1
|
An W, Zhang W, Qi J, Xu W, Long Y, Qin H, Yao K. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising strategy for treating retinal degenerative diseases. Mol Med 2025; 31:75. [PMID: 39984849 PMCID: PMC11846226 DOI: 10.1186/s10020-025-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic strategy in regenerative medicine, demonstrating significant potential for clinical applications. Evidence suggests that MSCs not only exhibit multipotent differentiation potential but also exert critical therapeutic effects in retinal degenerative diseases via robust paracrine mechanisms. MSCs protect retinal cells from degenerative damage by modulating inflammation, inhibiting apoptosis, alleviating oxidative stress, and suppressing cell death pathways. Furthermore, MSCs contribute to retinal structural and functional stability by facilitating vascular remodeling and donating mitochondria to retinal cells. Of particular interest, MSC-derived exosomes have gained widespread attention as a compelling cell-free therapy. Owing to their potent anti-inflammatory, anti-apoptotic, and vascular-stabilizing properties, exosomes show significant promise for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yushan Long
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Erythropoietin in Glaucoma: From Mechanism to Therapy. Int J Mol Sci 2023; 24:ijms24032985. [PMID: 36769310 PMCID: PMC9917746 DOI: 10.3390/ijms24032985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Glaucoma can cause irreversible vision loss and is the second leading cause of blindness worldwide. The disease mechanism is complex and various factors have been implicated in its pathogenesis, including ischemia, excessive oxidative stress, neurotropic factor deprivation, and neuron excitotoxicity. Erythropoietin (EPO) is a hormone that induces erythropoiesis in response to hypoxia. However, studies have shown that EPO also has neuroprotective effects and may be useful for rescuing apoptotic retinal ganglion cells in glaucoma. This article explores the relationship between EPO and glaucoma and summarizes preclinical experiments that have used EPO to treat glaucoma, with an aim to provide a different perspective from the current view that glaucoma is incurable.
Collapse
|
3
|
Yaribeygi H, Maleki M, Nasimi F, Butler AE, Jamialahmadi T, Sahebkar A. Sodium-glucose co-transporter 2 inhibitors and hematopoiesis. J Cell Physiol 2022; 237:3778-3787. [PMID: 35951776 DOI: 10.1002/jcp.30851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Many patients with diabetes mellitus, especially those with chronic kidney disorders, have some degree of anemia due to a spectrum of causes and underlying pathophysiologic pathways. As such, enhancement in erythropoiesis is important in these patients. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a relatively new class of antidiabetic drugs with confirmed protective effects in kidney and cardiovascular tissues. Recent evidence suggests that these drugs may provide additional benefits in enhancing hematopoietic processes in diabetic patients. Though the exact mediating pathways have not been fully elucidated, cellular mechanisms are likely involved. In the current study, we present the potential pathways by which SGLT2i may modulate hematopoiesis and stimulate erythropoiesis.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nasimi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Alexandra E Butler
- Department of Research, Royal College of Surgeons in Ireland - Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Lai YF, Lin TY, Ho PK, Chen YH, Huang YC, Lu DW. Erythropoietin in Optic Neuropathies: Current Future Strategies for Optic Nerve Protection and Repair. Int J Mol Sci 2022; 23:ijms23137143. [PMID: 35806148 PMCID: PMC9267007 DOI: 10.3390/ijms23137143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (EPO) is known as a hormone for erythropoiesis in response to anemia and hypoxia. However, the effect of EPO is not only limited to hematopoietic tissue. Several studies have highlighted the neuroprotective function of EPO in extra-hematopoietic tissues, especially the retina. EPO could interact with its heterodimer receptor (EPOR/βcR) to exert its anti-apoptosis, anti-inflammation and anti-oxidation effects in preventing retinal ganglion cells death through different intracellular signaling pathways. In this review, we summarized the available pre-clinical studies of EPO in treating glaucomatous optic neuropathy, optic neuritis, non-arteritic anterior ischemic optic neuropathy and traumatic optic neuropathy. In addition, we explore the future strategies of EPO for optic nerve protection and repair, including advances in EPO derivates, and EPO deliveries. These strategies will lead to a new chapter in the treatment of optic neuropathy.
