rats was isolated and divided, and the rats were then exposed to hypoxic condition (90 min, 8 % O2). A total of 101 rats (66 males) were divided into four groups: trained-HI (n = 38), trained-Sham (n = 16), untrained-HI (n = 31), and untrained-Sham (n = 16). The trained groups underwent rotarod-based exercise training from P22 to P41 (3 days per week). Structural analysis using magnetic resonance imaging and immunohistochemistry (n = 6 per group) revealed increased fractional anisotropy and myelin density in the primary somatosensory cortex of the trained-HI group. We further evaluated the effect of myelination promotion on rotarod performance by administering clemastine, a myelination-promoting drug, via daily intraperitoneal injections. Clemastine did not enhance motor improvement in untrained-HI rats. However, clemastine-administered trained-HI rats (n = 7) exhibited significantly improved motor performance compared to both saline-administered trained-HI rats (n = 11) and clemastine-administered untrained-HI rats (n = 7). These findings suggest that myelination may be a key mechanism in motor improvement after HI injury and that combining exercise training with clemastine administration could be an effective therapeutic strategy for motor improvement following HI injury.
Collapse
Affiliation(s)
- Taichi Goto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Research Fellow of Japan Society for the Promotion of Science (DC2), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yuji Komaki
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Department of Information, Artificial Intelligence and Data Science, Daiichi Institute of Technology, 7-7-4 Ueno, Taito-ku, Tokyo 110-0005, Japan
| | - Sunao Iwaki
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Nobuo Kunori
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
10
|
Nacarkucuk E, Bernis ME, Bremer AS, Grzelak K, Zweyer M, Maes E, Burkard H, Sabir H. Neuroprotective Effect of Melatonin in a Neonatal Hypoxia-Ischemia Rat Model Is Regulated by the AMPK/mTOR Pathway. J Am Heart Assoc 2024; 13:e036054. [PMID: 39319465 DOI: 10.1161/jaha.124.036054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Melatonin has been shown to be neuroprotective in different animal models of neonatal hypoxic-ischemic brain injury. However, its exact molecular mechanism of action remains unknown. Our aim was to prove melatonin's short- and long-term neuroprotection and investigate its role on the AMPK (AMP-activated protein kinase)/mTOR (mammalian target of rapamycin) pathway following neonatal hypoxic-ischemic brain injury. METHODS AND RESULTS Seven-day-old Wistar rat pups were exposed to hypoxia-ischemia, followed by melatonin or vehicle treatment. Detailed analysis of the AMPK/mTOR/autophagy pathway, short- and long-term neuroprotection, myelination, and oligodendrogenesis was performed at different time points. At 7 days after hypoxia-ischemia, melatonin-treated animals showed a significant decrease in tissue loss, increased oligodendrogenesis, and myelination. Long-term neurobehavioral results showed significant motor improvement following melatonin treatment. Molecular pathway analysis showed a decrease in the AMPK expression, with a significant increase at mTOR's downstream substrates, and a significant decrease at the autophagy marker levels in the melatonin group compared with the vehicle group. CONCLUSIONS Melatonin treatment reduced brain area loss and promoted oligodendrogenesis with a clear improvement of motor function. We found that melatonin associated neuroprotection is regulated via the AMPK/mTOR/autophagy pathway. Considering the beneficial effects of melatonin and the results of our study, melatonin seems to be an optimal candidate for the treatment of newborns with hypoxic-ischemic brain injury in high- as well as in low- and middle-income countries.
Collapse
Affiliation(s)
- Efe Nacarkucuk
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Maria E Bernis
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Anna-Sophie Bremer
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Kora Grzelak
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Elke Maes
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Hannah Burkard
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| |
Collapse
|
11
|
Arruda BP, Cruz-Ochoa NA, Serra FT, Xavier GF, Nogueira MI, Takada SH. Melatonin attenuates developmental deficits and prevents hippocampal injuries in male and female rats subjected to neonatal anoxia. Int J Dev Neurosci 2024; 84:520-532. [PMID: 38858858 DOI: 10.1002/jdn.10351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Hypoxia in preterm infants is a clinical condition that has been associated with cognitive and behavioral disturbances for which treatment strategies are strongly required. Melatonin administration following brain insults has been considered a promising therapeutic strategy due to its antioxidant and anti-inflammatory effects. Not surprisingly, it has been extensively studied for preventing disturbances following brain injury. This study evaluated the effects of melatonin on developmental disturbances, memory disruption, and hippocampal cell loss induced by neonatal anoxia in rats. Neonatal Wistar rats were subjected to anoxia and subsequently treated with melatonin. Later, maturation of physical characteristics, ontogeny of reflexes, learning and memory in the Morris water maze (MWM), and estimates of the number of hippocampal neurons, were evaluated. Melatonin treatment attenuated (1) female anoxia-induced delay in superior incisor eruption, (2) female anoxia-induced vibrissae placement reflexes, and (3) male and female anoxia-induced hippocampal neuronal loss. Melatonin also promoted an increase (5) in swimming speeds in the MWM. In addition, PCA analysis showed positive associations between the acoustic startle, auditory canal open, and free fall righting parameters and negative associations between the male vehicle anoxia group and the male melatonin anoxia group. Therefore, melatonin treatment attenuates both anoxia-induced developmental deficits and hippocampal neuronal loss.
Collapse
Affiliation(s)
- Bruna Petrucelli Arruda
- Neurosciences Laboratory, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Natalia Andrea Cruz-Ochoa
- Neurosciences Laboratory, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernando Tadeu Serra
- Santos Young Doctor Program, Municipal Secretary of Education of Santos, Santos, SP, Brazil
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Inês Nogueira
- Neurosciences Laboratory, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvia Honda Takada
- Neurogenetic Laboratory, Mathematic, Computation and Cognition Center, Neuroscience and Cognition Program, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
12
|
Millan I, Pérez S, Rius-Pérez S, Asensi MÁ, Vento M, García-Verdugo JM, Torres-Cuevas I. Postnatal hypoxic preconditioning attenuates lung damage from hyperoxia in newborn mice. Pediatr Res 2024:10.1038/s41390-024-03457-0. [PMID: 39317699 DOI: 10.1038/s41390-024-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Preterm infants frequently require oxygen supplementation at birth. However, preterm lung is especially sensible to structural and functional damage caused by oxygen free radicals. METHODS The adaptive mechanisms implied in the fetal-neonatal transition from a lower to a higher oxygen environment were evaluated in a murine model using a custom-designed oxy-chamber. Pregnant mice were randomly assigned to deliver in 14% (hypoxic preconditioning group) or 21% (normoxic group) oxygen environment. Eight hours after birth FiO2 was increased to 100% for 60 min and then switched to 21% in both groups. A control group remained in 21% oxygen throughout the study. RESULTS Mice in the normoxic group exhibited thinning of the alveolar septa, increased cell death, increased vascular damage, and decreased synthesis of pulmonary surfactant. However, lung histology, lamellar bodies microstructure, and surfactant integrity were preserved in the hypoxic preconditioning group after the hyperoxic insult. CONCLUSION Postnatal hyperoxia has detrimental effects on lung structure and function when preceded by normoxia compared to controls. However, postnatal hypoxic preconditioning mitigates lung damage caused by a hyperoxic insult. IMPACT Hypoxic preconditioning, implemented shortly after birth mitigates lung damage caused by postnatal supplemental oxygenation. The study introduces an experimental mice model to investigate the effects of hypoxic preconditioning and its effects on lung development. This model enables researchers to delve into the intricate processes involved in postnatal lung maturation. Our findings suggest that hypoxic preconditioning may reduce lung parenchymal damage and increase pulmonary surfactant synthesis in reoxygenation strategies during postnatal care.
Collapse
Affiliation(s)
- Iván Millan
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, Paterna, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, University of Valencia, Burjassot, Spain
| | - Sergio Rius-Pérez
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | | | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain.
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, Paterna, Valencia, Spain
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
- Department of Physiology, University of Valencia, Burjassot, Spain.
| |
Collapse
|
13
|
Alart JA, Álvarez A, Catalan A, Herrero de la Parte B, Alonso-Alconada D. Dimethyl Fumarate Strongly Ameliorates Gray and White Matter Brain Injury and Modulates Glial Activation after Severe Hypoxia-Ischemia in Neonatal Rats. Antioxidants (Basel) 2024; 13:1122. [PMID: 39334781 PMCID: PMC11428775 DOI: 10.3390/antiox13091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Neonatal hypoxia-ischemia is a major cause of infant death and disability. The only clinically accepted treatment is therapeutic hypothermia; however, cooling is less effective in the most severely encephalopathic infants. Here, we wanted to test the neuroprotective effect of the antioxidant dimethyl fumarate after severe hypoxia-ischemia in neonatal rats. We used a modified Rice-Vannucci model to generate severe hypoxic-ischemic brain damage in day 7 postnatal rats, which were randomized into four experimental groups: Sham, Sham + DMF, non-treated HI, and HI + DMF. We analyzed brain tissue loss, global and regional (cortex and hippocampus) neuropathological scores, white matter injury, and microglial and astroglial reactivity. Compared to non-treated HI animals, HI + DMF pups showed a reduced brain area loss (p = 0.0031), an improved neuropathological score (p = 0.0016), reduced white matter injuries by preserving myelin tracts (p < 0.001), and diminished astroglial (p < 0.001) and microglial (p < 0.01) activation. After severe hypoxia-ischemia in neonatal rats, DMF induced a strong neuroprotective response, reducing cerebral infarction, gray and white matter damage, and astroglial and microglial activation. Although further molecular studies are needed and its translation to human babies would need to evaluate the molecule in piglets or lambs, DMF may be a potential treatment against neonatal encephalopathy.
Collapse
Affiliation(s)
- Jon Ander Alart
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonia Álvarez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ana Catalan
- Psychiatry Department, OSI Bilbao-Basurto, Basurto University Hospital, 48013 Bilbao, Spain
- Neuroscience Department, University of the Basque Country (UPV/EHU), 48013 Leioa, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, 28007 Madrid, Spain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
14
|
Radtke BM, Lipowska M, Bieleninik Ł, Łada-Maśko A, Krempla-Patron K, Nowicki R, Gradys G, Brykała A, Pacuła J, Arasimowicz M, Sajewicz-Radtke U. Developmental dyslexia in children with perinatal exposure to hypoxia: A systematic review. PLoS One 2024; 19:e0308497. [PMID: 39264879 PMCID: PMC11392324 DOI: 10.1371/journal.pone.0308497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/24/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Research on a health-related event at the stage of labour and the occurrence of adverse outcomes at the school age has provided inconclusive results. Thus far, no systematic reviews have been conducted. Thus, the objective of this study is to investigate the association between hypoxia during pregnancy or delivery and the subsequent occurrence of a developmental dyslexia in school-age children. METHODS We used a standard search strategy of electronic databases (PubMed, PsycINFO, Web of Science, EMBASE, and Cochrane Library) and handsearching. We included observational studies (cohort studies, case-control studies) that consider as an exposure the presence of hypoxia during pregnancy or delivery, and as an outcome, developmental dyslexia in school-age children. Two reviewers independently conducted the search and determined eligibility, which was not restricted by language or year of publication. RESULTS The search took place until 1 April 2023. Of the 1,336 abstracts screened, 6 were assessed for eligibility. Of the six eligible studies, no studies met the pre-specified eligibly criteria. CONCLUSIONS We were unable to assess the association between hypoxia and developmental dyslexia, as no eligible studies were found. Thus, the association between hypoxia during pregnancy or delivery and dyslexia in school-age children remains unknown.