Collapse
Affiliation(s)
- Yi-Fen Lai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Ting-Yi Lin
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Pin-Kuan Ho
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Yu-Chuan Huang
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| |
Collapse
|
5
|
Teli P, Kale V, Vaidya A. Mesenchymal stromal cells-derived secretome protects Neuro-2a cells from oxidative stress-induced loss of neurogenesis. Exp Neurol 2022; 354:114107. [PMID: 35551901 DOI: 10.1016/j.expneurol.2022.114107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 12/01/2022]
Abstract
Neurodegenerative diseases (ND) are characterized by debilitating medical conditions that principally affect the neuronal cells in the human brain. One of the major reasons that there are no effective drugs for the treatment of ND is because researchers face technical challenges while conducting studies to understand the molecular mechanism behind ND. Although various studies have established in vitro neurodegenerative model systems, we feel that these model systems are not physiologically relevant, as they do not mimic the in vivo situation of chronic insult. Therefore, the primary aim of this study was to establish an in vitro neurodegenerative model system by inducing oxidative stress in such a way that the neuronal cells remain viable, but lose their structural and functional characteristics. Using a murine neuroblastoma cell line, Neuro-2a, we demonstrate that induction of oxidative stress significantly affects various neurite outgrowth parameters and reduces the expression of neuronal and autophagy markers without causing apoptosis in them. Previously, we have discussed the possible therapeutic applications of mesenchymal stromal cells (MSCs) and their secretome in the treatment of ND. Here, using two distinct approaches, we show that when Neuro-2a cells subjected to oxidative stress are exposed to MSC-derived conditioned medium (secretome), they exhibit a significant improvement in various neuronal parameters and in the expression of neuronal markers. Overall, our findings support the salutary role of MSC-derived secretome in rescuing the oxidative stress-induced loss of neurogenesis using a physiologically relevant in vitro model system. Our data underscore the propensity of the MSC-secretome in reversing ND.
Collapse
Affiliation(s)
- Prajakta Teli
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India.
| |
Collapse
|
6
|
Abd Rashid M, Chenshen L, Ee Hwan AK, AlSaeedy H, Mok PL, Subbiah SK, Isa HM, Yong TK, Nizam Harun MH, B S Mohamad SMS, Min Hwei AN, Luu CD, Catherine Bastion ML. Rescue of photoreceptor with human mesenchyme stem cell and human mesenchyme stem cell expressing erythropoietin in total degeneration of retina animal model. Indian J Ophthalmol 2022; 70:921-929. [PMID: 35225544 PMCID: PMC9114553 DOI: 10.4103/ijo.ijo_472_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Purpose: This study aimed to investigate the efficacy of human-derived umbilical cord mesenchymal stem cells (HDUMSC) and human-derived umbilical cord mesenchymal stem cells expressing erythropoietin (HDUMSC-EPO) to rescue total degenerated retina in a rat model. Methods: The study included four treatment groups, namely negative control using normal saline (HBSS) injection, positive control using sodium iodide 60 mg/kg (SI), SI treated with HDUMSC, and SI treated with HDUMSC-EPO given via subretinal and intravenous routes, to test the efficacy of retinal regeneration following SI-induced retinal degeneration. Retinal function in both phases was tested via electroretinography (ERG) and histological staining examining the outer nuclear layer (ONL). Results: There was a statistically significant result (P < 0.05) in the SI treated with HDUMSC-EPO only when comparing day 11 (mean = 23.6 μv), day 18 (mean = 25.2 μv), day 26 (mean = 26.3 μv), and day 32 (mean = 28.2 μv) to the b-wave ERG on day 4 rescue injection day (mean = 12.5 μv). The SI treated with HDUMSC-EPO showed significant improvement in b-wave ERG readings in the Sprague–Dawley (SD) rat but did not restore baseline readings prior to degeneration (day 0). Both treated groups’ ONL thicknesses did not show significant changes compared to the negative control group (HBSS) following rescue therapy. Conclusion: Total retinal degeneration following intravenous SI injection was observed at 60 mg/kg. SI treated with HDUMSC and HDUMSC-EPO showed no regenerative potential compared to baseline in SI-induced total retina degeneration on ERG or histology, whereas SI treated with HDUMSC-EPO group showed a substantial increase in b-wave ERG amplitude over time.