Collapse
Affiliation(s)
- Bartosz M Radtke
- Laboratory of Psychological and Educational Tests, Gdańsk, Poland
| | | | - Łucja Bieleninik
- Institute of Psychology, University of Gdansk, Gdańsk, Poland
- Institute of Pedagogy and Languages, University of Applied Sciences in Elbląg, Elbląg, Poland
- The Grieg Academy Music Therapy Research Centre, NORCE Norwegian Research Centre, Bergen, Norway
| | | | | | - Rafał Nowicki
- Laboratory of Psychological and Educational Tests, Gdańsk, Poland
| | - Gabriela Gradys
- Institute of Psychology, University of Gdansk, Gdańsk, Poland
| | - Anna Brykała
- Institute of Psychology, University of Gdansk, Gdańsk, Poland
| | - Judyta Pacuła
- Institute of Psychology, University of Gdansk, Gdańsk, Poland
| | | | | |
Collapse
|
15
|
Guo Y, Chen Y, Zhang H, Zhang Q, Jin M, Wang S, Du X, Du Y, Xu D, Wang M, Li L, Luo L. Emodin attenuates hypoxic-ischemic brain damage by inhibiting neuronal apoptosis in neonatal mice. Neuroscience 2024; 554:83-95. [PMID: 38944149 DOI: 10.1016/j.neuroscience.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) can lead to mortality and severe neurological dysfunction. Emodin is a natural anthraquinone derivative that is easy to obtain and has good neuroprotective effects. This study aimed to investigate the neuroprotective effect of emodin on neonatal mouse HIBD. The modified Rice-Vannucci method was used to induce HIBD in mouse pups. Eighty postnatal 7-day (P7) C57BL/6 neonatal mice were randomly divided into the sham group (sham), vehicle group (vehicle), and emodin group (emodin). TTC staining and whole-brain morphology were used to evaluate the infarct volume and morphology of the brain tissue. The condition of the neurons was observed through Nissl staining, HE staining, FJC staining, immunofluorescence and Western blot for NeuN, IBA-1, and GFAP. The physiological status of the mice was evaluated using weight measurements. The neural function of the mice was assessed using the negative geotaxis test, righting reflex test, and grip test. TUNEL staining was used to detect apoptosis in brain cells. Finally, Western blot and immunofluorescence were used to detect the expression levels of apoptosis-related proteins, such as P53, cleaved caspase-3, Bax and Bcl-2, in the brain. Experiments have shown that emodin can reduce the cerebral infarct volume, brain oedema, neuronal apoptosis, and degeneration and improve the reconstruction of brain tissue morphology, neuronal morphology, physiological conditions, and neural function. Additionally, emodin inhibited the expression of proapoptotic proteins such as P53, Bax and cleaved caspase-3 and promoted the expression of the antiapoptotic protein Bcl-2. Emodin attenuates HIBD by inhibiting neuronal apoptosis in neonatal mice.
Collapse
Affiliation(s)
- Yingqi Guo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingxiu Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huimei Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qi Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingrui Jin
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sijia Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinyu Du
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yunjing Du
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Danyang Xu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Lixia Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Li Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Medical Association, Guangzhou 510180, China.
| |
Collapse
|
16
|
Reyes-Corral M, Gil-González L, González-Díaz Á, Tovar-Luzón J, Ayuso MI, Lao-Pérez M, Montaner J, de la Puerta R, Fernández-Torres R, Ybot-González P. Pretreatment with oleuropein protects the neonatal brain from hypoxia-ischemia by inhibiting apoptosis and neuroinflammation. J Cereb Blood Flow Metab 2024:271678X241270237. [PMID: 39157939 DOI: 10.1177/0271678x241270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Hypoxic-ischemic (HI) encephalopathy is a cerebrovascular injury caused by oxygen deprivation to the brain and remains a major cause of neonatal mortality and morbidity worldwide. Therapeutic hypothermia is the current standard of care but it does not provide complete neuroprotection. Our aim was to investigate the neuroprotective effect of oleuropein (Ole) in a neonatal (seven-day-old) mouse model of HI. Ole, a secoiridoid found in olive leaves, has previously shown to reduce damage against cerebral and other ischemia/reperfusion injuries. Here, we administered Ole as a pretreatment prior to HI induction at 20 or 100 mg/kg. A week after HI, Ole significantly reduced the infarct area and the histological damage as well as white matter injury, by preserving myelination, microglial activation and the astroglial reactive response. Twenty-four hours after HI, Ole reduced the overexpression of caspase-3 and the proinflammatory cytokines IL-6 and TNF-α. Moreover, using UPLC-MS/MS we found that maternal supplementation with Ole during pregnancy and/or lactation led to the accumulation of its metabolite hydroxytyrosol in the brains of the offspring. Overall, our results indicate that pretreatment with Ole confers neuroprotection and can prevent HI-induced brain damage by modulating apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Laura Gil-González
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Ángela González-Díaz
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Javier Tovar-Luzón
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - María Irene Ayuso
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | - Miguel Lao-Pérez
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Joan Montaner
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rut Fernández-Torres
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Patricia Ybot-González
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- Spanish National Research Council (CSIC), Spain
| |
Collapse
|
17
|
Mácha H, Luptáková D, Juránek I, Andrén PE, Havlíček V. Hypoxic-Ischemic Insult Alters Polyamine and Neurotransmitter Abundance in the Specific Neonatal Rat Brain Subregions. ACS Chem Neurosci 2024; 15:2811-2821. [PMID: 39058922 PMCID: PMC11311127 DOI: 10.1021/acschemneuro.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain insult is a major cause of neonatal mortality and morbidity. To assess the underlying pathological mechanisms, we mapped the spatiotemporal changes in polyamine, amino acid, and neurotransmitter levels, following HI insult (by the Rice-Vannucci method) in the brains of seven-day-old rat pups. Matrix-assisted laser desorption/ionization mass spectrometry imaging of chemically modified small-molecule metabolites by 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide revealed critical HI-related metabolomic changes of 22 metabolites in 14 rat brain subregions, much earlier than light microscopy detected signs of neuronal damage. For the first time, we demonstrated excessive polyamine oxidation and accumulation of 3-aminopropanal in HI neonatal brains, which was later accompanied by neuronal apoptosis enhanced by increases in glycine and norepinephrine in critically affected brain regions. Specifically, putrescine, cadaverine, and 3-aminopropanal increased significantly as early as 12 h postinsult, mainly in motor and somatosensory cortex, hippocampus, and midbrain, followed by an increase in norepinephrine 24 h postinsult, which was predominant in the caudate putamen, the region most vulnerable to HI. The decrease of γ-aminobutyric acid (GABA) and the continuous dysregulation of the GABAergic system together with low taurine levels up to 36 h sustained progressive neurodegenerative cellular processes. The molecular alterations presented here at the subregional rat brain level provided unprecedented insight into early metabolomic changes in HI-insulted neonatal brains, which may further aid in the identification of novel therapeutic targets for the treatment of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Hynek Mácha
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Dominika Luptáková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, Husargatan 3, Uppsala 75124, Sweden
- Biomedical
Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovak Republic
| | - Ivo Juránek
- Centre
of Experimental Medicine, Slovak Academy
of Sciences, Dúbravská
Cesta 9, 841 04 Bratislava, Slovak Republic
| | - Per E. Andrén
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, Husargatan 3, Uppsala 75124, Sweden
| | - Vladimír Havlíček
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| |
Collapse
|
18
|
Hermans EC, de Theije CGM, Nijboer CH, Achterberg EJM. Ultrasonic vocalization emission is altered following neonatal hypoxic-ischemic brain injury in mice. Behav Brain Res 2024; 471:115113. [PMID: 38878973 DOI: 10.1016/j.bbr.2024.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 08/03/2024]
Abstract
Neonatal hypoxic-ischemic (HI) brain injury leads to cognitive impairments including social communication disabilities. Current treatments do not sufficiently target these impairments, therefore new tools are needed to examine social communication in models for neonatal brain injury. Ultrasonic vocalizations (USVs) during early life show potential as a measurement for social development and reflect landmark developmental stages in neonatal mice. However, changes in USV emission early after HI injury have not been found yet. Our current study examines USV patterns and classes in the first 3 days after HI injury. C57Bl/6 mice were subjected to HI on postnatal day (P)9 and USVs were recorded between P10 and P12. Audio files were analyzed using the VocalMat automated tool. HI-injured mice emitted less USVs, for shorter durations, and at a higher frequency compared to control (sham-operated) littermates. The HI-induced alterations in USVs were most distinct at P10 and in the frequency range of 50-75 kHz. At P10 HI-injured mouse pups also produced different ratios of USV class types compared to control littermates. Moreover, alterations in the duration and frequency were specific to certain USV classes in HI animals compared to controls. Injury in the striatum and hippocampus contributed most to alterations in USV communication after HI. Overall, neonatal HI injury leads to USV alterations in newborn mice which could be used as a tool to study early HI-related social communication deficits.
Collapse
Affiliation(s)
- Eva C Hermans
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, the Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, the Netherlands
| | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, the Netherlands
| | - E J Marijke Achterberg
- Department of Population Health Sciences, Unit Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Leavy A, Phelan J, Jimenez-Mateos EM. Contribution of microglia to the epileptiform activity that results from neonatal hypoxia. Neuropharmacology 2024; 253:109968. [PMID: 38692453 DOI: 10.1016/j.neuropharm.2024.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Microglia are described as the immune cells of the brain, their immune properties have been extensively studied since first described, however, their neural functions have only been explored over the last decade. Microglia have an important role in maintaining homeostasis in the central nervous system by surveying their surroundings to detect pathogens or damage cells. While these are the classical functions described for microglia, more recently their neural functions have been defined; they are critical to the maturation of neurons during embryonic and postnatal development, phagocytic microglia remove excess synapses during development, a process called synaptic pruning, which is important to overall neural maturation. Furthermore, microglia can respond to neuronal activity and, together with astrocytes, can regulate neural activity, contributing to the equilibrium between excitation and inhibition through a feedback loop. Hypoxia at birth is a serious neurological condition that disrupts normal brain function resulting in seizures and epilepsy later in life. Evidence has shown that microglia may contribute to this hyperexcitability after neonatal hypoxia. This review will summarize the existing data on the role of microglia in the pathogenesis of neonatal hypoxia and the plausible mechanisms that contribute to the development of hyperexcitability after hypoxia in neonates. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Aisling Leavy
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Jessie Phelan
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Eva M Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Kilicdag H, Akillioglu K, Kilic Bagır E, Kose S, Erdogan S. Neuroserpin As an Adjuvant Therapy for Hypothermia on Brain Injury in Neonatal Hypoxic-Ischemic Rats. Am J Perinatol 2024; 41:1538-1543. [PMID: 37611639 DOI: 10.1055/a-2159-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
OBJECTIVE We aimed to assess the effects of neuroserpin and its combination with hypothermia on hypoxic-ischemic (HI) brain injury in neonatal rats. Neuroserpin is an axon-secreted serine protease inhibitor and is important for brain development, neuronal survival, and synaptic plasticity. STUDY DESIGN Male Wistar-Albino rats on postnatal day 7 (P7) were randomly divided into five groups: sham group (n = 10), (HI; n = 10), hypoxic-ischemic hypothermia (HIH; n = 10), hypoxic-ischemic neuroserpin (HIN; n = 10), and hypoxic-ischemic neuroserpin-hypothermia (HINH; n = 10). The P7 rat brain's maturation is similar to a late preterm human brain at 34 to 36 weeks of gestation. HI was induced in rats on P7 as previously described. A single dose of 0.2 µM neuroserpin (HINH and HIN) or an equivalent volume of phosphate-buffered saline (sham, HIH, and HI) was administered intraventricularly by a Hamilton syringe immediately after hypoxia. In the follow-up, pups were subjected to systemic hypothermia or normothermia for 2 hours. Euthanasia was performed for histopathological evaluation on P10. Apoptosis was detected by caspase-3 activity and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining and was counted in the hippocampus. RESULTS In comparison to the HI group, the TUNEL-positive and caspase-3-positive neurons in the sham, HIN, HIH, and HINH groups were considerably lower (13.4 ± 1.0 vs. 1.9 ± 0.9, 6.0 ± 0.9, 5.3 ± 1.6, and 4.0 ± 1.1; p < 0.001) and (13.5 ± 1.7 vs. 1.2 ± 0.7, 9.1 ± 2.7, 4.8 ± 1.0, and 3.9 ± 1.6; p < 0.001). HIN, HIH, and HINH, compared to the sham group, showed more TUNEL-positive and caspase-3-positive neurons (6.0 ± 0.9, 5.3 ± 1.6, 4.0 ± 1.1 vs. 1.9 ± 0.9 and 9.1 ± 2.7, 4.8 ± 1.0, 3.9 ± 1.6 vs. 1.2 ± 0.7; p < 0.001). The HINH group (synergistic effect) had significantly fewer TUNEL-positive neurons and caspase-3-positive neurons than the HIN group (4.0 ± 1.1 vs. 6.0 ± 0.9 and 3.9 ± 1.6 vs. 9.1 ± 2.7; p < 0.001). CONCLUSION Our study showed that both neuroserpin alone and as an adjuvant treatment for hypothermia may have a neuroprotective effect on brain injury. KEY POINTS · Neuroserpin decreased brain injury.. · Neuroserpin showed a synergistic effect when used as an adjuvant treatment for hypothermia.. · The neuroprotective effect of neuroserpine was related to its antiapoptotic properties..
Collapse
Affiliation(s)
- Hasan Kilicdag
- Division of Neonatology, Department of Pediatrics, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Kubra Akillioglu
- Division of Neurophysiology, Department of Physiology, Medical Faculty, University of Cukurova, Turkey
| | - Emine Kilic Bagır
- Department of Pathology, Cukurova University, Medical Faculty, Adana, Turkey
| | - Seda Kose
- Division of Neurophysiology, Department of Physiology, Medical Faculty, University of Cukurova, Turkey
| | - Seyda Erdogan
- Department of Pathology, Cukurova University, Medical Faculty, Adana, Turkey
| |
Collapse
|
21
|
Merter OS, Dertli S, Taskin E, Aydin M, Benli S. Effects of endotracheal suctioning duration cerebral oxygenation in preterm infants. J Clin Nurs 2024. [PMID: 39073065 DOI: 10.1111/jocn.17382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/01/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
AIM This study evaluates the effects of endotracheal suctioning duration on cerebral oxygenation and physiological parameters in preterm infants in intensive care. DESIGN Prospective and observational s tudy. METHOD In this study, 51 preterm infants born at 28-34 weeks of gestation in NICU were evaluated. Cerebral oxygenation was measured before, during, and after endotracheal suctioning with near-infrared spectroscopy. Pain levels of the infants were with N-PASS scale. RESULTS A negative correlation was found between the lowest cerebral oxygenation value during endotracheal suctioning and the duration of endotracheal suctioning. Cerebral oxygenation levels during endotracheal suctioning were lower than pre- and post-endotracheal suctioning levels. Higher cerebral oxygenation was observed in infants whose endotracheal aspiration time was less than 13 s. The duration of endotracheal suctioning was positively correlated with pain and cerebral oxygenation stabilization time. CONCLUSION Prolonged endotracheal suctioning duration negatively affects cerebral oxygenation in preterm infants. The study suggests an optimal endotracheal suctioning duration under 13 s. IMPLICATIONS FOR THE PROFESSION AND/OR PATIENT CARE Properly executed endotracheal suctioning, with the correct technique and knowledge, can alleviate the adverse physiological effects observed in preterm infants and contribute to routine nursing care in intensive care units. REPORTING METHOD This study has been reported in line with STROBE checklists. PATIENT OR PUBLIC CONTRIBUTION No patient or public contribution was required to design or undertake this research. Patients contributed only to the data collection. IMPACT This study contributes to defining the ideal endotracheal aspiration duration, as there is not enough data so far. It showed the effect of prolonged endotracheal aspiration time on cerebral oxygenation, pain and physiological parameters in preterm infants.
Collapse
Affiliation(s)
- Ozlem Selime Merter
- Faculty of Health Sciences Department of Nursing, Firat University, Elazig, 23119, Turkey
| | - Semiha Dertli
- Faculty of Health Sciences Department of Nursing, Firat University, Elazig, 23119, Turkey
| | - Erdal Taskin
- Division of Neonatology, Department of Pediatrics, University of Firat, Elazig, Turkey
| | - Mustafa Aydin
- Division of Neonatology, Department of Pediatrics, University of Firat, Elazig, Turkey
| | - Samet Benli
- Neonatology Department, Cengiz Gokcek Gynecology and Pediatrics Hospital, Gaziantep, Turkey
| |
Collapse
|
22
|
Belenichev I, Aliyeva O, Burlaka B, Burlaka K, Kuchkovskyi O, Savchenko D, Oksenych V, Kamyshnyi O. Development and Optimization of Nasal Composition of a Neuroprotective Agent for Use in Neonatology after Prenatal Hypoxia. Pharmaceuticals (Basel) 2024; 17:990. [PMID: 39204095 PMCID: PMC11356968 DOI: 10.3390/ph17080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The intranasal route of drug administration is characterized by high bioavailability and is considered promising for rapid delivery of drugs with systemic action to the central nervous system (CNS), bypassing the blood-brain barrier. This is particularly important for the use of neuroprotective drugs in the treatment of brain tissue damage in infants caused by the effects of intrauterine hypoxia. The creation of new dosage forms for neonatology using mathematical technologies and special software in pharmaceutical development allows for the creation of cerebroprotective drugs with controlled pharmaco-technological properties, thus reducing time and resources for necessary research. We developed a new nasal gel formulation with Angiolin using a Box-Behnken experiment design for the therapy of prenatal CNS damage. It was found that the consistency characteristics of the nasal gel were significantly influenced by the gelling agent and mucoadhesive component-sodium salt of carboxymethylcellulose. We optimized the composition of nasal gel formulation with Angiolin using the formed models and relationships between the factors. The optimized nasal gel composition demonstrated satisfactory thixotropic properties. The 1% gel for neuroprotection with Angiolin, developed for intranasal administration, meets all safety requirements for this group of drug forms, showing low toxicity and no local irritant or allergic effects.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine; (I.B.)
| | - Olena Aliyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Bogdan Burlaka
- Department of Medicines Technology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Kristina Burlaka
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Oleh Kuchkovskyi
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine; (I.B.)
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
23
|
Zirpoli H, Bernis ME, Sabir H, Manual Kollareth DJ, Hamilton JA, Huang N, Ng J, Sosunov SA, Gaebler B, Ten VS, Deckelbaum RJ. Omega-3 fatty acid diglyceride emulsions as a novel injectable acute therapeutic in neonatal hypoxic-ischemic brain injury. Biomed Pharmacother 2024; 175:116749. [PMID: 38761420 PMCID: PMC11156760 DOI: 10.1016/j.biopha.2024.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE), resulting from a lack of blood flow and oxygen before or during newborn delivery, is a leading cause of cerebral palsy and neurological disability in children. Therapeutic hypothermia (TH), the current standard of care in HIE, is only beneficial in 1 of 7-8 cases. Therefore, there is a critical need for more efficient treatments. We have previously reported that omega-3 (n-3) fatty acids (FA) carried by triglyceride (TG) lipid emulsions provide neuroprotection after experimental hypoxic-ischemic (HI) injury in neonatal mice. Herein, we propose a novel acute therapeutic approach using an n-3 diglyceride (DG) lipid emulsions. Importantly, n-3 DG preparations had much smaller particle size compared to commercially available or lab-made n-3 TG emulsions. We showed that n-3 DG molecules have the advantage of incorporating at substantially higher levels than n-3 TG into an in vitro model of phospholipid membranes. We also observed that n-3 DG after parenteral administration in neonatal mice reaches the bloodstream more rapidly than n-3 TG. Using neonatal HI brain injury models in mice and rats, we found that n-3 DG emulsions provide superior neuroprotection than n-3 TG emulsions or TH in decreasing brain infarct size. Additionally, we found that n-3 DGs attenuate microgliosis and astrogliosis. Thus, n-3 DG emulsions are a superior, promising, and novel therapy for treating HIE.