Collapse
Affiliation(s)
- Munirah Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Lam Chenshen
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Avin Koh Ee Hwan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jawf Province, Saudi Arabia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hiba AlSaeedy
- Department of Medical Microbiology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jawf Province, Saudi Arabia; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology, Universiti Putra Malaysia, Serdang, Malaysia; Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Hazlita Md Isa
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Then Kong Yong
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre; Brighton Healthcare, UKM Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Hairul Nizam Harun
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Syed Mohamed Suhail B S Mohamad
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Angela Ng Min Hwei
- Tissue Engineering Centre, UKM Medical Centre, Cheras, Kuala Lumpur,, Malaysia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Sakaka, Al-Jawf Province, Saudi Arabia
| |
Collapse
|
7
|
Said MF, Islam AA, Massi MN, Prihantono, Hatta M, Patellongi IJ, Cangara H, Adhimarta W, Nasrullah, Nasution RA. Effect of erythropoietin administration on expression of mRNA brain-derived Neutrophic factor, levels of stromal cell-derived Factor-1, and neuron specific enolase in brain injury model Sprague Dawley. Ann Med Surg (Lond) 2021; 70:102877. [PMID: 34691421 PMCID: PMC8519762 DOI: 10.1016/j.amsu.2021.102877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a complicated condition that is the primary cause of death and disability in children and young adults in developed countries. Various kinds of therapy have been carried out in the management of brain injury, one of which is the administration of erythropoietin (EPO). There are not many studies in Indonesia have proven that EPO administration is effective on parameters such as stromal cell-derived factor 1 (SDF-1), brain-derived neurotrophic factor (BDNF mRNA), and neuron-specific enolase (NSE) in brain injury patients. The purpose of this study was to see how EPO affected BDNF mRNA expression, SDF-1 serum levels, and NSE levels in experimental rats with TBI. METHODS This study was conducted using a rat head injury model. Fifteen rats were randomly assigned to one of three groups: A, B, or C. EPO was administered subcutis with a dose of 30.000 U/kg. Blood samples were taken after brain injury (H0), 12 h (H12), and 24 h (H24) after brain injury. Serum level of SDF-1 and NSE were measured using mRNA BDNF gene expression was measured with Real-Time-PCR, and ELISA. RESULTS This study found EPO increase BDNF mRNA expression in group C at H-12 (7,92 ± 0.51 vs 6.45 ± 0.33) compared to group B, and at H-24 (9.20 ± 0.56 vs 7.22 ± 0.19); increase SDF-1 levels in group C at H-12 (7,56 ± 0,54) vs 4,62 ± 0,58) compared to group B, and at H-24 (11,32 ± 4,55 vs 2,55 ± 0,70); decrease serum NSE levels in group C at H-12 (17,25 ± 2,02 vs 29,65 ± 2,33) compare to group B and at H-24 (12,14 ± 2,61 vs 37,31 ± 2,76); the values are significantly different with p < 0,05. CONCLUSION EPO may have neuroprotective and anti-inflammatory properties in TBI by increasing mRNA BDNF expression and serum SDF-1 levels, and decrease serum NSE levels.
Collapse
Affiliation(s)
- Muhammad Fadli Said
- Doctoral Program of Biomedical Sciences, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Andi Asadul Islam
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Nasrum Massi
- Department of Clinical Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Prihantono
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mochammad Hatta
- Department of Clinical Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ilham jaya Patellongi
- Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Husni Cangara
- Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Willy Adhimarta
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nasrullah
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | |
Collapse
|
8
|
Wang J, Fu MS, Zhou MW, Ke BL, Zhang ZH, Xu X. Potential effects of angiogenesis-related factors on the severity of APAC and surgical outcomes of trabeculectomy. BMC Ophthalmol 2021; 21:297. [PMID: 34384366 PMCID: PMC8359530 DOI: 10.1186/s12886-021-02051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background EPO (erythropoietin) and PDGF (platelet derived growth factor) families are thought to be associated with angiogenesis under hypoxic condition. The sharp rise of intraocular pressure in acute primary angle closure (APAC) results in an inefficient supply of oxygen and nutrients. We aimed to measure the expression of EPO and PDGF family members in APAC eyes and demonstrate their associations with APAC’s surgical success rate. Methods Concentrations of EPO, PDGF-AA, -BB, -CC and -DD collected in aqueous humor samples of 55 patients recruited were measured. Before operations, correlations between target proteins and IOP (intraocular pressure) were detected between APAC (acute primary angle closure) and cataract patients. Based on the post-operative follow-up, the effects of EPO and PDGF family members on the successful rate of trabeculectomy were tested. Results The levels of EPO, PDGF-CC and -DD were significantly elevated in the APAC group compared to the cataract group. During the post-operative follow-up, EPO, PDGF-CC and -DD showed significant differences between the success and failure groups. In multivariable linear regression analyses, failed filtration surgery was more likely in APAC eyes with higher EPO level. The Kaplan-Meier survival plot suggested that the success rate in eyes with low EPO level was significantly higher than that in eyes with high EPO level. Conclusion The levels of EPO, PDGF-CC and -DD were significantly elevated in failure group. EPO level correlated with preoperative IOP and numbers of eyedrops, and higher EPO level in aqueous humor is a risk factor for trabeculectomy failure. It can be a biomarker to estimate the severity of APAC and the success rate of surgery. The investigation of mechanism of EPO in APAC a may have potential clinical applications for the surgical treatment of APAC.