Collapse
Affiliation(s)
- Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Maria Eugenia Bernis
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn 53127, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn 53127, Germany
| | - Denny Joseph Manual Kollareth
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James A Hamilton
- Department of Physiology & Biophysics, Department of Biomedical Engineering, Boston University School of Medicine, Boston, MA 02215, USA
| | - Nasi Huang
- Department of Physiology & Biophysics, Department of Biomedical Engineering, Boston University School of Medicine, Boston, MA 02215, USA
| | - Jesse Ng
- Department of Physiology & Biophysics, Department of Biomedical Engineering, Boston University School of Medicine, Boston, MA 02215, USA
| | - Sergey A Sosunov
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Neonatology, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - Vadim S Ten
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Neonatology, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
24
|
Srivastava T, Nguyen H, Haden G, Diba P, Sowa S, LaNguyen N, Reed-Dustin W, Zhu W, Gong X, Harris EN, Baltan S, Back SA. TSG-6-Mediated Extracellular Matrix Modifications Regulate Hypoxic-Ischemic Brain Injury. J Neurosci 2024; 44:e2215232024. [PMID: 38569926 PMCID: PMC11112645 DOI: 10.1523/jneurosci.2215-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Proteoglycans containing link domains modify the extracellular matrix (ECM) to regulate cellular homeostasis and can also sensitize tissues/organs to injury and stress. Hypoxic-ischemic (H-I) injury disrupts cellular homeostasis by activating inflammation and attenuating regeneration and repair pathways. In the brain, the main component of the ECM is the glycosaminoglycan hyaluronic acid (HA), but whether HA modifications of the ECM regulate cellular homeostasis and response to H-I injury is not known. In this report, employing both male and female mice, we demonstrate that link-domain-containing proteoglycan, TNFα-stimulated gene-6 (TSG-6), is active in the brain from birth onward and differentially modifies ECM HA during discrete neurodevelopmental windows. ECM HA modification by TSG-6 enables it to serve as a developmental switch to regulate the activity of the Hippo pathway effector protein, yes-associated protein 1 (YAP1), in the maturing brain and in response to H-I injury. Mice that lack TSG-6 expression display dysregulated expression of YAP1 targets, excitatory amino acid transporter 1 (EAAT1; glutamate-aspartate transporter) and 2 (EAAT2; glutamate transporter-1). Dysregulation of YAP1 activation in TSG-6-/- mice coincides with age- and sex-dependent sensitization of the brain to H-I injury such that 1-week-old neonates display an anti-inflammatory response in contrast to an enhanced proinflammatory injury reaction in 3-month-old adult males but not females. Our findings thus support that a key regulator of age- and sex-dependent H-I injury response in the mouse brain is modulation of the Hippo-YAP1 pathway by TSG-6-dependent ECM modifications.
Collapse
Affiliation(s)
- Taasin Srivastava
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Hung Nguyen
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Gage Haden
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Parham Diba
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Steven Sowa
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Norah LaNguyen
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - William Reed-Dustin
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Wenbin Zhu
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Xi Gong
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Selva Baltan
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Stephen A Back
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
- Department of Neurology, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| |
Collapse
|
25
|
Yang Y, Li Y, Yang W, Yang X, Luo M, Qin L, Zhu J. Protecting effects of 4-octyl itaconate on neonatal hypoxic-ischemic encephalopathy via Nrf2 pathway in astrocytes. J Neuroinflammation 2024; 21:132. [PMID: 38760862 PMCID: PMC11102208 DOI: 10.1186/s12974-024-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most common neurological problems occurring in the perinatal period. However, there still is not a promising approach to reduce long-term neurodevelopmental outcomes of HIE. Recently, itaconate has been found to exhibit anti-oxidative and anti-inflammatory effects. However, the therapeutic efficacy of itaconate in HIE remains inconclusive. Therefore, this study attempts to explore the pathophysiological mechanisms of oxidative stress and inflammatory responses in HIE as well as the potential therapeutic role of a derivative of itaconate, 4-octyl itaconate (4OI). METHODS We used 7-day-old mice to induce hypoxic-ischemic (HI) model by right common carotid artery ligation followed by 1 h of hypoxia. Behavioral experiments including the Y-maze and novel object recognition test were performed on HI mice at P60 to evaluate long-term neurodevelopmental outcomes. We employed an approach combining non-targeted metabolomics with transcriptomics to screen alterations in metabolic profiles and gene expression in the hippocampal tissue of the mice at 8 h after hypoxia. Immunofluorescence staining and RT-PCR were used to evaluate the pathological changes in brain tissue cells and the expression of mRNA and proteins. 4OI was intraperitoneally injected into HI model mice to assess its anti-inflammatory and antioxidant effects. BV2 and C8D1A cells were cultured in vitro to study the effect of 4OI on the expression and nuclear translocation of Nrf2. We also used Nrf2-siRNA to further validate 4OI-induced Nrf2 pathway in astrocytes. RESULTS We found that in the acute phase of HI, there was an accumulation of pyruvate and lactate in the hippocampal tissue, accompanied by oxidative stress and pro-inflammatory, as well as increased expression of antioxidative stress and anti-inflammatory genes. Treatment of 4OI could inhibit activation and proliferation of microglial cells and astrocytes, reduce neuronal death and relieve cognitive dysfunction in HI mice. Furthermore, 4OI enhanced nuclear factor erythroid-2-related factor (Nfe2l2; Nrf2) expression and nuclear translocation in astrocytes, reduced pro-inflammatory cytokine production, and increased antioxidant enzyme expression. CONCLUSION Our study demonstrates that 4OI has a potential therapeutic effect on neuronal damage and cognitive deficits in HIE, potentially through the modulation of inflammation and oxidative stress pathways by Nrf2 in astrocytes.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Li
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenyi Yang
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueying Yang
- Department of Physiology, China Medical University, Shenyang, Liaoning, China
| | - Man Luo
- Department of Anesthesiology, Shenzhen Cancer Hospital, Shenzhen, China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang, Liaoning, China.
| | - Junchao Zhu
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
26
|
Maïza A, Hamoudi R, Mabondzo A. Targeting the Multiple Complex Processes of Hypoxia-Ischemia to Achieve Neuroprotection. Int J Mol Sci 2024; 25:5449. [PMID: 38791487 PMCID: PMC11121719 DOI: 10.3390/ijms25105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of newborn brain damage stemming from a lack of oxygenated blood flow in the neonatal period. Twenty-five to fifty percent of asphyxiated infants who develop HIE die in the neonatal period, and about sixty percent of survivors develop long-term neurological disabilities. From the first minutes to months after the injury, a cascade of events occurs, leading to blood-brain barrier (BBB) opening, neuronal death and inflammation. To date, the only approach proposed in some cases is therapeutic hypothermia (TH). Unfortunately, TH is only partially protective and is not applicable to all neonates. This review synthesizes current knowledge on the basic molecular mechanisms of brain damage in hypoxia-ischemia (HI) and on the different therapeutic strategies in HI that have been used and explores a major limitation of unsuccessful therapeutic approaches.
Collapse
Affiliation(s)
- Auriane Maïza
- CEA, DMTS, SPI, Neurovascular Unit Research & Therapeutic Innovation Laboratory, Paris-Saclay University, CEDEX 91191 Gif-sur-Yvette, France;
| | - Rifat Hamoudi
- Center of Excellence of Precision Medicine, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
| | - Aloïse Mabondzo
- CEA, DMTS, SPI, Neurovascular Unit Research & Therapeutic Innovation Laboratory, Paris-Saclay University, CEDEX 91191 Gif-sur-Yvette, France;
| |
Collapse
|
27
|
Huo L, Fu J, Wang S, Wang H, Liu X. Emerging ferroptosis inhibitors as a novel therapeutic strategy for the treatment of neonatal hypoxic-ischemic encephalopathy. Eur J Med Chem 2024; 271:116453. [PMID: 38701713 DOI: 10.1016/j.ejmech.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Neonatal hypoxia-ischemia encephalopathy (NHIE), an oxygen deprivation-mediated brain injury due to birth asphyxia or reduced cerebral blood perfusion, often leads to lifelong sequelae, including seizures, cerebral palsy, and mental retardation. NHIE poses a significant health challenge, as one of the leading causes of neonatal morbidity and mortality globally. Despite this, available therapies are limited. Numerous studies have recently demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by lipid peroxidation (LPO) and iron dyshomeostasis, plays a role in the genesis of NHIE. Moreover, recently discovered compounds have been shown to exert potential therapeutic effects on NHIE by inhibiting ferroptosis. This comprehensive review summarizes the fundamental mechanisms of ferroptosis contributing to NHIE. We focus on various emerging therapeutic compounds exhibiting characteristics of ferroptosis inhibition and delineate their pharmacological benefits for the treatment of NHIE. This review suggests that pharmacological inhibition of ferroptosis may be a potential therapeutic strategy for NHIE.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Shimeng Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| |
Collapse
|
28
|
Mao Y, Lin X, Wu Y, Lu J, Shen J, Zhong S, Jin X, Ma J. Additive interaction between birth asphyxia and febrile seizures on autism spectrum disorder: a population-based study. Mol Autism 2024; 15:17. [PMID: 38600595 PMCID: PMC11007945 DOI: 10.1186/s13229-024-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder that can significantly impact an individual's ability to socially integrate and adapt. It's crucial to identify key factors associated with ASD. Recent studies link both birth asphyxia (BA) and febrile seizures (FS) separately to higher ASD prevalence. However, investigations into the interplay of BA and FS and its relationship with ASD are yet to be conducted. The present study mainly focuses on exploring the interactive effect between BA and FS in the context of ASD. METHODS Utilizing a multi-stage stratified cluster sampling, we initially recruited 84,934 Shanghai children aged 3-12 years old from June 2014 to June 2015, ultimately including 74,251 post-exclusion criteria. A logistic regression model was conducted to estimate the interaction effect after controlling for pertinent covariates. The attributable proportion (AP), the relative excess risk due to interaction (RERI), the synergy index (SI), and multiplicative-scale interaction were computed to determine the interaction effect. RESULTS Among a total of 74,251 children, 192 (0.26%) were diagnosed with ASD. The adjusted odds ratio for ASD in children with BA alone was 3.82 (95% confidence interval [CI] 2.42-6.02), for FS alone 3.06 (95%CI 1.48-6.31), and for comorbid BA and FS 21.18 (95%CI 9.10-49.30), versus children without BA or FS. The additive interaction between BA and FS showed statistical significance (P < 0.001), whereas the multiplicative interaction was statistically insignificant (P > 0.05). LIMITATIONS This study can only demonstrate the relationship between the interaction of BA and FS with ASD but cannot prove causation. Animal brain experimentation is necessary to unravel its neural mechanisms. A larger sample size, ongoing monitoring, and detailed FS classification are needed for confirming BA-FS interaction in ASD. CONCLUSION In this extensive cross-sectional study, both BA and FS were significantly linked to ASD. The coexistence of these factors was associated with an additive increase in ASD prevalence, surpassing the cumulative risk of each individual factor.
Collapse
Affiliation(s)
- Yi Mao
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xindi Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuhan Wu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiayi Lu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiayao Shen
- Department of Nephrology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shaogen Zhong
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xingming Jin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Ma
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
29
|
Velasquez-Minoli JP, Cardona-Ramirez N, Garcia-Arias HF, Restrepo-Restrepo F, Porras-Hurtado GL. Clinical-functional correlation with brain volumetry in severe perinatal asphyxia: a case report. Ital J Pediatr 2024; 50:66. [PMID: 38594715 PMCID: PMC11003057 DOI: 10.1186/s13052-024-01633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) appears in neurological conditions where some brain areas are likely to be injured, such as deep grey matter, basal ganglia area, and white matter subcortical periventricular áreas. Moreover, modeling these brain areas in a newborn is challenging due to significant variability in the intensities associated with HIE conditions. This paper aims to evaluate functional measurements and 3D machine learning models of a given HIE case by correlating the affected brain areas with the pathophysiology and clinical neurodevelopmental. CASE PRESENTATION A comprehensive analysis of a term infant with perinatal asphyxia using longitudinal 3D brain information from Machine Learning Models is presented. The clinical analysis revealed the perinatal asphyxia diagnosis with APGAR <5 at 5 and 10 minutes, umbilical arterial pH of 7.0 BE of -21.2 mmol / L), neonatal seizures, and invasive ventilation mechanics. Therapeutic interventions: physical, occupational, and language neurodevelopmental therapies. Epilepsy treatment: vagus nerve stimulation, levetiracetam, and phenobarbital. Furthermore, the 3D analysis showed how the volume decreases due to age, exhibiting an increasing asymmetry between hemispheres. The results of the basal ganglia area showed that thalamus asymmetry, caudate, and putamen increase over time while globus pallidus decreases. CLINICAL OUTCOMES spastic cerebral palsy, microcephaly, treatment-refractory epilepsy. CONCLUSIONS Slight changes in the basal ganglia and cerebellum require 3D volumetry for detection, as standard MRI examinations cannot fully reveal their complex shape variations. Quantifying these subtle neurodevelopmental changes helps in understanding their clinical implications. Besides, neurophysiological evaluations can boost neuroplasticity in children with neurological sequelae by stimulating new neuronal connections.
Collapse
Affiliation(s)
| | | | - Hernan Felipe Garcia-Arias
- Salud Comfamiliar, Caja de Compensación Familiar de Risaralda, Pereira, Colombia
- SISTEMIC Research Group, Universidad de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
30
|
Bakhtazad S, Ghotbeddin Z, Tabandeh MR, Rahimi K. Alpha-pinene ameliorate behavioral deficit induced by early postnatal hypoxia in the rat: study the inflammatory mechanism. Sci Rep 2024; 14:6416. [PMID: 38494527 PMCID: PMC10944845 DOI: 10.1038/s41598-024-56756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
Neonatal hypoxia has a negative impact on the developing brain during the sensitive period. Inflammation plays a key role in the physiological response to hypoxic stress. Considering the anti-inflammatory properties of alpha-pinene, which has received a lot of attention in recent years, in this research we focused on the impact of alpha-pinene on the behavioral responses and proinflammatory factors in rats subjected to the neonatal hypoxia. This study involved Wistar rats (7-day-old) that were divided into six experimental groups, including a control group, groups receiving different doses of alpha-pinene (5 and 10 mg/kg), a hypoxia group receiving 7% O2 and 93% N2, 90 min duration for 7 days, and groups receiving alpha-pinene 30 min before hypoxia. All injections were done intraperitoneally. The rats were evaluated for proinflammatory factors 24 h after exposure to hypoxia (PND14) and at the end of the behavioral test (PND54). The results showed that hypoxia led to decreased motor activity, coordination, and memory, as well as increased inflammation. However, the rats that received alpha-pinene showed improved behavioral responses and reduced inflammation compared to the hypoxia group (all cases p < 0.05). This suggests that alpha-pinene may have a protective effect via anti-inflammatory properties against the negative impacts of hypoxia on the developing brain.
Collapse
Affiliation(s)
- Sharareh Bakhtazad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
31
|
Kadamani KL, Logan SM, Pamenter ME. Does hypometabolism constrain innate immune defense? Acta Physiol (Oxf) 2024; 240:e14091. [PMID: 38288574 DOI: 10.1111/apha.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/30/2023] [Accepted: 01/01/2024] [Indexed: 02/24/2024]
Abstract
Many animals routinely make energetic trade-offs to adjust to environmental demands and these trade-offs often have significant implications for survival. For example, environmental hypoxia is commonly experienced by many organisms and is an energetically challenging condition because reduced oxygen availability constrains aerobic energy production, which can be lethal. Many hypoxia-tolerant species downregulate metabolic demands when oxygen is limited; however, certain physiological functions are obligatory and must be maintained despite the need to conserve energy in hypoxia. Of particular interest is immunity (including both constitutive and induced immune functions) because mounting an immune response is among the most energetically expensive physiological processes but maintaining immune function is critical for survival in most environments. Intriguingly, physiological responses to hypoxia and pathogens share key molecular regulators such as hypoxia-inducible factor-1α, through which hypoxia can directly activate an immune response. This raises an interesting question: do hypoxia-tolerant species mount an immune response during periods of hypoxia-induced hypometabolism? Unfortunately, surprisingly few studies have examined interactions between immunity and hypometabolism in such species. Therefore, in this review, we consider mechanistic interactions between metabolism and immunity, as well as energetic trade-offs between these two systems, in hypoxia-tolerant animals but also in other models of hypometabolism, including neonates and hibernators. Specifically, we explore the hypothesis that such species have blunted immune responses in hypometabolic conditions and/or use alternative immune pathways when in a hypometabolic state. Evidence to date suggests that hypoxia-tolerant animals do maintain immunity in low oxygen conditions, but that the sensitivity of immune responses may be blunted.
Collapse
Affiliation(s)
- Karen L Kadamani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Samantha M Logan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
Qian H, Chen A, Lin D, Deng J, Gao F, Wei J, Wu X, Huang Y, Cai D, Chen X, Zheng X. Activation of the CD200/CD200R1 axis improves cognitive impairment by enhancing hippocampal neurogenesis via suppression of M1 microglial polarization and neuroinflammation in hypoxic-ischemic neonatal rats. Int Immunopharmacol 2024; 128:111532. [PMID: 38237226 DOI: 10.1016/j.intimp.2024.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Following hypoxic-ischemic brain damage (HIBD), there is a decline in cognitive function; however, there are no effective treatment strategies for this condition in neonates. This study aimed to evaluate the role of the cluster of differentiation 200 (CD200)/CD200R1 axis in cognitive function following HIBD using an established model of HIBD in postnatal day 7 rats. Western blotting analysis was conducted to evaluate the protein expression levels of CD200, CD200R1, proteins associated with the PI3K/Akt-NF-κB pathway, and inflammatory factors such as TNF-α, IL-1β, and IL-6 in the hippocampus. Additionally, double-immunofluorescence labeling was utilized to evaluate M1 microglial polarization and neurogenesis in the hippocampus. To assess the learning and memory function of the experimental rats, the Morris water maze (MWM) test was conducted. HIBDleads to a decrease in the expression of CD200 and CD200R1 proteins in the neonatal rat hippocampus, while simultaneously increasing the expression of TNF-α, IL-6, and IL-1β proteins, ultimately resulting in cognitive impairment. The administration of CD200Fc, a fusion protein of CD200, was found to enhance the expression of p-PI3K and p-Akt, but reduce the expression of p-NF-κB. Additionally, CD200Fc inhibited M1 polarization of microglia, reduced neuroinflammation, improved hippocampal neurogenesis, and mitigated cognitive impairment caused by HIBD in neonatal rats. In contrast, blocking the interaction between CD200 and CD200R1 with the anti-CD200R1 antibody (CD200R1 Ab) exerted the opposite effect. Furthermore, the PI3K specific activator, 740Y-P, significantly increased the expression of p-PI3K and p-Akt, but reduced p-NF-κB expression. It also inhibited M1 polarization of microglia, reduced neuroinflammation, and improved hippocampal neurogenesis and cognitive function in neonatal rats with HIBD. Our findings illustrate that activation of the CD200/CD200R1 axis inhibits the NF-κB-mediated M1 polarization of microglia to improve HIBD-induced cognitive impairment and hippocampal neurogenesis disorder via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Haitao Qian
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Andi Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Daoyi Lin
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianhui Deng
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Jianjie Wei
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Xuyang Wu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yongxin Huang
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Dingliang Cai
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaohui Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China.
| | - Xiaochun Zheng
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China; Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of "Belt and Road", Fuzhou, China.
| |
Collapse
|
33
|
Dave AM, Porter NA, Korade Z, Peeples ES. Effects of Neonatal Hypoxic-Ischemic Injury on Brain Sterol Synthesis and Metabolism. Neuropediatrics 2024; 55:23-31. [PMID: 37871611 DOI: 10.1055/s-0043-1776286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Neonatal hypoxic-ischemic brain injury (HIBI) results from disruptions to blood supply and oxygen in the perinatal brain. The goal of this study was to measure brain sterol metabolites and plasma oxysterols after injury in a neonatal HIBI mouse model to assess for potential therapeutic targets in the brain biochemistry as well as potential circulating diagnostic biomarkers. METHODS Postnatal day 9 CD1-IGS mouse pups were randomized to HIBI induced by carotid artery ligation followed by 30 minutes at 8% oxygen or to sham surgery and normoxia. Brain tissue was collected for sterol analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Plasma was collected for oxysterol analysis by LC-MS/MS. RESULTS There were minimal changes in brain sterol concentrations in the first 72 hours after HIBI. In severely injured brains, there was a significant increase in desmosterol, 7-DHC, 8-DHC, and cholesterol 24 hours after injury in the ipsilateral tissue. Lanosterol, 24-dehydrolathosterol, and 14-dehydrozymostenol decreased in plasma 24 hours after injury. Severe neonatal HIBI was associated with increased cholesterol and sterol precursors in the cortex at 24 hours after injury. CONCLUSIONS Differences in plasma oxysterols were seen at 24 hours but were not present at 30 minutes after injury, suggesting that these sterol intermediates would be of little value as early diagnostic biomarkers.