Collapse
Affiliation(s)
- Jing Wang
- National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China
| | - Ming-Shui Fu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min-Wen Zhou
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bi-Lian Ke
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Hua Zhang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China. .,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China. .,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China. .,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Xun Xu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Adak S, Magdalene D, Deshmukh S, Das D, Jaganathan BG. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Rev Rep 2021; 17:1154-1173. [PMID: 33410097 PMCID: PMC7787584 DOI: 10.1007/s12015-020-10090-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal Stem Cells (MSCs) have been studied extensively for the treatment of several retinal diseases. The therapeutic potential of MSCs lies in its ability to differentiate into multiple lineages and secretome enriched with immunomodulatory, anti-angiogenic and neurotrophic factors. Several studies have reported the role of MSCs in repair and regeneration of the damaged retina where the secreted factors from MSCs prevent retinal degeneration, improve retinal morphology and function. MSCs also donate mitochondria to rescue the function of retinal cells and exosomes secreted by MSCs were found to have anti-apoptotic and anti-inflammatory effects. Based on several promising results obtained from the preclinical studies, several clinical trials were initiated to explore the potential advantages of MSCs for the treatment of retinal diseases. This review summarizes the various properties of MSCs that help to repair and restore the damaged retinal cells and its potential for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Sanjucta Adak
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Damaris Magdalene
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Saurabh Deshmukh
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Dipankar Das
- Department of Pathology, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
10
|
Koh AEH, Alsaeedi HA, Rashid MBA, Lam C, Harun MHN, Ng MH, Mohd Isa H, Then KY, Bastion MLC, Farhana A, Khursheed Alam M, Subbiah SK, Mok PL. Transplanted Erythropoietin-Expressing Mesenchymal Stem Cells Promote Pro-survival Gene Expression and Protect Photoreceptors From Sodium Iodate-Induced Cytotoxicity in a Retinal Degeneration Model. Front Cell Dev Biol 2021; 9:652017. [PMID: 33987180 PMCID: PMC8111290 DOI: 10.3389/fcell.2021.652017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) are highly regarded as a potential treatment for retinal degenerative disorders like retinitis pigmentosa and age-related macular degeneration. However, donor cell heterogeneity and inconsistent protocols for transplantation have led to varied outcomes in clinical trials. We previously showed that genetically-modifying MSCs to express erythropoietin (MSCEPO) improved its regenerative capabilities in vitro. Hence, in this study, we sought to prove its potential in vivo by transplanting MSCsEPO in a rat retinal degeneration model and analyzing its retinal transcriptome using RNA-Seq. Firstly, MSCsEPO were cultured and expanded before being intravitreally transplanted into the sodium iodate-induced model. After the procedure, electroretinography (ERG) was performed bi-weekly for 30 days. Histological analyses were performed after the ERG assessment. The retina was then harvested for RNA extraction. After mRNA-enrichment and library preparation, paired-end RNA-Seq was performed. Salmon and DESeq2 were used to process the output files. The generated dataset was then analyzed using over-representation (ORA), functional enrichment (GSEA), and pathway topology analysis tools (SPIA) to identify enrichment of key pathways in the experimental groups. The results showed that the MSCEPO-treated group had detectable ERG waves (P <0.05), which were indicative of successful phototransduction. The stem cells were also successfully detected by immunohistochemistry 30 days after intravitreal transplantation. An initial over-representation analysis revealed a snapshot of immune-related pathways in all the groups but was mainly overexpressed in the MSC group. A subsequent GSEA and SPIA analysis later revealed enrichment in a large number of biological processes including phototransduction, regeneration, and cell death (Padj <0.05). Based on these pathways, a set of pro-survival gene expressions were extracted and tabulated. This study provided an in-depth transcriptomic analysis on the MSCEPO-treated retinal degeneration model as well as a profile of pro-survival genes that can be used as candidates for further genetic enhancement studies on stem cells.