Collapse
Affiliation(s)
- Amanda M Dave
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Pediatrics, Children's Hospital and Medical Center, Omaha, Nebraska, United States
- Child Health Research Institute, Omaha, Nebraska, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Child Health Research Institute, Omaha, Nebraska, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Pediatrics, Children's Hospital and Medical Center, Omaha, Nebraska, United States
- Child Health Research Institute, Omaha, Nebraska, United States
| |
Collapse
|
34
|
Löscher W. On hidden factors and design-associated errors that may lead to data misinterpretation: An example from preclinical research on the potential seasonality of neonatal seizures. Epilepsia 2024; 65:287-292. [PMID: 38037258 DOI: 10.1111/epi.17840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Unintentional misinterpretation of research in published biomedical reports that is not based on statistical flaws is often underrecognized, despite its possible impact on science, clinical practice, and public health. Important causes of such misinterpretation of scientific data, resulting in either false positive or false negative conclusions, include design-associated errors and hidden (or latent) variables that are not easily recognized during data analysis. Furthermore, cognitive biases, such as the inclination to seek patterns in data whether they exist or not, may lead to misinterpretation of data. Here, we give an example of these problems from hypothesis-driven research on the potential seasonality of neonatal seizures in a rat model of birth asphyxia. This commentary aims to raise awareness among the general scientific audience about the issues related to the presence of unintentional misinterpretation in published reports.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Nikolic B, Trnski-Levak S, Kosic K, Drlje M, Banovac I, Hranilovic D, Jovanov-Milosevic N. Lasting mesothalamic dopamine imbalance and altered exploratory behavior in rats after a mild neonatal hypoxic event. Front Integr Neurosci 2024; 17:1304338. [PMID: 38304737 PMCID: PMC10832065 DOI: 10.3389/fnint.2023.1304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction Adversities during the perinatal period can decrease oxygen supply to the fetal brain, leading to various hypoxic brain injuries, which can compromise the regularity of brain development in different aspects. To examine the catecholaminergic contribution to the link between an early-life hypoxic insult and adolescent behavioral aberrations, we used a previously established rat model of perinatal hypoxia but altered the hypobaric to normobaric conditions. Methods Exploratory and social behavior and learning abilities were tested in 70 rats of both sexes at adolescent age. Inherent vertical locomotion, sensory-motor functions and spatial learning abilities were explored in a subset of animals to clarify the background of altered exploratory behavior. Finally, the concentrations of dopamine (DA) and noradrenaline in midbrain and pons, and the relative expression of genes for DA receptors D1 and D2, and their down-stream targets (DA- and cAMP-regulated phosphoprotein, Mr 32 kDa, the regulatory subunit of protein kinase A, and inhibitor-5 of protein phosphatase 1) in the hippocampus and thalamus were investigated in 31 rats. Results A lesser extent of alterations in exploratory and cognitive aspects of behavior in the present study suggests that normobaric conditions mitigate the hypoxic injury compared to the one obtained under hypobaric conditions. Increased exploratory rearing was the most prominent consequence, with impaired spatial learning in the background. In affected rats, increased midbrain/pons DA content, as well as mRNA levels for DA receptors and their down-stream elements in the thalamus, but not the hippocampus, were found. Conclusion We can conclude that a mild hypoxic event induced long-lasting disbalances in mesothalamic DA signaling, contributing to the observed behavioral alterations. The thalamus was thereby indicated as another structure, besides the well-established striatum, involved in mediating hypoxic effects on behavior through DA signaling.
Collapse
Affiliation(s)
- Barbara Nikolic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Sara Trnski-Levak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Kristina Kosic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Matea Drlje
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Banovac
- Department of Biology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department for Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dubravka Hranilovic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
36
|
Ma RF, Xue LL, Liu JX, Chen L, Xiong LL, Wang TH, Liu F. Transcranial Doppler Ultrasonography detection on cerebral infarction and blood vessels to evaluate hypoxic ischemic encephalopathy modeling. Brain Res 2024; 1822:148580. [PMID: 37709160 DOI: 10.1016/j.brainres.2023.148580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND This study aimed to observe changes of rats' brain infarction and blood vessels during neonatal hypoxic ischemic encephalopathy (NHIE) modeling by Transcranial Doppler Ultrasonography (TCD) so as to assess the feasibility of TCD in evaluating NHIE modeling. METHODS Postnatal 7-days (d)-old Sprague Dawley (SD) rats were divided into the Sham group, hypoxic-ischemic (HI) group, and hypoxia (H) group. Rats in the HI group and H group were subjected to hypoxia-1 hour (h), 1.5 h and 2.5 h, respectively. Evaluation on brain lesion was made based on Zea-Longa scores, hematoxylin-eosin (HE) staining and Nissl staining. The brain infarction and blood vessels of rats were monitored and analyzed under TCD. Correlation analysis was applied to reveal the connection between hypoxic duration and infarct size detected by TCD or Nissl staining. RESULTS In H and HI modeling, longer duration of hypoxia was associated with higher Zea-Longa scores and more severe nerve damage. On the 1 d after modeling, necrosis was found in SD rats' brain indicated by HE and Nissl staining, which was aggravated as hypoxic duration prolonged. Alteration of brain structures and blood vessels of SD rats was displayed in Sham, HI and H rats under TCD. TCD images for coronal section revealed that brain infarct was detected at the cortex and there was marked cerebrovascular back-flow of HI rats regardless of hypoxic duration. On the 7 d after modeling, similar infarct was detected under TCD at the cortex of HI rats in hypoxia-1 h, 1.5 h and 2.5 h groups, whereas the morphological changes were deteriorated with longer hypoxic time. Correlation analysis revealed positive correlation of hypoxic duration with infarct size detected by histological detection and TCD. CONCLUSIONS TCD dynamically monitored cerebral infarction after NHIE modeling, which will be potentially served as a useful auxiliary method for future animal experimental modeling evaluation in the case of less animal sacrifice.
Collapse
Affiliation(s)
- Rui-Fang Ma
- Department of Anesthesiology, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; School of Basic Medical Sciences, Kunming Medical University, Kunming 650000, Yunnan, China
| | - Lu-Lu Xue
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin-Xiang Liu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650000, Yunnan, China
| | - Li Chen
- Department of Anesthesiology, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Ting-Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; School of Basic Medical Sciences, Kunming Medical University, Kunming 650000, Yunnan, China.
| | - Fei Liu
- Department of Anesthesiology, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
37
|
Lin H, Li D, Zhu J, Liu S, Li J, Yu T, Tuchin VV, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation for brain diseases: review of animal and human studies including mechanisms and emerging trends. NEUROPHOTONICS 2024; 11:010601. [PMID: 38317779 PMCID: PMC10840571 DOI: 10.1117/1.nph.11.1.010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability. tPBM has been widely used in pre-clinical experiments and clinical trials for treating brain diseases, such as stroke and Alzheimer's disease. This review provides a comprehensive overview of tPBM. We summarize emerging trends and new discoveries in tPBM based on over one hundred references published in the past 20 years. We discuss the advantages and disadvantages of tPBM and highlight successful experimental and clinical protocols for treating various brain diseases. A better understanding of tPBM mechanisms, the development of guidelines for clinical practice, and the study of dose-dependent and personal effects hold great promise for progress in treating brain diseases.
Collapse
Affiliation(s)
- Hao Lin
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
- Huazhong University of Science and Technology, School of Optical Electronic Information, Wuhan, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Jingting Li
- Huazhong University of Science and Technology, School of Engineering Sciences, Wuhan, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Valery V. Tuchin
- Saratov State University, Science Medical Center, Saratov, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow, Russia
- Tomsk State University, Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Science Medical Center, Saratov, Russia
- Humboldt University, Department of Physics, Berlin, Germany
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
38
|
Chen X, Chen A, Wei J, Huang Y, Deng J, Chen P, Yan Y, Lin M, Chen L, Zhang J, Huang Z, Zeng X, Gong C, Zheng X. Dexmedetomidine alleviates cognitive impairment by promoting hippocampal neurogenesis via BDNF/TrkB/CREB signaling pathway in hypoxic-ischemic neonatal rats. CNS Neurosci Ther 2024; 30:e14486. [PMID: 37830170 PMCID: PMC10805444 DOI: 10.1111/cns.14486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
AIMS Dexmedetomidine (DEX) has been reported to alleviate hypoxic-ischemic brain damage (HIBD) in neonates. This study aimed to investigate whether DEX improves cognitive impairment by promoting hippocampal neurogenesis via the BDNF/TrkB/CREB signaling pathway in neonatal rats with HIBD. METHODS HIBD was induced in postnatal day 7 rats using the Rice-Vannucci method, and DEX (25 μg/kg) was administered intraperitoneally immediately after the HIBD induction. The BDNF/TrkB/CREB pathway was regulated by administering the TrkB receptor antagonist ANA-12 through intraperitoneal injection or by delivering adeno-associated virus (AAV)-shRNA-BDNF via intrahippocampal injection. Western blot was performed to measure the levels of BDNF, TrkB, and CREB. Immunofluorescence staining was utilized to identify the polarization of astrocytes and evaluate the levels of neurogenesis in the dentate gyrus of the hippocampus. Nissl and TTC staining were performed to evaluate the extent of neuronal damage. The MWM test was conducted to evaluate spatial learning and memory ability. RESULTS The levels of BDNF and neurogenesis exhibited a notable decrease in the hippocampus of neonatal rats after HIBD, as determined by RNA-sequencing technology. Our results demonstrated that treatment with DEX effectively increased the protein expression of BDNF and the phosphorylation of TrkB and CREB, promoting neurogenesis in the dentate gyrus of the hippocampus in neonatal rats with HIBD. Specifically, DEX treatment significantly augmented the expression of BDNF in hippocampal astrocytes, while decreasing the proportion of detrimental A1 astrocytes and increasing the proportion of beneficial A2 astrocytes in neonatal rats with HIBD. Furthermore, inhibiting the BDNF/TrkB/CREB pathway using either ANA-12 or AAV-shRNA-BDNF significantly counteracted the advantageous outcomes of DEX on hippocampal neurogenesis, neuronal survival, and cognitive improvement. CONCLUSIONS DEX promoted neurogenesis in the hippocampus by activating the BDNF/TrkB/CREB pathway through the induction of polarization of A1 astrocytes toward A2 astrocytes, subsequently mitigating neuronal damage and cognitive impairment in neonates with HIBD.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Andi Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jianjie Wei
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Yongxin Huang
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jianhui Deng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Pinzhong Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Yanlin Yan
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Mingxue Lin
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Lifei Chen
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Jiuyun Zhang
- Fujian Provincial Key Laboratory of Emergency MedicineFuzhouChina
| | - Zhibin Huang
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Xiaoqian Zeng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Cansheng Gong
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
| | - Xiaochun Zheng
- Department of AnesthesiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Emergency MedicineFuzhouChina
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial Co‐Constructed Laboratory of “Belt and Road”FuzhouChina
| |
Collapse
|
39
|
Khayat S, Fanaei H, Lakzaee N. Effects of prenatal mobile phone radiation exposure on MMP9 expression: Implications for inflammation, oxidative stress, and sensory-motor impairment after neonatal hypoxia- ischemia in rats. Toxicol Rep 2023; 11:378-384. [PMID: 37927954 PMCID: PMC10622691 DOI: 10.1016/j.toxrep.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Objective Non-ionizing radiofrequency radiation, which finds application in various sectors such as industry, commerce, medicine, and particularly in mobile phone technology, has emerged as a topic of significant concern during pregnancy. The aim of this study was to investigate the effect of cell phone radio-frequency (RF) radiation during pregnancy on the Matrix metalloproteinase 2 (MMP-2) and (MMP-9) 9 expressions after neonatal hypoxia-ischemia (HI) in rats. Materials and methods Two groups were formed by randomly assigning female Wistar rats: Group 1 consisted of female rats that were not exposed to RF radiation during pregnancy, while Group 2 comprised female rats that were exposed to RF radiation during pregnancy. After delivery, male offspring were divided into four groups including: (a) SHAM, (b) Exposure (EXP), (c) hypoxia-ischemia (HI), (d) HI/Exposure (HI/EXP). Seven days after HI induction, neurobehavioral tests were performed, and then brain tissue was taken from the skull to measure MMP-2 and MMP-9 expressions, inflammation, oxidative stress, infarct volume and cerebral edema. Results MMP-9 mRNA expression in the HI/EXP group was significantly higher than the HI, SHAM and EXP groups. MMP-2 mRNA expression levels in the HI group were significantly higher than Sham and the EXP groups.TNF-α and Total oxidant capacity (TOC) levels in the HI/EXP group were significantly higher than HI, EXP and SHAM groups. Total antioxidant capacity (TAC) level in the HI/EXP group were significantly lower than HI, EXP and SHAM groups. Cerebral edema and infarct volume in the HI/EXP group were significantly greater than the HI group. Sensory-motor function was significantly weaker in HI/EXP as compared HI group. Conclusion Our findings indicate that during pregnancy, exposure to mobile phone RF radiation intensifies damage from HI in rat pups by elevating MMP-9 activity.
Collapse
Affiliation(s)
- Samira Khayat
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narges Lakzaee
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
40
|
Zhang X, Peng KZ, Xu SL, Wu MX, Sun HJ, Zhao J, Yang S, Liu SJ, Lia CY, Zhang XM. The GluN2B-Containing NMDA Receptor Alleviates Neuronal Apoptosis in Neonatal Hypoxic-Ischemic Encephalopathy by Activating PI3K-Akt-CREB Signaling Pathwa. Physiol Res 2023; 72:669-680. [PMID: 38015765 PMCID: PMC10751047 DOI: 10.33549/physiolres.935044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/18/2023] [Indexed: 01/05/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a disease caused by insufficient blood supply in the brain in newborns during the perinatal period. Severe HIE leads to patient death, and patients with mild HIE are at increased risk of cognitive deficits and behavioral abnormalities. The NMDA receptor is an important excitatory receptor in the central nervous system, and in adult hypoxic-ischemic injury both subtypes of the NMDA receptor play important but distinct roles. The GluN2A-containing NMDA receptor (GluN2A-NMDAR) could activate neuronal protective signaling pathway, while the GluN2B-NMDAR subtype is coupled to the apoptosis-inducing signaling pathway and leads to neuronal death. However, the expression level of GluN2B is higher in newborns than in adults, while the expression of GluN2A is lower. Therefore, it is not clear whether the roles of different NMDA receptor subtypes in HIE are consistent with those in adults. We investigated this issue in this study and found that in HIE, GluN2B plays a protective role by mediating the protective pathway through binding with PSD95, which is quite different to that in adults. The results of this study provided new theoretical support for the clinical treatment of neonatal hypoxic ischemia.
Collapse
Affiliation(s)
- X Zhang
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
zur Nedden S, Safari MS, Fresser F, Faserl K, Lindner H, Sarg B, Baier G, Baier-Bitterlich G. PKN1 Exerts Neurodegenerative Effects in an In Vitro Model of Cerebellar Hypoxic-Ischemic Encephalopathy via Inhibition of AKT/GSK3β Signaling. Biomolecules 2023; 13:1599. [PMID: 38002281 PMCID: PMC10669522 DOI: 10.3390/biom13111599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
We recently identified protein kinase N1 (PKN1) as a negative gatekeeper of neuronal AKT protein kinase activity during postnatal cerebellar development. The developing cerebellum is specifically vulnerable to hypoxia-ischemia (HI), as it occurs during hypoxic-ischemic encephalopathy, a condition typically caused by oxygen deprivation during or shortly after birth. In that context, activation of the AKT cell survival pathway has emerged as a promising new target for neuroprotective interventions. Here, we investigated the role of PKN1 in an in vitro model of HI, using postnatal cerebellar granule cells (Cgc) derived from Pkn1 wildtype and Pkn1-/- mice. Pkn1-/- Cgc showed significantly higher AKT phosphorylation, resulting in reduced caspase-3 activation and improved survival after HI. Pkn1-/- Cgc also showed enhanced axonal outgrowth on growth-inhibitory glial scar substrates, further pointing towards a protective phenotype of Pkn1 knockout after HI. The specific PKN1 phosphorylation site S374 was functionally relevant for the enhanced axonal outgrowth and AKT interaction. Additionally, PKN1pS374 shows a steep decrease during cerebellar development. In summary, we demonstrate the pathological relevance of the PKN1-AKT interaction in an in vitro HI model and establish the relevant PKN1 phosphorylation sites, contributing important information towards the development of specific PKN1 inhibitors.
Collapse
Affiliation(s)
- Stephanie zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Motahareh Solina Safari
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Friedrich Fresser
- Institute for Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria; (F.F.); (G.B.)
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (H.L.); (B.S.)
| | - Herbert Lindner
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (H.L.); (B.S.)
| | - Bettina Sarg
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (H.L.); (B.S.)
| | - Gottfried Baier
- Institute for Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria; (F.F.); (G.B.)
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
42
|
Gaston-Breton R, Maïza Letrou A, Hamoudi R, Stonestreet BS, Mabondzo A. Brain organoids for hypoxic-ischemic studies: from bench to bedside. Cell Mol Life Sci 2023; 80:318. [PMID: 37804439 PMCID: PMC10560197 DOI: 10.1007/s00018-023-04951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Our current knowledge regarding the development of the human brain mostly derives from experimental studies on non-human primates, sheep, and rodents. However, these studies may not completely simulate all the features of human brain development as a result of species differences and variations in pre- and postnatal brain maturation. Therefore, it is important to supplement the in vivo animal models to increase the possibility that preclinical studies have appropriate relevance for potential future human trials. Three-dimensional brain organoid culture technology could complement in vivo animal studies to enhance the translatability of the preclinical animal studies and the understanding of brain-related disorders. In this review, we focus on the development of a model of hypoxic-ischemic (HI) brain injury using human brain organoids to complement the translation from animal experiments to human pathophysiology. We also discuss how the development of these tools provides potential opportunities to study fundamental aspects of the pathophysiology of HI-related brain injury including differences in the responses between males and females.
Collapse
Affiliation(s)
- Romane Gaston-Breton
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Auriane Maïza Letrou
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
| | - Barbara S Stonestreet
- Departments of Molecular Biology, Cell Biology and Biochemistry and Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Aloïse Mabondzo
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
43
|
Yimenicioglu S, Kaya TB, Yıldırım E, Arayıcı S, Bildirici Y, Ekici A. The factors affecting neurodevelopmental outcomes in HIE. Acta Neurol Belg 2023; 123:1903-1909. [PMID: 36352199 DOI: 10.1007/s13760-022-02126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/23/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy (HIE) has different neurological outcomes. AIM We wanted to see if there was any developmental delay in neonates with hypoxia ischemic encephalopathy who were given therapeutic hypothermia. STUDY DESIGN Retrospective cohort study. METHODS The Denver developmental screening test II (DDST-II) was performed to newborns who had been applied to therapeutic hypothermia. RESULTS There were 69 male and 36 female newborns. The mean 1-min and 5-min Apgar scores were 4.72 ± 2.51 and 7.03 ± 2.017, respectively. The mean pH and mean base excess were 6.92 ± 0.1 and -18.05 ± 5.72, respectively. The most common risk factors were meconium staining (17.1%). There were 67 patients with Stage I, 20 with Stage II, and 18 with Stage III. Diffusion restriction was seen in 13 patients. 28 patients had seizures. In aEEG, 12 patients had burst suppression. Three (2.9%) infants died during hospitalization. 19 patients missed follow-up appointments. Thirteen patients had abnormal development according to DDST-II. Seven patients had gross motor function delays and were diagnosed with cerebral palsy. Three had language skill delays, but two of them had speech disorders after two years of age. Two had delayed milestones. Two had delays in fine motor skills but did not have any sequels after two years of age. A significant difference was found between seizures and the severity of Sarnat stage, intubation in the delivery room with developmental delay. Apgar scores were significantly lower in patients with CP. CONCLUSION We should closely follow-up neonates who had low Apgar scores, seizures, a high Sarnat stage, were intubated in the delivery room.
Collapse
Affiliation(s)
- Sevgi Yimenicioglu
- Department of Pediatric Neurology, Health Ministry Eskisehir City Hospital, Eskisehir, Turkey.
| | - Tugba Barsan Kaya
- Department of Neonatal Intensive Care Unit, Eskisehir Osmangazi University Hospital, Eskisehir, Turkey
| | - Egemen Yıldırım
- Department of Neonatal Intensive Care Unit, Health Ministry Eskisehir City Hospital, Eskişehir, Turkey
| | - Sema Arayıcı
- Department of Neonatal Intensive Care Unit, Akdeniz University Hospital, Antalya, Turkey
| | - Yaşar Bildirici
- Department of Pediatrics, Health Ministry Eskisehir City Hospital, Eskisehir, Turkey
| | - Arzu Ekici
- Department of Pediatric Neurology, Health Ministry Bursa Yüksek İhtisas Eğitim Araştirma Hastahanesi, Bursa, Turkey
| |
Collapse
|
44
|
Schmidt R, Welzel B, Löscher W. Effects of season, daytime, sex, and stress on the incidence, latency, frequency, severity, and duration of neonatal seizures in a rat model of birth asphyxia. Epilepsy Behav 2023; 147:109415. [PMID: 37729684 DOI: 10.1016/j.yebeh.2023.109415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
Neonatal seizures are common in newborn infants after birth asphyxia. They occur more frequently in male than female neonates, but it is not known whether sex also affects seizure severity or duration. Furthermore, although stress and diurnal, ultradian, circadian, or multidien cycles are known to affect epileptic seizures in adults, their potential impact on neonatal seizures is not understood. This prompted us to examine the effects of season, daytime, sex, and stress on neonatal seizures in a rat model of birth asphyxia. Seizures monitored in 176 rat pups exposed to asphyxia on 40 experimental days performed over 3 years were evaluated. All rat pups exhibited seizures when exposed to asphyxia at postnatal day 11 (P11), which in terms of cortical development corresponds to term human babies. A first examination of these data indicated a seasonal variation, with the highest seizure severity in the spring. Sex and daytime did not affect seizure characteristics. However, when rat pups were subdivided into animals that were exposed to acute (short-term) stress after asphyxia (restraint and i.p. injection of vehicle) and animals that were not exposed to this stress, the seizures in stress-exposed rats were more severe but less frequent. Acute stress induced an increase in hippocampal microglia density in sham-exposed rat pups, which may have an additive effect on microglia activation induced by asphyxia. When seasonal data were separately analyzed for stress-exposed vs. non-stress-exposed rat pups, no significant seasonal variation was observed. This study illustrates that without a detailed analysis of all factors, the data would have erroneously indicated significant seasonal variability in the severity of neonatal seizures. Instead, the study demonstrates that even mild, short-lasting postnatal stress has a profound effect on asphyxia-induced seizures, most likely by increasing the activity of the hypothalamic-pituitary-adrenal axis. It will be interesting to examine how postnatal stress affects the treatment and adverse outcomes of birth asphyxia and neonatal seizures in the rat model used here.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Björn Welzel
- Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
45
|
Yin Y, Wei L, Caseley EA, Lopez‐Charcas O, Wei Y, Li D, Muench SP, Roger S, Wang L, Jiang L. Leveraging the ATP-P2X7 receptor signalling axis to alleviate traumatic CNS damage and related complications. Med Res Rev 2023; 43:1346-1373. [PMID: 36924449 PMCID: PMC10947395 DOI: 10.1002/med.21952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The P2X7 receptor is an exceptional member of the P2X purinergic receptor family, with its activation requiring high concentrations of extracellular adenosine 5'-triphosphate (ATP) that are often associated with tissue damage and inflammation. In the central nervous system (CNS), it is highly expressed in glial cells, particularly in microglia. In this review, we discuss the role and mechanisms of the P2X7 receptor in mediating neuroinflammation and other pathogenic events in a variety of traumatic CNS damage conditions, which lead to loss of neurological and cognitive functions. We raise the perspective on the steady progress in developing CNS-penetrant P2X7 receptor-specific antagonists that leverage the ATP-P2X7 receptor signaling axis as a potential therapeutic strategy to alleviate traumatic CNS damage and related complications.