Collapse
Affiliation(s)
- Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hiba Amer Alsaeedi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Munirah Binti Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chenshen Lam
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Hairul Nizam Harun
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Hazlita Mohd Isa
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kong Yong Then
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
11
|
Koh AEH, Subbiah SK, Farhana A, Alam MK, Mok PL. Mitigation of Sodium Iodate-Induced Cytotoxicity in Retinal Pigment Epithelial Cells in vitro by Transgenic Erythropoietin-Expressing Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:652065. [PMID: 33937251 PMCID: PMC8082501 DOI: 10.3389/fcell.2021.652065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSC) have shown promise in restoring the vision of patients in clinical trials. However, this therapeutic effect is not observed in every treated patient and is possibly due to the inefficacies of cell delivery and high cell death following transplantation. Utilizing erythropoietin can significantly enhance the regenerative properties of MSCs and hence improve retinal neuron survivability in oxidative stress. Hence, this study aimed to investigate the efficacy of conditioned medium (CM) obtained from transgenic human erythropoietin-expressing MSCs (MSC EPO ) in protecting human retinal pigment epithelial cells from sodium iodate (NaIO3)-induced cell death. Human MSC and MSC EPO were first cultured to obtain conditioned media (CM). The IC50 of NaIO3 in the ARPE-19 culture was then determined by an MTT assay. After that, the efficacy of both MSC-CM and MSC-CM EPO in ARPE-19 cell survival were compared at 24 and 48 h after NaIO3 treatment with MTT. The treatment effects on mitochondrial membrane potential was then measured by a JC-1 flow cytometric assay. The MTT results indicated a corresponding increase in cell survivability (5-58%) in the ARPE-19 cell cultures. In comparison to MSC-CM, the use of conditioned medium collected from the MSC-CM EPO further enhanced the rate of ARPE-19 survivability at 24 h (P < 0.05) and 48 h (P < 0.05) in the presence of NaIO3. Furthermore, more than 90% were found viable with the JC-1 assay after MSC-CM EPO treatment, showing a positive implication on the mitochondrial dynamics of ARPE-19. The MSC-CM EPO provided an enhanced mitigating effect against NaIO3-induced ARPE-19 cell death over that of MSC-CM alone during the early phase of the treatment, and it may act as a future therapy in treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Avin Ee-Hwan Koh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Pooi Ling Mok
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM, Seri Kembangan, Malaysia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
12
|
Lin Y, Ren X, Chen Y, Chen D. Interaction Between Mesenchymal Stem Cells and Retinal Degenerative Microenvironment. Front Neurosci 2021; 14:617377. [PMID: 33551729 PMCID: PMC7859517 DOI: 10.3389/fnins.2020.617377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Retinal degenerative diseases (RDDs) are a group of diseases contributing to irreversible vision loss with yet limited therapies. Stem cell-based therapy is a promising novel therapeutic approach in RDD treatment. Mesenchymal stromal/stem cells (MSCs) have emerged as a leading cell source due to their neurotrophic and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Several pre-clinical studies have shown that MSCs have the potential to delay retinal degeneration, and recent clinical trials have demonstrated promising safety profiles for the application of MSCs in retinal disease. However, some of the clinical-stage MSC therapies have been unable to meet primary efficacy end points, and severe side effects were reported in some retinal “stem cell” clinics. In this review, we provide an update of the interaction between MSCs and the RDD microenvironment and discuss how to balance the therapeutic potential and safety concerns of MSCs' ocular application.
Collapse
Affiliation(s)
- Yu Lin
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Ding SLS, Koh AEH, Kumar S, Ali Khan MS, Alzahrani B, Mok PL. Genetically-modified human mesenchymal stem cells to express erythropoietin enhances differentiation into retinal photoreceptors: An in-vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 195:33-38. [PMID: 31060031 DOI: 10.1016/j.jphotobiol.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Dysfunctional or death of retinal photoreceptors is an irreversible phenomenon that is closely associated with a broad range of retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration (AMD), resulting in successive loss of visual function and blindness. In search for viable treatment for retinal degenerative diseases, mesenchymal stem cells (MSCs) has demonstrated promising therapeutic capabilities to repair and replace damaged photoreceptor cells in both in vitro and in vivo conditions. Nevertheless, the dearth of MSC differentiation capacity into photoreceptors has limited its use in cell replacement therapy. Erythropoietin (EPO) has vital role in early neural retinal cell differentiation and demonstrated rescue potential on dying photoreceptor cells. Hence, we aimed to evaluate the differentiation capacity of MSCs into photoreceptor cells in the presence of human EPO protein. We derived the MSC from human Wharton's jelly of umbilical cord and transduced the cells with lentivirus particles encoding EPO and green fluorescent protein (GFP) as reporter gene. The transduced cells were selectively cultured and induced to differentiate into photoreceptors by exposing to photoreceptor differentiation cocktail. Our preliminary results showed that transduced cells exposed to induction medium had an enhanced differentiation capacity when compared to non-transduced cells. Our results demonstrated a novel strategy to increase the yield of in vitro photoreceptor differentiation and may be potentially useful in improving the efficiency of stem cell transplantation for ocular disorders.
Collapse
Affiliation(s)
- Suet Lee Shirley Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| |
Collapse
|