Collapse
Affiliation(s)
- Yaling Yin
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Linyu Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Emily A. Caseley
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Osbaldo Lopez‐Charcas
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Yingjuan Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Dongliang Li
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Sanquan College of Xinxiang Medical UniversityXinxiangChina
| | - Steve P. Muench
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Sebastian Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Lu Wang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Lin‐Hua Jiang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
46
|
Wang CY, Zuo Z, Jo J, Kim KI, Madamba C, Ye Q, Jung SY, Bellen HJ, Lee HK. Daam2 phosphorylation by CK2α negatively regulates Wnt activity during white matter development and injury. Proc Natl Acad Sci U S A 2023; 120:e2304112120. [PMID: 37607236 PMCID: PMC10469030 DOI: 10.1073/pnas.2304112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023] Open
Abstract
Wnt signaling plays an essential role in developmental and regenerative myelination in the central nervous system. The Wnt signaling pathway is composed of multiple regulatory layers; thus, how these processes are coordinated to orchestrate oligodendrocyte (OL) development remains unclear. Here, we show CK2α, a Wnt/β-catenin signaling Ser/Thr kinase, phosphorylates Daam2, inhibiting its function and Wnt activity during OL development. Intriguingly, we found Daam2 phosphorylation differentially impacts distinct stages of OL development, accelerating early differentiation followed by decelerating maturation and myelination. Application toward white matter injury revealed CK2α-mediated Daam2 phosphorylation plays a protective role for developmental and behavioral recovery after neonatal hypoxia, while promoting myelin repair following adult demyelination. Together, our findings identify a unique regulatory node in the Wnt pathway that regulates OL development via protein phosphorylation-induced signaling complex instability and highlights a new biological mechanism for myelin restoration.
Collapse
Affiliation(s)
- Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan70101, Taiwan
| | - Zhongyuan Zuo
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Kyoung In Kim
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Christine Madamba
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX77030
| | - Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
| | - Hugo J. Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Hyun Kyoung Lee
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
47
|
Hamasaki MY, Mendes C, Batagello DS, Hirata MH, Britto LRGD, Nogueira MI. Pathophysiological aspects of neonatal anoxia and temporal expression of S100β in different brain regions. Neuroreport 2023; 34:575-582. [PMID: 37384931 DOI: 10.1097/wnr.0000000000001927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The aim of this study was to investigate the temporal variations of S100β in the hippocampus, cerebellum and cerebral cortex of neonatal rats (Wistar strain) under anoxic conditions. Real-time PCR and western blotting techniques were used for gene expression and protein analysis. Animals were divided into two groups, a control group and an anoxic group, and further separated at different time points for analysis. After anoxia, S100β gene expression showed a significant peak in the hippocampus and cerebellum after 2 h, followed by a decline compared to the control group at other time points. The increased gene expression in these regions was also accompanied by an increase in S100β protein levels in the anoxia group, observable 4 h after injury. In contrast, S100β mRNA content in the cerebral cortex never exceeded control values at any time point. Similarly, the protein content of S100β in the cerebral cortex did not show statistically significant differences compared to control animals at any assessment time point. These results suggest that the production profile of S100β differs by brain region and developmental stage. The observed differences in vulnerability between the hippocampus, cerebellum and cerebral cortex may be attributed to their distinct developmental periods. The hippocampus and cerebellum, which develop earlier than the cerebral cortex, showed more pronounced effects in response to anoxia, which is supported by the gene expression and protein content in this study. This result reveals the brain region-dependent nature of S100β as a biomarker of brain injury.
Collapse
Affiliation(s)
| | - Caroline Mendes
- Department of Anatomy and Physiology, Institute of Biomedical Sciences
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Universitdade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
48
|
Mikhailenko VA, Butkevich IP, Vershinina EA. Long-Term Effect of Moderate Hypoxia and Chronic Administration of Fluoxetine during the Neonatal Period on Cognitive and Stress-Hormonal Functions in Adult Male Rats. Bull Exp Biol Med 2023:10.1007/s10517-023-05853-8. [PMID: 37470895 DOI: 10.1007/s10517-023-05853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 07/21/2023]
Abstract
We studied the effect of moderate neonatal normobaric hypoxia on the indicators of spatial learning, memory, and reactivity of the hypothalamic-pituitary-adrenocortical system in adult male Wistar rats. The pharmacological effect of chronic injections of the serotonin reuptake inhibitor fluoxetine during the neonatal period on the studied behavioral and the physiological indices was evaluated. Hypoxia impaired spatial training, increased the short-term memory performance, but did not change long-term memory and stress indicator in response to its testing. The use of fluoxetine normalized learning, but did not change memory indicators and the stress-induced level of corticosterone in blood plasma in the hypoxic rats and control animals. New results indicate a protective effect of fluoxetine in the neonatal period under conditions of moderate normobaric hypoxia.
Collapse
Affiliation(s)
- V A Mikhailenko
- Laboratory of Ontogenesis of Nervous System, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - I P Butkevich
- Laboratory of Ontogenesis of Nervous System, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - E A Vershinina
- Laboratory of Information Technologies and Mathematical Modeling, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
49
|
Pikora K, Krętowska-Grunwald A, Krawczuk-Rybak M, Sawicka-Żukowska M. Diagnostic Value and Prognostic Significance of Nucleated Red Blood Cells (NRBCs) in Selected Medical Conditions. Cells 2023; 12:1817. [PMID: 37508482 PMCID: PMC10378384 DOI: 10.3390/cells12141817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Nucleated red blood cells (NRBCs) are premature erythrocyte precursors that reside in the bone marrow of humans of all ages as an element of erythropoiesis. They rarely present in healthy adults' circulatory systems but can be found circulating in fetuses and neonates. An NRBC count is a cost-effective laboratory test that is currently rarely used in everyday clinical practice; it is mostly used in the diagnosis of hematological diseases/disorders relating to erythropoiesis, anemia, or hemolysis. However, according to several studies, it may be used as a biomarker in the diagnosis and clinical outcome prognosis of preterm infants or severely ill adult patients. This would allow for a quick diagnosis of life-threatening conditions and the prediction of a possible change in a patient's condition, especially in relation to patients in the intensive care unit. In this review, we sought to summarize the possible use of NRBCs as a prognostic marker in various disease entities. Research into the evaluation of the NRBCs in the pediatric population most often concerns neonatal hypoxia, the occurrence and consequences of asphyxia, and overall neonatal mortality. Among adults, NRBCs can be used to predict changes in clinical condition and mortality in critically ill patients, including those with sepsis, trauma, ARDS, acute pancreatitis, or severe cardiovascular disease.
Collapse
Affiliation(s)
- Katarzyna Pikora
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-274 Bialystok, Poland
| | - Anna Krętowska-Grunwald
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-274 Bialystok, Poland
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-274 Bialystok, Poland
| | - Małgorzata Sawicka-Żukowska
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-274 Bialystok, Poland
| |
Collapse
|
50
|
Zhou T, Li J, Cheng A, Zuo Z. Desflurane Post-treatment Reduces Hypoxic-ischemic Brain Injury via Reducing Transient Receptor Potential Ankyrin 1 in Neonatal Rats. Neuroscience 2023; 522:121-131. [PMID: 37196978 PMCID: PMC10330691 DOI: 10.1016/j.neuroscience.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Perinatal hypoxic-ischemic (HI) brain injury leads to mortality and morbidity in neonates and children. There are no effective and practical methods to attenuate this brain injury. This study determined whether desflurane, a volatile anesthetic with limited effect on the cardiovascular system, protected against HI-induced brain damage and the role of transient receptor potential ankyrin 1 (TRPA1), a mediator for simulated ischemia-induced myelin damage, in this protection. Seven-day-old male and female Sprague-Dawley rats had brain HI. They were exposed to 4.8%, 7.6% or 11.4% desflurane immediately or 4.8% desflurane at 0.5, 1 or 2 h after the HI. Brain tissue loss was evaluated 7 days later. Neurological functions and brain structures of rats with HI and 4.8% desflurane post-treatment were evaluated 4 weeks after the HI. TRPA1 expression was determined by Western blotting. HC-030031, a TRPA1 inhibitor, was used to determine the role of TRPA1 in the HI-induced brain injury. HI induced brain tissue and neuronal loss, which was attenuated by all tested concentrations of desflurane. Desflurane post-treatment also improved motor function, learning and memory in rats with brain HI. Brain HI increased the expression of TRPA1 and this increase was inhibited by desflurane. TRPA1 inhibition reduced HI-induced brain tissue loss and impairment of learning and memory. However, the combination of TRPA1 inhibition and desflurane post-treatment did not preserve brain tissues, learning and memory better than TRPA1 inhibition or desflurane post-treatment alone. Our results suggest that desflurane post-treatment induces neuroprotection against neonatal HI. This effect may be mediated by inhibiting TRPA1.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA; Department of Anesthesiology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Aobing Cheng
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA; Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510515, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|